The invention relates to a blower assembly and more particularly to a blower assembly including a pre-swirler for causing air entering the blower assembly to change direction.
Centrifugal blower assemblies are commonly used in the automotive, air handling, and ventilation industries for directing a forced flow of air through air conditioning components. In a typical blower assembly, air is caused to flow into a housing through an inlet aperture formed therein. The blower assemblies typically include an electrically driven blower wheel that rotates in a predetermined direction in the housing. The blower wheel includes one or more curved blades, which cause the air to flow into an inlet of the blower wheel axially along an axis of rotation and discharge the air radially outwardly therefrom into an air duct formed in the housing.
Blower assemblies in automotive applications have been fitted with pre-swirlers to cause a rotation or swirling of air entering the blower assembly. The pre-swirlers cause the air to enter the blower wheel of the blower assembly at a preferred angle. If the air is not rotated sufficiently, an increase in drag, noise, vibration, and a loss of efficiency of the blower assembly can occur. Accordingly, if the air is pre-rotated and enters the blades of the impeller with a desired amount of rotation, the efficiency of the blower assembly can be maximized.
It would be desirable to produce a blower assembly including a pre-swirler configured to cooperate with a blower wheel of the blower assembly to minimize a noise, a vibration, and a harshness (NVH) of the blower assembly, while maximizing an efficiency thereof.
In concordance and agreement with the present invention, a blower assembly including a pre-swirler configured to cooperate with a blower wheel of the blower assembly to minimize a noise, a vibration, and a harshness (NVH) of the blower assembly, while maximizing an efficiency thereof, has surprisingly been discovered.
In one embodiment, a blower assembly comprises: a housing including a fluid inlet and a spaced apart fluid outlet; a blower wheel disposed in the housing, the blower wheel including an inlet ring and plurality of spaced apart blades; and a pre-swirler disposed in the fluid inlet of the housing, the pre-swirler including at least one vane having a leading edge, a trailing edge, and an outer edge extending between the leading edge and the trailing edge, wherein at least one of a blade exposure distance is less than about 10 mm and a blower wheel overlap distance is greater than about 5.5 mm.
In another embodiment, a blower assembly comprises: a housing including a fluid inlet and a spaced apart fluid outlet; a blower wheel disposed in the housing, the blower wheel including an inlet ring and plurality of spaced apart blades; and a pre-swirler disposed in the fluid inlet of the housing, the pre-swirler including at least one vane having a leading edge, a trailing edge, and an outer edge extending between the leading edge and the trailing edge, wherein a blade exposure distance is in a range of about 4.0 mm to about 9.5 mm.
In yet another embodiment, a blower assembly comprises: a housing including a fluid inlet and a spaced apart fluid outlet; a blower wheel disposed in the housing, the blower wheel including an inlet ring and plurality of spaced apart blades; and a pre-swirler disposed in the fluid inlet of the housing, the pre-swirler including at least one vane having a leading edge, a trailing edge, and an outer edge extending between the leading edge and the trailing edge, wherein a blower wheel overlap distance is in a range of about 6.5 mm to about 10.0 mm.
The above, as well as other objects and advantages of the invention, will become readily apparent to those skilled in the art from reading of the following detailed description of a preferred embodiment of the invention when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.
The housing 12 includes a fluid inlet 20 and a fluid duct 21 (shown in
The vanes 22 of the pre-swirler 14 each include a substantially linear leading edge 28 extending along an entire length of the vane 22. The vanes 22 also include a trailing edge 30 spaced from the leading edge 28 and extending radially and axially outwardly from the hub 24 at an angle with respect to the leading edge 28. It is understood that the trailing edge 30 may extend from the hub 24 in other directions as desired. A substantially radially and axially extending outer edge 31 extends between the outer ring 26 and the trailing edge 30, and joins with the trailing edge 30 at a point P. The outer edge 31 is a curved or arcuate edge, although the outer edge may have other shapes as desired such as linear, for example. It is understood that other configurations can be used as desired, such as wherein the leading edge 28 and the trailing edge 30 merge at a point (not shown) prior to the edges 28, 30 reaching the outer ring 26, for example. The vanes 22 include a first surface 29 and an opposed second surface (not shown) extending from the leading edge 28 to the trailing edge 30. The first surface 29 can have a substantially concave shape from the leading edge 28 to the trailing edge 30 in respect of a direction of rotation of the blower wheel 18 and the second surface can have a substantially convex shape from the leading edge 28 to the trailing edge 30 in respect of a direction of rotation of the blower wheel 18. It is understood, however, that the first surface 29 and the second surface can have any shape as desired such as a substantially concave shape in respect of the direction of rotation of the blower wheel 18, a substantially convex shape in respect of the direction of rotation of the blower wheel 18, a substantially planar shape, or an irregular shape, for example. As illustrated, the pre-swirler 14 may also include an inner ring 32 spaced radially outwardly from the hub 24 between the hub 24 and the outer ring 26. The inner ring 32 interconnects each of the vanes 22 to provide support to the vanes 22 and maximize a structural integrity of the pre-swirler 14.
