1. Field of the Invention
The present invention relates to a bearing apparatus. In particular, the present invention relates to a bearing apparatus installed in a blower fan.
2. Description of the Related Art
In recent years, electronic devices have been becoming more and more densely packed with components, and electronic components installed in the electronic devices and blower fans arranged to cool the electronic components have accordingly tended to be disposed close to each other. Such a blower fan is arranged to produce air currents through rotation of an impeller, i.e., a rotating body. In addition, the amount of heat generated in the electronic devices has been increasing year after year, and there has been a demand for an increase in rotation speed of the blower fans. However, the increase in the rotation speed of the blower fans leads to an increase in a peak value of vibration in each frequency, and then vibrations may exert harmful effects on the electronic components.
Therefore, in order to reduce vibrations which accompany the rotation of the blower fan, it is necessary to reduce oscillation of an axis of a rotating body of the blower fan. One specific method of achieving this is to adopt a fluid dynamic bearing as a bearing portion to support a circumference of a shaft through a lubricating oil so that vibrations generated in the rotating body can be attenuated. In addition, use of a thrust bearing will contribute to preventing tilting of the shaft. A bearing as described above is disclosed in JP-UM-B 06-31199.
In a brushless fan motor of a type illustrated in JP-UM-B 06-31199, a sleeve is fixed in a central hole of an inner tubular portion of a case, and a stator is arranged on an outer circumference of the inner tubular portion. In addition, an annular member is fixed to a lower end portion of a shaft. A thrust bearing is defined between a lower end surface of the sleeve and the annular member. A radial dynamic pressure bearing is defined between the shaft and the sleeve on an upper side of the thrust bearing. The fan motor described in JP-UM-B 06-31199 has a problem in that dust can easily enter into a gap defined between the sleeve and a combination of the shaft and the annular member through upper and lower opening ends of the gap.
In addition, a fluid dynamic bearing described in JP-UM-B 06-31199 has a problem in that it is difficult to maintain a high precision in axial position of the annular member fixed to the shaft, which may permit the shaft to easily wobble.
There is also a demand for a decrease in the outside diameter of the shaft of the motor in order to reduce a shaft loss through the bearing. Further, there is a demand for an increase in the diameter of the stator in order to obtain a high torque of the motor. In order to achieve both the reduction in the shaft loss and the high torque described above, it is necessary to arrange a bushing between the bearing portion and the stator. When the bushing is used, it is necessary to improve strength with which the bushing and a mounting plate are fixed to each other, and also to increase precision in positioning each of the stator and the mounting plate with respect to the bushing.
A primary advantage of the present invention is to reduce the likelihood of entry of dust into a bearing apparatus.
A blower fan comprising a motor; an impeller caused by the motor to rotate about a central axis; and a housing arranged to contain the motor and the impeller; wherein the motor includes: a stationary portion; a bearing apparatus; and a rotating portion supported by the bearing apparatus to be rotatable with respect to the stationary portion; the rotating portion includes a rotor holder including a first holder member and a second holder member including an outer circumferential surface to which the impeller is fixed; the first holder member includes: a first thrust portion; and a rotor cylindrical portion arranged to extend downward from an outer edge portion of the first thrust portion; the second holder member includes a cover portion including, in an inner edge portion thereof, a cover portion cylindrical portion arranged to extend downward; the rotor cylindrical portion includes an annular rotor raised portion arranged to project radially outward from an outer circumferential surface thereof; the second holder member is attached to the first holder member; and a lower end portion of the cover portion cylindrical portion is arranged to be in axial contact with the rotor raised portion.
In accordance with the present invention, it is possible to reduce the likelihood that dust will enter into a bearing apparatus.
It is assumed herein that a vertical direction is defined as a direction in which a central axis of a motor extends, and that an upper side and a lower side along the central axis in
The impeller 11 is made of a resin, and includes a substantially cylindrical cup 111 and a plurality of blades 112. An inner circumferential surface of the cup 111 is fixed to the rotating portion 22 of the motor 12. The blades 112 are arranged to extend radially outward from an outer circumferential surface of the cup 111 with the central axis J1 as a center. The cup 111 and the blades 112 are produced as a single continuous member by a resin injection molding process.
The blower fan 1 is arranged to produce air currents through rotation of the impeller 11 about the central axis J1 caused by the motor 12.
