The present invention relates to a blood vessel visualization apparatus, a blood vessel puncture system, and an observation window member that irradiate a living body with near infrared light and visualize blood vessels.
A medical worker performs a procedure of puncturing a patient’s blood vessel with a puncture needle such as an indwelling needle. It is demanded to improve a puncture success rate by making it possible to identify a blood vessel having an appropriate thickness, and reliably insert the puncture needle into a blood vessel of interest when performing puncturing with a puncture needle.
In order to improve such the puncture success rate, there have been proposed various blood vessel visualization apparatuses that can irradiate a puncture target site with near infrared light having high permeability with respect to a living body, and identify a course of a blood vessel.
For example, a blood vessel visualization apparatus disclosed in Japanese Patent Application Laid-Open No. 2017-64094 A is configured such that light sources irradiate a patient’s puncture target site with near infrared light, image capturing means captures a near infrared light image reflected by the puncture target site, and a liquid crystal display apparatus visualizes and displays the captured near infrared light image.
However, the conventional blood vessel visualization apparatus has a problem that an apparatus configuration such as image capturing means and a liquid crystal display apparatus is necessary, and the apparatus configuration becomes complicated and large.
Therefore, a blood vessel visualization apparatus, a blood vessel puncture system, and an observation window member that can visualize blood vessels with a simpler apparatus configuration are desired.
According to one aspect of the present disclosure, a blood vessel visualization apparatus includes: a light source that irradiates with near infrared light a visualization target site at which a blood vessel of a living body is visualized; an observation window that contains a wavelength conversion material for converting the near infrared light into visible light, and visualizes a near infrared light image reflected from the visualization target site; and a support member that supports the light source and the observation window such that the light source and the observation window face and are spaced apart from the visualization target site.
According to another aspect of the present disclosure, a blood vessel puncture system includes: the blood vessel visualization apparatus according to the above aspect; and a medical tool that includes a puncture portion that can puncture a blood vessel.
According to another aspect of the present disclosure, an observation window member of a blood vessel visualization apparatus that includes a light source that irradiates with near infrared light a visualization target site at which a blood vessel of a living body is visualized, and an observation window that contains a wavelength conversion material for converting the near infrared light into visible light, and visualizes a near infrared light image reflected from the visualization target site, and is the observation window member that includes: the observation window that is arranged facing the visualization target site; a frame member that holds the observation window; and a support member that supports the frame member spaced apart from the visualization target site.
The blood vessel visualization apparatus, the blood vessel puncture system, and the observation window member according to the above aspects can visualize blood vessels with a simpler apparatus configuration.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
As illustrated in
The support members 18 support the frame member 20 such that the frame member 20 is substantially parallel to a flat support base 22, such as a top surface of a work table, when lower end portions of the support members 18 are placed on the support base 22. The support members 18 keep a state where the frame member 20 and the support base 22 are spaced apart from each other. A separation distance between the frame member 20 and the support base 22 is determined by heights of the support members 18.
A space between the frame member 20 and the support base 22 is configured to form a distance at which the visualization target site 24 at which a blood vessel 25 of a living body is visualized can be arranged. The heights of the support members 18 are preferably set such that, when the visualization target site 24 as illustrated in
The visualization target site 24 is not particularly limited, but may be a patient’s arm as illustrated in
Inner surfaces 19 of the support members 18 on the visualization target site 24 side may be covered with a near infrared light absorbing material having a high light absorption rate of near infrared light to prevent diffused reflection of the near infrared light. Furthermore, a bottom surface 21 of the frame member 20 on the visualization target site 24 side may also be covered with the near infrared light absorbing material similarly to the inner surfaces 19 of the support members 18. The support members 18 and the frame member 20 may be formed by a light shielding material that does not allow visible light to pass to limit entry of the visible light from the outside.
A rectangular opening portion 28 is formed in the frame member 20 of the observation window member 12. The opening portion 28 penetrates the frame member 20 in a thickness direction. The observation window 16 is fitted and joined to the opening portion 28 of the frame member 20. The observation window 16 includes a rectangular plate member 30 formed to have dimensions that can be fitted into the opening portion 28. The thickness of the plate member 30 is not particularly limited, yet is formed equally to the thickness of the frame member 20 or thinner than the thickness of the frame member 20.
As illustrated in
The surface of the plate member 30 is applied a wavelength conversion material that converts near infrared light of 700 to 1100 nm into visible light. The wavelength conversion material that converts near infrared light into visible light is also referred to as an up-conversion material, and is, for example, a material of Japanese Patent Application Laid-Open No. 2019-172992 A.