With renewed reference to
As illustrated in
The pre-swirler 14 is also configured to cooperate with the blower wheel 18 such that a distance D2 between a peripheral planar surface 62 of the inlet ring 42 and the points P of the vanes 22, also referred to as a blower wheel overlap distance, is greater than about 5.5 mm. As a non-limiting example, the blower wheel overlap distance is in a range of about 6.5 mm to about 10.0 mm. Since the distance D2 between the peripheral planar surface 62 of the inlet ring 42 and the points P of the vanes 22 is more than prior art assemblies, an amount of air re-circulated into the blower wheel 18 from the fluid duct 21 is decreased, and thereby the mechanical efficiency and the airflow of the blower assembly 10 are further maximized. Additionally, the NVH of the blower assembly 10 is further minimized.
The blower assembly 10 having the pre-swirler 14 configured to cooperate with the blower wheel 18 as described hereinabove provides significant advantages over the prior art blower assemblies. For example, a percentage improvement in the mechanical efficiency of the blower assembly 10 having the pre-swirler 14 configured according to the present invention over the prior art blower assemblies without any pre-swirler is about 4.6%. This percentage improvement is greater than a percentage improvement of the prior art blower assemblies with a prior art pre-swirler over the prior art blower assemblies without any pre-swirler of about 2.8%.
In use, the blower wheel 18 is driven by the motor and is caused to rotate about a central axis of rotation. The rotation of the blower wheel 18 causes the air to flow through the fluid inlet 20 of the housing 12. The first surfaces 29 of the vanes 22 cause a change of direction of the air in a direction substantially parallel to the first surface 29. It is understood that the second surfaces of the vanes 22 may also cause a change of direction of the air. Accordingly, the air flows out of the fluid inlet 20 in a different direction than the air entering the fluid inlet 20. Thereafter, the blower wheel 18 causes the air to flow into and through the fluid duct 21 having the fluid outlet out of the blower assembly 10 to a desired area (not shown).
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/666,377 filed Jun. 29, 2012, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1931692 | Good | Oct 1933 | A |
2233983 | Kice, Jr. | Mar 1941 | A |
2290423 | Funk | Jul 1942 | A |
2435092 | Meyer | Jan 1948 | A |
2727680 | Madison et al. | Dec 1955 | A |
2834536 | McDonald | May 1958 | A |
3019963 | Eck | Feb 1962 | A |
3093299 | Hammann et al. | Jun 1963 | A |
3583827 | Wood | Jun 1971 | A |
3781127 | Wood | Dec 1973 | A |
4177007 | Schlangen et al. | Dec 1979 | A |
4299535 | Brockman et al. | Nov 1981 | A |
4549848 | Wallman | Oct 1985 | A |
4566852 | Hauser | Jan 1986 | A |
5183382 | Carroll | Feb 1993 | A |
5601400 | Kondo et al. | Feb 1997 | A |
5813831 | Matsunaga | Sep 1998 | A |
5951245 | Sullivan | Sep 1999 | A |
6092988 | Botros | Jul 2000 | A |
6878056 | Robinson | Apr 2005 | B2 |
20050074332 | Adamski et al. | Apr 2005 | A1 |
20080187439 | Iyer | Aug 2008 | A1 |
20120171032 | Goenka | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1957001889 | Nov 1946 | JP |
1954008378 | Jul 1954 | JP |
11978002003 | Jan 1978 | JP |
11978143101 | Nov 1978 | JP |
2003254297 | Sep 2003 | JP |
2008240726 | Oct 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20140003927 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61666377 | Jun 2012 | US |