The housing 13 is arranged to contain the motor 12 and the impeller 11. The housing 13 includes an upper plate portion 131, a mounting plate 132 (hereinafter referred to as a lower plate portion 132), and a side wall portion 133. The upper plate portion 131 is a substantially plate-shaped member made of a metal. The upper plate portion 131 is arranged on an upper side of the motor 12 and the impeller 11. The upper plate portion 131 includes one air inlet 151 extending therethrough in the vertical direction. The air inlet 151 is arranged to overlap with the impeller 11 and the motor 12 in an axial direction. The air inlet 151 is arranged substantially in the shape of a circle, and is arranged to overlap with the central axis J1.
The lower plate portion 132 is a substantially plate-shaped member produced by subjecting a metal sheet to press working. The lower plate portion 132 is arranged on a lower side of the motor 12 and the impeller 11. The lower plate portion 132 defines a portion of a stationary portion 21 of the motor 12. The side wall portion 133 is made of a resin. The side wall portion 133 is arranged to cover sides of the impeller 11. That is, the side wall portion 133 is arranged radially outside the blades 112 to surround the blades 112. The upper plate portion 131 is fixed to an upper end portion of the side wall portion 133 through screws or by another fixing method. A lower end portion of the side wall portion 133 is joined to the lower plate portion 132 through insert molding. The side wall portion 133 is arranged substantially in the shape of the letter “U” when viewed in a direction parallel to the central axis J1, and includes an air outlet 153 which opens radially outward. In more detail, portions of the upper and lower plate portions 131 and 132 are arranged on an upper side and a lower side, respectively, of an opening of the side wall portion 133, and an area enclosed by the upper and lower plate portions 131 and 132 and the opening of the side wall portion 133 is the air outlet 153. Note that the side wall portion 133 may not necessarily be joined to the lower plate portion 132 through insert molding. Also note that the side wall portion 133 may not necessarily be made of a resin. Also note that each of the upper and lower plate portions 131 and 132 may be fixed to the side wall portion 133 by a fixing method not mentioned above.
The bearing portion 23 is arranged radially inward of the stator 210. The bearing portion 23 includes a sleeve 231 and a bearing housing 232. The bearing portion 23 is arranged substantially in the shape of a cylinder with a bottom. The sleeve 231 is substantially cylindrical in shape and centered on the central axis J1. The sleeve 231 is a metallic sintered body. The sleeve 231 is impregnated with a lubricating oil. A plurality of circulation grooves 275, each of which is arranged to extend in the axial direction and is used for pressure regulation, are defined in an outer circumferential surface of the sleeve 231. The circulation grooves 275 are arranged at regular intervals in a circumferential direction. The bearing housing 232 is arranged substantially in the shape of a cylinder with a bottom, and includes a housing cylindrical portion 241 and a cap 242. The housing cylindrical portion 241 is substantially cylindrical in shape and centered on the central axis J1, and is arranged to cover the outer circumferential surface of the sleeve 231. The sleeve 231 is fixed to an inner circumferential surface of the housing cylindrical portion 241 through an adhesive. The bearing housing 232 is made of a metal. The cap 242 is fixed to a lower end portion of the housing cylindrical portion 241. The cap 242 is arranged to close a bottom portion of the housing cylindrical portion 241. Note that use of the adhesive to fix the sleeve 231 to the inner circumferential surface of the housing cylindrical portion 241 is not essential to the present invention. For example, the sleeve 231 may be fixed to the inner circumferential surface of the housing cylindrical portion 241 through press fit.
The bushing 26 is a substantially annular member. The bushing 26 is produced by subjecting a metallic member to a cutting process. An inner circumferential surface of the bushing 26 is fixed to a lower portion of an outer circumferential surface of the housing cylindrical portion 241, i.e., a lower portion of an outer circumferential surface of the bearing housing 232, through adhesion or press fit. Note that both adhesion and press fit may be used. Meanwhile, an outer circumferential surface of the bushing 26 is fixed to a hole portion of the lower plate portion 132. That is, the outer circumferential surface of the bushing 26 defines an attachment surface 267 to which the lower plate portion 132, which is arranged to support the bearing portion 23, is directly attached.
