The present invention relates to plastic wheels and, in particular, to a blow molded wheel having a spring biased axle retainer and a fitted tread piece.
Varieties of pneumatic and composite wheels have been developed that include integral axle retainers. Some available composite wheels include an injection-molded hub that supports a molded rubber tread piece at a flanged rim. The tread piece is separately attached to the hub, such as by stretching. A spring-biased pin is molded into the hub and the pin projects into the bore of an axle support. With the attachment of the wheel to an axle having a mating annular recess, the pin depresses and expands into the recess to permanently secure the wheel to the axle. The pin otherwise is not exposed to facilitate detachment of the wheel.
An all plastic wheel can provide a cost-effective alternative. However, all plastic wheels are generally not available that include an integral retainer. A blow-molded wheel that does include a retainer is shown at U.S. Pat. No. 5,368,371. The retainer consists of annular tabs that extend into an axle bore and that mount to a grooved recess at a mating axle. The strength of the tabs can limit the type of applications to which such wheels are placed. The tabs are also prone to damage, if the wheels are removed.
The present invention was developed to provide an improved blow-molded plastic wheel having an integral axle retainer. The wheel provides an externally accessible, spring biased retainer pin that is inserted into a blow-molded wheel. The retainer pin can mount in a discrete housing that is fitted to the wheel or a cavity formed into the wheel. In a preferred construction, the retainer pin radially projects from a pin retainer sleeve that is fitted to an axle sleeve. A bore and adjoining cavity at the wheel support the axle sleeve to provide a load-bearing surface for the axle and align the pin to the axle. The wheel also includes a tread surface that can be molded as part of the wheel or that can be separately attached to the wheel.
It is accordingly a primary object of the invention to provide a blow-molded wheel with an integral axle retainer.
It is a further object of the invention to provide a wheel having an axle retainer that indexes to a separately molded wheel and includes a pin and axle sleeve that extend transverse to one another.
It is a further object of the invention to provide a wheel with an axle retainer pin that can be released from the axle after mounting.
It is a further object of the invention to provide a retainer that can be mounted to the wheel prior to final cure.
Several of the foregoing objects, advantages and distinctions of the invention are obtained in a presently preferred blow-molded wheel. The wheel is blow molded in conventional fashion and includes a cavity at one of the spokes that is shaped to accept a spring biased retainer. The cavity opens to an axle bore at the wheel. The retainer is set into the cavity immediately upon the wheel being withdrawn from the mold, while the plastic is warm. The plastic shrinks around the retainer as it cools and permanently secures the retainer to the wheel.
The retainer includes a pin sleeve that supports a spring within a longitudinal bore. The spring biases the retainer pin to project into a longitudinal bore of an axle sleeve. The axle sleeve concentrically mounts within the axle bore. The bore of the axle sleeve acts as a bushing and provides a load-bearing surface for the axle. The bore of the axle sleeve extends transverse to the bore of the pin sleeve. An opening is provided through the walls of the pin sleeve to permit release of the pin from the axle.
Still other objects, advantages, distinctions and constructions of the invention will become more apparent from the following description with respect to the appended drawings. Similar components and assemblies are referred to in the various drawings with similar alphanumeric reference characters. The description should not be literally construed in limitation of the invention. Rather, the invention should be interpreted within the broad scope of the further appended claims.
Referring to
The wheels 6 and 7 are blow-molded in conventional fashion and provide a hub 16 and from which a number of spokes 18 and intermediate flat webs 19 radiate to an annular box or rim 20. The wheel 6 includes a number of lugged treads 22. The treads 22 are molded into a surface 24 that engages the ground. A raised band 26 projects around the circumference of the wheel 6 and above the treads 22 at the center of the tread surface 24. A parting line defined by the molding operation extends around the center of the band 26. An accessory trim piece or whitewall 28 can be attached to an annular grove 30 that is formed into one or both exposed side wall faces of the box 20.
The blow-molded wheel 3 of
Returning attention to
The bore 40 separately accepts the axle 14. The bore 40 provides a load-bearing surface for the axle 14. A cover 46 closes the end of the housing 31 and bore 40. The housing 31 is retained to the wheel 6 at the pin and axle sleeves 32 and 42. The transverse orientation of the pin and axle sleeves 32 and 42 to one another assures that the retainer assembly 4 does not loosen and rotate with the wheel 6. The retainer housing 31 can be bonded to the wheel 6. Presently it is secured through the shrinkage of the wheel material. If required, retention can be enhanced by forming the external walls of the retainer to include shaped surfaces such as described below in relation to
With additional attention to
Depending upon the application, the wheels 6 and 7 can be molded from a variety of types of plastic. The type of plastic and density of material can be varied to a particular application and the load and wear specifications for a particular wheel. The configuration and size of the wheels 6 and 7 can also be varied. The wheels 6 and 7 are presently molded from a high-density polyethylene material and each is constructed to a 12-inch diameter. A variety of other known materials can be used to equal advantage.
