The present invention is generally related to a blower assembly used to remove combustion gases from a furnace. More specifically, the present invention is directed to an exhaust restriction device positioned in the blower housing to redirect and restrict the flow of gases through the blower outlet.
The need to heat structures to control the interior temperature has been a requirement for modern housing for a long time. One of the current popular methods used to heat structures is with a furnace that burns either oil or natural gas. Due to the increasing costs of fossil fuels, the operating efficiency of furnaces has become a greater and greater concern.
One common method of increasing the fuel efficiency of the burner within a furnace has been to utilize a blower to induce a draft through the furnace to draw the heated air and the products of combustion through a heat exchanger and finally exhaust them through an exhaust pipe. The blower increases the draft such that the heated air and the products of combustion can travel through as tortured a path as possible to increase the amount of heat removed from exhaust gases within the heat exchanger. The increase in the flow of air thereby increases the heat transfer and generating capacity of the burner while simultaneously using less fuel per BTU of heat generated. The addition of a blower motor to a furnace generates a rating of at least 80 percent fuel efficiency in a modern furnace. Thus, it is clearly a necessity to introduce a blower to a modern furnace to maintain minimum desired efficiency standards.
When designing a blower assembly, an important design characteristic is that the blower motor and impeller, as well as the inlet opening and outlet opening, be properly sized such that the blower is able to draw the desired amount of exhaust gases from a furnace to which it is mounted. If the blower motor is underrated, the blower will be under-drawing the flue gases such that the gases leaving the furnace will have a higher than desired concentration of carbon monoxide. Likewise, if the blower motor is oversized, the blower will overdraw the flue gases from the furnace. The overdrawing of the furnace results in an increased volume of the flue gases moving to quickly past the heat exchanger of the furnace, resulting in excessive exhaust temperatures entering into the blower. Thus, the blower assembly, including the blower motor and the impeller, must be properly sized to operate within specified flow characteristics.
A secondary requirement for blower assemblies is that the blower must adequately operate the gas appliance when the voltage used to operate the blower assembly is reduced. Such a reduction in voltage can occur during low power situations, such as a brownout, in the geographic area where the blower is installed.
Presently, multiple solutions have been designed to address the issues identified above. The first solution is to provide a flow restriction at the blower inlet. A flow restriction at the blower inlet accomplishes the need for the gas appliance to operate at a reduced voltage. However, during normal operating conditions, the pressure in the blower housing is reduced, which naturally reduces the efficiency of the blower and requires a larger motor that operates at a higher speed.
A second solution is to restrict the blower outlet with a simple restrictor plate having an orifice. The orifice decreases the efficiency of the blower by reducing the effective diameter of the exhaust outlet. Since the restrictor plate typically extends perpendicular to the flow of exhaust gases, the exhaust gases strike the portions of the restrictor plate surrounding the orifice, which dramatically affects the flow rate out of the blower. Further, a hard restrictor plate at the outlet is very inefficient such that the low voltage requirements for the gas appliance cannot be met. Finally, the hard restrictor plate perpendicular to the direction of exhaust gas flow creates pressure in the exhaust adapter, which requires the joints of the exhaust adapter to be sealed by more effective and expensive means.
Therefore, it is an object of the present invention to provide a blower assembly that allows the blower to perform to properly draw combustion products through a gas appliance while also being operable in a reduced voltage environment to provide acceptable operating characteristics. Further, it is an object of the present invention to provide a blower assembly having a flow restrictor that does not reduce the pressure in the blower housing yet provides for low voltage operation.
The present invention relates to a blower assembly that includes an exhaust restrictor positioned in a blower housing that allows the blower assembly to operate in an efficient manner over changing operating voltage conditions. The exhaust restrictor extends into an exhaust transition section either attached to or integrally formed with the blower housing such that the exhaust restrictor interacts with the flow of exhaust gases out of the blower housing such that the blower assembly is operable over a range of voltages applied to the blower motor assembly.
The blower assembly of the present invention includes a blower housing that is preferably formed from a first housing member and a second housing member joined to each other. The first housing member defines a top wall and an outer sidewall for the blower housing. The second housing member defines a bottom wall for the blower housing that includes an inlet opening that receives exhaust gases from the furnace to which the blower assembly is mounted. The combination of the first housing member and the second housing member define an internal impeller cavity that receives an impeller mounted to a motor shaft extending through the top wall.
The blower housing further includes a housing exhaust opening formed in the sidewall of the blower housing. The housing exhaust opening provides an exit point for exhaust gases to flow out of the blower housing after the exhaust gases have been drawn into the impeller cavity by the rotating impeller positioned within the impeller cavity. As the impeller rotates, exhaust gases are drawn through the inlet opening and discharged through the housing exhaust opening.
An exhausts transition section is included in the blower assembly and extends from a first end coupled to the housing exhaust opening to an exhaust outlet. Preferably, the exhaust outlet is circular in shape and is configured for connection to a conventional exhaust pipe. The exhaust transition section can be either separately formed and attached to the blower housing or integrally formed with the blower housing. If the exhaust transition section is integrally formed with the blower housing, a portion of the exhaust transition section is defined by the first housing member while a mating portion of the exhaust transition section is defined by the second housing member.