The stator 210 is a substantially annular member centered on the central axis J1. The stator 210 includes a stator core 211 and a plurality of coils 212 arranged on the stator core 211. The stator core 211 is defined by laminated silicon steel sheets, each of which is in the shape of a thin sheet. The stator core 211 includes a substantially annular core back 211a and a plurality of teeth 211b arranged to project radially outward from the core back 211a. A conducting wire is wound around each of the teeth 211b to define the coils 212. The circuit board 25 is arranged below the stator 210. Lead wires of the coils 212 are electrically connected to the circuit board 25. The circuit board 25 is a flexible printed circuit (FPC) board.
The rotating portion 22 includes a shaft 221, a rotor holder 222, a rotor magnet 223, and a thrust plate 224. The shaft 221 is arranged to have the central axis J1 as a center thereof.
Referring to
The thrust plate 224, which corresponds to a lower thrust portion, includes a substantially disk-shaped portion arranged to extend radially outward. The thrust plate 224 is fixed to a lower end portion of the shaft 221, and is arranged to extend radially outward from the lower end portion thereof. The thrust plate 224 is accommodated in a plate accommodating portion 239 defined by a lower surface 231c of the sleeve 231, an upper surface of the cap 242, and a lower portion of the inner circumferential surface of the housing cylindrical portion 241. An upper surface of the thrust plate 224 is a substantially annular surface arranged around the shaft 221. The upper surface of the thrust plate 224 is arranged axially opposite the lower surface 231c of the sleeve 231, i.e., a downward facing surface in the plate accommodating portion 239. Hereinafter, the thrust plate 224 will be referred to as a “second thrust portion 224”. A lower surface of the second thrust portion 224 is arranged opposite to the upper surface of the cap 242 of the bearing housing 232. The shaft 221 is inserted in the sleeve 231. Note that the second thrust portion 224 may be defined integrally with the shaft 221.
The shaft 221 is defined integrally with the rotor holder 222. The shaft 221 and the rotor holder 222 are produced by subjecting a metallic member to a cutting process. That is, the cover portion 222c and the shaft 221 are continuous with each other. Note that the shaft 221 may be defined by a member separate from the rotor holder 222. In this case, the upper end portion of the shaft 221 is fixed to the cover portion 222c of the rotor holder 222. Referring to
Referring to
Referring to
The rotor magnet 223 is substantially cylindrical in shape and centered on the central axis J1. As described above, the rotor magnet 223 is fixed to the inner circumferential surface of the magnet holding cylindrical portion 222a. The rotor magnet 223 is arranged radially outward of the stator 210.
A first thrust gap 34 is defined between a portion of the upper surface 231b of the sleeve 231 in which the first thrust dynamic pressure groove array 273 is defined and the lower surface of the first thrust portion 222d, i.e., the upper thrust portion. The lubricating oil is arranged in the first thrust gap 34. The first thrust gap 34 is arranged to define an upper thrust dynamic pressure bearing portion 34a arranged to produce a fluid dynamic pressure in the lubricating oil. The first thrust portion 222d is supported in the axial direction by the upper thrust dynamic pressure bearing portion 34a.
A second thrust gap 32 is defined between a portion of the lower surface 231c of the sleeve 231 in which the second thrust dynamic pressure groove array 274 is defined and the upper surface of the second thrust portion 224, i.e., the lower thrust portion. The lubricating oil is arranged in the second thrust gap 32. The second thrust gap 32 is arranged to define a lower thrust dynamic pressure bearing portion 32a arranged to produce a fluid dynamic pressure in the lubricating oil. The second thrust portion 224 is supported in the axial direction by the lower thrust dynamic pressure bearing portion 32a. Provision of the upper and lower thrust dynamic pressure bearing portions 34a and 32a contributes to reducing wobbling of the shaft 221. The upper and lower thrust dynamic pressure bearing portions 34a and 32a are arranged to be in communication with each other through the circulation grooves 275.
A third thrust gap 33 is defined between the upper surface of the cap 242 of the bearing housing 232 and the lower surface of the second thrust portion 224.
In the motor 12, the seal gap 35, the first thrust gap 34, the radial gap 31, the second thrust gap 32, and the third thrust gap 33 are arranged to together define a single continuous bladder structure, and the lubricating oil is arranged continuously in this bladder structure. Within the bladder structure, a surface of the lubricating oil is defined only in the seal gap 35. The bladder structure contributes to easily preventing a leakage of the lubricating oil.