As an up-conversion material, a material containing, in molecules, a sensitizer that absorbs light of a long wavelength and efficiently generates a triplet, and an emitter that generates an excited triplet of a long life span by triplet-triplet energy transfer (TTET) from the sensitizer, further generates an excited singlet by excited triplet-triplet collision, and thereby emits fluorescence can highly efficiently convert near infrared light into visible light, and therefore is gaining attention. The observation window 16 containing the material that can highly efficiently convert near infrared light into visible light visualizes an image of the near infrared light reflected inside the living body with visible luminance.
The observation window 16 is transparent or semitransparent with respect to visible light, and makes it possible to directly visually check by means of the visible light the visualization target site 24 such as an arm irradiated with the visible light having entered a gap between the observation window member 12 and the visualization target site 24. When the light sources 14 are turned on, a near infrared light image is superimposed on a visible light image of light entering from the outside to visibly project the blood vessel 25.
The observation window 16 is not limited to an observation window obtained by applying a wavelength conversion material to the surface of the plate member 30 made of a plate-like transparent material (resin or glass). The observation window 16 may be formed by dispersing a wavelength conversion material in a transparent material that forms the plate member 30. In addition, the observation window 16 is not limited to the plate member 30, and may be a wavelength conversion film obtained by containing or applying a wavelength conversion material in or to a resin film having flexibility.
As illustrated in
The light source 14 is attached to the frame member 20 such that a center (optical axis) of an irradiation range of the light source 14 is inclined toward an axis C that passes through a center of the observation window 16. Consequently, it is possible to efficiently irradiate with near infrared light the visualization target site 24 arranged below the observation window 16.
Furthermore, as illustrated in
The observation window member 12 is provided with an unillustrated power supply circuit, and this power supply circuit turns on the light sources 14.
Note that the light sources 14 according to the present embodiment are not limited to the configuration provided to the frame member 20, and may be configured separately from the observation window member 12, and configured to be arranged between the frame member 20 and the visualization target site 24 immediately before use.
The blood vessel visualization apparatus 10 according to the present embodiment is configured as described above. Next, a blood vessel puncture system 40 will be described with reference to
As illustrated in
The blood vessel visualization apparatus 10 and the blood vessel puncture system 40 according to the present embodiment are configured as described above, and effects thereof will be described below.
As illustrated in
Subsequently, the light sources 14 of the observation window member 12 emit near infrared light. The near infrared light spreads in a gap between the light sources 14 and the visualization target site 24 with uniform luminance, is radiated on the visualization target site 24, and transmits to the inside of the visualization target site 24. The near infrared light is scattered and reflected in tissues of the living body, and the reflected near infrared light returns to the observation window 16. At this time, red blood cells in the blood vessel 25 in the living body absorb more near infrared light, and therefore a near infrared light image in which a portion of the blood vessel 25 is dark and other tissue portions are bright appears. The near infrared light image is converted into visible light by the wavelength conversion material of the observation window 16 and becomes visible.
The observation window 16 displays an image of the blood vessel 25 that is visualized by near infrared light, and is superimposed on the visualization target site 24 projected by light entering from the outside. Medical workers (users) such as doctors or nurses can reliably perform puncturing with the medical tool 26 such as the puncture needle or the catheter assembly based on the image of the blood vessel 25 projected on the observation window 16. The user can easily find the blood vessel 25 having an appropriate thickness suitable for puncturing based on the shape of the blood vessel 25 on the observation window 16. Furthermore, the user can directly visually check the visualization target site 24 through the observation window 16, and does not need to move a line of sight when performing puncturing, so that it is possible to more easily and reliably puncture the blood vessel 25 with the medical tool 26.
When the blood vessel 25 is visualized, for example, brightness in a room may be decreased or the surroundings of the observation window member 12 may be covered with a light shielding member as needed to limit the amount of visible light entering the visualization target site 24 in order to enhance the visibility of the blood vessel 25.
The blood vessel visualization apparatus 10, the blood vessel puncture system 40, and the observation window member 12 according to the present embodiment provide the following effects.
The blood vessel visualization apparatus 10 according to the present embodiment includes the light sources 14 that irradiate with near infrared light the visualization target site 24 at which the blood vessel 25 of the living body is visualized, the observation window 16 that contains the wavelength conversion material for converting the near infrared light into visible light, and visualizes a near infrared light image reflected from the visualization target site 24, and the support members 18 that support the light sources 14 and the observation window 16 such that the light sources 14 and the observation window 16 face and are spaced apart from the visualization target site 24.