The blower housing further includes an exhaust restrictor that extends into the exhaust transition section from the housing exhaust opening. The exhaust restrictor is positioned to restrict the flow of exhaust gases passing from the housing exhaust opening to the exhaust outlet.
The exhaust restrictor is preferably positioned at an inclined angle relative to the bottom wall of the blower housing. The inclined angle of the exhaust restrictor allows the exhaust restrictor to restrict the flow of exhaust gases in a gradual manner, as opposed to prior art restrictor plates that extend perpendicular to the direction of exhaust gas flow.
The exhaust restrictor includes a back wall including a generally planar lower portion and a curved upper portion. The generally planar lower portion of the back wall extends at the inclined angle relative to the bottom wall of the blower housing. In the preferred embodiment of the invention, the lower portion of the exhaust restrictor back wall is integrally formed with the bottom wall of the second housing member. However, it is contemplated that the back wall of the exhaust restrictor could be coupled to the bottom wall of the blower housing during the assembly of the blower housing.
The exhaust restrictor of the present invention has a width that is less than the width of the housing exhaust opening formed in the sidewall of the blower housing. In this manner, the exhaust restrictor provides side flow passageways for exhaust gas to flow past the exhaust restrictor. The side passageways further limit the effect the exhaust restrictor has on the flow of exhaust gases out of the blower housing.
Various other features, objects and advantages of the invention will be made apparent from the following description taken together with the drawings.
The drawings illustrate the best mode presently contemplated of carrying out the invention.
In the drawings:
Referring first to
As best illustrated in
As illustrated in
Referring now to
Referring now to
Referring now to
As can be seen in
In the preferred embodiment of the invention, both the first housing member 44 and the second housing member 46 are each formed from a sheet of metallic material, such as stainless steel. Both the first housing member 44 and the second housing member are stamped from separate sheets of metallic material and secured to each other along the outer flanges 50, 52. After the blower housing 12 has been constructed from the first housing member 44 and the second housing member 46, the blower motor assembly 20 is attached to the top wall 22 through the use of the plurality of connectors 28.
Referring back to
Referring back again to
As illustrated in
In the preferred embodiment of the invention, the exhaust transition section 64 is formed from a first, right section 78 and a second, left section 80 joined to each other along a top seam 82 and a bottom seam 84, as best illustrated in
As illustrated in
Referring now to
Although the exhaust transition section 64 as shown in the preferred embodiment of the invention as being a separate component attached to the blower housing 12, it is contemplated by the inventors that the exhaust transition section 64 could be integrally formed with the blower housing 12. A blower housing including an integrally formed exhaust transition section is shown in the commonly owned U.S. Pat. No. 6,468,034, the disclosure of which is incorporated herein by reference.
Referring now to
As illustrated in
As illustrated in
Referring again to
As shown in
In the preferred embodiment of the invention, the exhaust restrictor 92 is integrally formed with the second housing member 46. However, it is contemplated by the inventors that the exhaust restrictor 92 could be separately formed and attached using conventional metal forming techniques to the bottom wall 48. Such metal forming techniques could be spot welding or another type of interference fit.
During normal operating conditions of the blower assembly 10, the blower motor 30 is operating at a desired speed and creating a desired exhaust flow through the housing exhaust opening 36. The exhaust restrictor 92 contained within the exhaust transition section 64 contacts the flow of exhaust gases and reduces the effective passageway for the exhaust gases between the back wall 100 and the outer wall 70 of the exhaust transition section 64 above the exhaust restrictor 92. However, since the exhaust restrictor 92 is at an angle α, the exhaust gases are initially able to flow along the lower portion 106 and past the outer end 98 without creating excess back pressure within the impeller cavity 62. The angle α of the exhaust restrictor 92 is a dramatic improvement over prior art restrictor plates having an orifice and blocking surfaces that extend perpendicular to the flow of exhaust gases through the housing exhaust opening.
During low voltage conditions, the operating speed of the drive motor 30 is reduced such that a smaller flow of exhaust gases is created. Since the exhaust restrictor 92 is positioned at an angle α and does not extend across the entire width of the housing exhaust opening 36, the exhaust restrictor creates a gradual expansion from the housing exhaust opening 36 to the exhaust outlet 18. The gradual increase in the cross-sectional area allows the exhaust restrictor 92 to permit the desired amount of exhaust flow even when the drive motor is being operated at a reduced speed due to low voltage conditions.
Various alternatives and embodiments are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
Number | Name | Date | Kind |
---|---|---|---|
5314300 | Gatley, Jr. et al. | May 1994 | A |
5316439 | Gatley, Jr. et al. | May 1994 | A |
5971292 | Roy et al. | Oct 1999 | A |
6468034 | Garrison et al. | Oct 2002 | B1 |
6530346 | Coones et al. | Mar 2003 | B1 |
6575696 | Lyons et al. | Jun 2003 | B1 |