Referring to
In the motor 12, once power is supplied to the stator 210, a torque centered on the central axis J1 is produced between the rotor magnet 223 and the stator 210. The rotating portion 22 and the impeller 11 are supported through the bearing mechanism 4 illustrated in
The bushing 26 further includes a substantially cylindrical “bushing cylindrical portion” 262 arranged to extend upward on an upper side of the raised portion 261. Hereinafter, an entire portion of the bushing 26 except for the bushing cylindrical portion 262 will be referred to as a “bushing base portion 260”. The bushing base portion 260 is arranged to extend radially outward from an outer circumferential surface of the bearing portion 23. The bushing cylindrical portion 262 is arranged to extend upward continuously from the bushing base portion 260. The stator 210 is fixed to an outer circumferential surface of the bushing cylindrical portion 262. That is, an inner circumferential surface of the core back 211a of the stator 210 is fixed to the bushing 26 on the upper side of the raised portion 261. A lower end of each coil 212 is arranged at a level lower than that of a lower surface of the raised portion 261.
A lower end of the core back 211a is arranged to be in axial contact with an upper surface of the raised portion 261 of the bushing 26. Positioning of the stator 210 with respect to the bushing 26 can thus be accomplished easily. Note that the raised portion 261 and the core back 221a may be arranged to be out of contact with each other.
An inner circumferential surface of the bushing cylindrical portion 262 is arranged radially opposite an outer circumferential surface of the rotor cylindrical portion 222b. The bushing cylindrical portion 262 is a radially opposing portion arranged opposite to the outer circumferential surface of the rotor cylindrical portion 222b. A minute vertical gap 263 extending in the axial direction is defined between the inner circumferential surface of the bushing cylindrical portion 262 and the outer circumferential surface of the rotor cylindrical portion 222b. Provision of the vertical gap 263 contributes to preventing an air including a lubricating oil evaporated from the seal gap 35 from traveling out of the bearing portion 23. This contributes to reducing evaporation of the lubricating oil out of the bearing portion 23. In other words, the vertical gap 263 is arranged to define a labyrinth structure. Because each of the rotor holder 222 and the bushing 26, which together define the vertical gap 263, is produced by subjecting the metallic member to the cutting process, it is possible to define a labyrinth gap therebetween with high precision.
The bushing 26 includes an annular surface 264 centered on the central axis J1, arranged to be substantially perpendicular to the central axis J1, and arranged radially inward of the bushing cylindrical portion 262. The annular surface 264 is an upper surface of the bushing base portion 260, and is arranged axially opposite a lower end portion 222e of the rotor cylindrical portion 222b. The bushing base portion 260 is an axially opposing portion arranged axially opposite the lower end portion 222e of the rotor cylindrical portion 222b. A horizontal gap 266 extending in the radial direction is defined between the bushing base portion 260 and the lower end portion 222e of the rotor cylindrical portion 222b. The horizontal gap 266 is also arranged to define a labyrinth structure. The vertical gap 263 and the horizontal gap 266 are arranged to together define a complicated labyrinth structure.
The annular surface 264 is arranged to cover the seal gap 35. The axial distance between the annular surface 264 and the lower end portion 222e of the rotor cylindrical portion 222b, that is, a minimum axial width of the horizontal gap 266, is preferably arranged to be smaller than a maximum width H1 of the seal gap 35. The maximum width of the seal gap 35 refers to a maximum width of a region thereof which is usable to hold the lubricating oil therein. Similarly, a minimum radial width of the vertical gap 263 is preferably arranged to be smaller than the maximum width of the seal gap 35. Thus, the bushing 26 is a seal cover arranged to cover the seal gap 35.
The lower plate portion 132 includes a lower plate cylindrical portion 134 arranged substantially in the shape of a cylinder and centered on the central axis J1. The lower plate cylindrical portion 134 is fixed to a portion of the outer circumferential surface of the bushing 26 which is below the raised portion 261 through press fit. That is, the bushing 26 is press fitted to the lower plate cylindrical portion 134. The bushing 26 is securely fixed to the lower plate cylindrical portion 134 due to the bushing 26 being fixed to the lower plate cylindrical portion 134 through press fit. In other words, the housing cylindrical portion 241 is securely fixed to the lower plate portion 132 through intervention of the bushing 26.