The retainer housing 31 is molded from a material that is compatible to the wheel material. An HDPE material is presently used. Depending on the application, however, the housing 31 can be constructed from a variety of other materials including various metals and plastics. The pin 10 is constructed from metal. Various other materials can be used provided they are able to withstand anticipated wear at the axle 14.
After extracting the wheel 6 from its mold and while the plastic is warm, the retainer assembly 4 is fitted to the cavity 8 and the bore 31. As the wheel 6 cools, the material shrinks around the axle sleeves 32 and 42 to permanently mount the retainer assembly 4 to the wheel 6. Although not presently required, retention might be enhanced by shaping the external surfaces of the sleeves 32 and 42 to grip mating surfaces of the wheels 6 and 7. For example and with additional attention to
The sleeves 95 and 96 extend from the hub 16 to the box 20 of the wheels 90 and 92 along webs 98 and 100. The webs 98 and 100 are vertically offset from the other webs 19. The sleeve 96 exhibits a larger outer diameter than the sleeve 95 and tapers inward slightly as it extends to the box 20. The sleeves 95 and 96 include longitudinal bores 95 and 97 that receive an appropriate retainer pin and spring. The bores 94 and 97 are accessed by drilling aligned holes 101 and 103 through the periphery of the box 20 and hub 16. The drilling operation is typically performed after molding the wheels 90 and 92. The tread piece 5 and/or a plug (not shown) cover and/or fill the holes 101 and 103.
Aligned grooves 120, 122 and 124 are molded into the box 20 of the wheels 102, 104 and 106 to facilitate forming the bores 126, 128 and 130 of the retainer sleeves 108, 110 and 112. The grooves 120, 122 and 124 are shown exposed, although are normally substantially covered by the tread piece 5. The bores 128 and 130 are formed with two differing internal diameters that define an internal shoulder that limits the movement of the retainer pin. Upon fitting an appropriate retainer pin and bias spring mechanism into the retainer sleeves 94, 96, 108, 110 and 112, an end cap is secured to the sleeves. A threaded end cap is typically used, although a variety of other plugs can be substituted, provided they securely retain the retainer pin in the pin sleeve.
Two other alternative wheels 132 and 134 are shown at
The projection 164 mounts within a slot 166 molded into the tread piece 160. The mating of the slot 166 to the projection 164 stabilizes the tread piece 160 against lateral slippage and minimizes possible tread separation. In most instances, the annular flanges 9 are sufficient to prevent tread separation.
Although a single, continuous projection 164 is shown, multiple adjacent projections 164 can be provided at the periphery of the blow-molded wheel 162. The projections 164 can also be constructed to be discontinuous. The projections can exhibit rounded, ramped, or other contour shapes, when viewed in side profile, such as the projections 52 and 68.
While the invention has been described with respect to a preferred construction and considered improvements or alternatives thereto, still other constructions may be suggested to those skilled in the art. Although certain features are also shown at particular wheels, it is also to be appreciated the features can be included alone or in other combinations in other of the disclosed wheels. The foregoing description should therefore be construed to include all those embodiments within the spirit and scope of the following claims.
This application is a continuation of Ser No. 09/701,759, filed Dec. 2, 2000 and entitled “Blow Molded Wheel With Axle Retainer”, now U.S. Pat. No. 6,520,597, which is a national phase application of PCT International Application Serial No. PCT/US99/12424, filed Jun. 3, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/090,618, filed Jun. 4, 1998, now U.S. Pat. No. 6,170,920, the disclosures of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3207830 | Aldington | Sep 1965 | A |
3497952 | King et al. | Mar 1970 | A |
3694540 | Slan | Sep 1972 | A |
3730594 | Zbikowski | May 1973 | A |
3894776 | Black | Jul 1975 | A |
RE30030 | Coran et al. | Jun 1979 | E |
4330914 | Hood | May 1982 | A |
4358162 | Schneider et al. | Nov 1982 | A |
4428899 | van Manen | Jan 1984 | A |
4592595 | Freeman | Jun 1986 | A |
4674759 | Parker | Jun 1987 | A |
4870736 | Kacalieff | Oct 1989 | A |
5104198 | Prout et al. | Apr 1992 | A |
5316377 | Markling et al. | May 1994 | A |
5368371 | Markling | Nov 1994 | A |
5518682 | Markling et al. | May 1996 | A |
5934763 | Conradsson et al. | Aug 1999 | A |
6170920 | Markling | Jan 2001 | B1 |
6361121 | Morris | Mar 2002 | B1 |
6375274 | Morris | Apr 2002 | B1 |
6464305 | Markling | Oct 2002 | B2 |
20020089229 | Morris | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
508902 | Oct 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20040070262 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09701759 | US | |
Child | 10268227 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09090618 | Jun 1998 | US |
Child | 09701759 | US |