The above blood vessel visualization apparatus 10 visualizes the blood vessel 25 based on the near infrared light reflected from the visualization target site 24 without using a complicated apparatus configuration such as an image capturing apparatus or a liquid crystal display apparatus. Furthermore, by arranging the light sources 14 and the observation window 16 facing the visualization target site 24 and spaced apart from the visualization target site 24, it is possible to obtain an image of the blood vessel 25 with high visibility while suppressing variations in the luminance.
In the above blood vessel visualization apparatus 10, the support members 18 may be configured to form the puncture space 27 in which the medical tool 26 can perform puncturing between the observation window 16 and the visualization target site 24. According to this configuration, the user can puncture the visualization target site 24 with the medical tool 26 while directly visually checking the medical tool 26 through the observation window 16. Consequently, the user can easily puncture the blood vessel 25 with the medical tool 26 without moving the line of sight.
In the above blood vessel visualization apparatus 10, the observation window 16 may be formed by applying the wavelength conversion material to the plate-like transparent material (resin or glass). Furthermore, the observation window 16 may be formed as a film-like wavelength conversion film containing the wavelength conversion material.
In the above blood vessel visualization apparatus 10, the observation window 16 may be transparent or semitransparent with respect to visible light, and makes it possible to visually check the visualization target site 24 through the observation window 16. According to this configuration, when puncturing is performed with the medical tool 26, the visualization target site 24 can be directly visually checked through the observation window 16, so that it is possible to more reliably perform puncturing with the medical tool 26.
In the above blood vessel visualization apparatus 10, the light shielding member may be provided in the surroundings of the light sources 14 and the observation window 16, and limit entry of visible light from the outside to the visualization target site 24. It is concerned that, when external light is too bright, the blood vessel 25 to be superimposed and displayed becomes difficult to see. However, according to the above configuration, it is possible to maintain visibility of the blood vessel 25 by limiting the entry of visible light.
In the above blood vessel visualization apparatus 10, the plurality of light sources 14 may be provided, and configured to irradiate the visualization target site 24 with near infrared light from a plurality of different directions. Consequently, it is possible to prevent the shadow of the medical tool 26 from being cast when the medical tool 26 is arranged in the puncture space 27.
The blood vessel puncture system 40 according to the present embodiment includes the above blood vessel visualization apparatus 10, and the medical tool 26 that includes the puncture portion 42 that can puncture the blood vessel 25. According to the blood vessel puncture system 40 employing this configuration, the blood vessel visualization apparatus 10 visualizes the blood vessel 25 with a simpler apparatus configuration.
In the above blood vessel puncture system 40, the medical tool 26 may be the puncture needle or the catheter assembly. According to this configuration, it is possible to puncture the blood vessel 25 suitable for puncturing while visually checking the blood vessel 25.
The observation window member 12 according to the present embodiment is the observation window member 12 of the blood vessel visualization apparatus 10 that includes the light sources 14 that irradiate with near infrared light the visualization target site 24 at which the blood vessel 25 of the living body is visualized, the observation window 16 that contains the wavelength conversion material for converting the near infrared light into visible light, and visualizes a near infrared light image reflected from the visualization target site 24, and includes the observation window 16 that is arranged facing the visualization target site 24, the frame member 20 that holds the observation window 16, and the support members 18 that support the frame member 20 such that the frame member 20 is spaced apart from the visualization target site 24. This configuration visualizes the blood vessel 25 of the visualization target site 24 with a simple apparatus configuration.
As illustrated in
The partition wall 46 is provided to partition the light source 14 and an observation window 16. More specifically, the partition wall 46 is provided along a periphery portion of an opening portion 28 of the frame member 20. The partition wall 46 is formed to protrude downward like a wall from the bottom surface 21 of the frame member 20.
The blood vessel visualization apparatus 10A according to the present embodiment provides the following effects.
In the blood vessel visualization apparatus 10A according to the present embodiment, the partition walls 46 are provided between the observation window 16 and the light source 14, and prevent near infrared light of the light sources 14 from directly entering the observation window 16. According to this configuration, it is possible to reduce entry of near infrared light that becomes noise, so that it is possible to more clearly project the blood vessel 25 on the observation window 16.
Although embodiments of the present invention have been described above with reference to preferred embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2020-142281 | Aug 2020 | JP | national |
This application is a bypass continuation of PCT Application No. PCT/JP2021/030495, filed on Aug. 20, 2021, which claims priority to Japanese Application No. JP2020-142281, filed on Aug. 26, 2020. The contents of these applications are incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2021/030495 | Aug 2021 | WO |
Child | 18108190 | US |