In addition, the lower plate cylindrical portion 134 is fixed to the bushing 26 on a lower side of the raised portion 261. Therefore, an inner circumferential surface of the lower plate cylindrical portion 134 is arranged radially inward of a radially outer end of the raised portion 261. Thus, a reduction in the radial dimension of a portion of the lower plate cylindrical portion 134 which projects radially outward from the radially outer end of the raised portion 261 is achieved. Moreover, an upper end of the lower plate cylindrical portion 134 is arranged to be in axial contact with the lower surface of the raised portion 261. This contributes to improving precision with which each of the stator 210 and the lower plate portion 132 is positioned with respect to the bushing 26. Note that the lower plate cylindrical portion 134 and the raised portion 261 may be arranged to be out of contact with each other.
A portion of the outer circumferential surface of the bushing 26 to which the lower plate cylindrical portion 134 is fixed is arranged radially inward of a portion of the outer circumferential surface of the bushing cylindrical portion 262 to which the core back 211a is fixed.
An outer circumferential surface of the raised portion 261 of the bushing 26 is arranged to coincide with an outer circumferential surface of the lower plate cylindrical portion 134 in the radial direction, or arranged radially outward of the outer circumferential surface of the lower plate cylindrical portion 134. This contributes to preventing any coil 212 from coming into contact with the lower plate cylindrical portion 134 even in the case where the lower end of each coil 212 is arranged at a level lower than that of the lower surface of the raised portion 261. This contributes to reducing the height of the motor 12, or increasing a space factor of the coils 212. Moreover, prevention of the contact between each coil 212 and the lower plate cylindrical portion 134 contributes to preventing a break in the conducting wire of the coil 212.
As described above, the bearing portion 23 can be made up of component units and securely fixed to the lower plate portion 132 through the intervention of the bushing 26.
Next, a procedure of manufacturing the blower fan 1 will now be described below. First, the bearing portion 23 is prepared with the shaft 221 integrally defined with the rotor holder 222 illustrated in
Next, the rotor magnet 223 is fixed to the inner circumferential surface of the magnet holding cylindrical portion 222a of the rotor holder 222. The impeller 11 is fixed to the outer circumferential surface of the magnet holding cylindrical portion 222a of the rotor holder 222.
Next, the stator 210 is fixed to the outer circumferential surface of the bushing cylindrical portion 262 of the bushing 26. After the stator 210 is fixed to the bushing 26, the bearing portion 23 is fixed to the inner circumferential surface of the bushing 26.
Thereafter, a weight is arranged on a lower end portion of the cup 111 or its vicinity. The weight is an adhesive containing a metal having a high specific gravity, such as tungsten or the like. Note that the weight may be arranged on the lower end portion of the cup 111 or its vicinity before the rotor magnet 223 is fixed to the inner circumferential surface of the magnet holding cylindrical portion 222a of the rotor holder 222, or before the impeller 11 is fixed to the outer circumferential surface of the magnet holding cylindrical portion 222a of the rotor holder 222. A reduction in unbalance of the impeller 11 and the rotating portion 22 of the motor 12 can be achieved by arranging the weight on the lower end portion of the cup 111 of the impeller 11 or its vicinity. The reduction in the unbalance contributes to reducing vibrations of the blower fan 1 owing to displacement of a center of gravity of the impeller 11 and the motor 12 from the central axis J1.
After the aforementioned balance correction, the lower plate portion 132 is fixed to the bushing 26 from below the bushing 26, so that manufacture of the bearing mechanism 4 of the blower fan 1 is completed.
The labyrinth structure is defined by covering the seal gap 35 with the bushing 26. As a result, the likelihood that dust will enter into the bearing mechanism 4 is reduced. The labyrinth structure is further complicated by arranging the vertical gap 263 radially outward of the seal gap 35. This contributes to more securely preventing dust from entering into the bearing mechanism 4. This contributes to preventing a deterioration in bearing performance of the bearing mechanism 4. As described above, provision of the labyrinth structure makes it possible to securely fix the bearing portion 23 to the lower plate portion 132 through the intervention of the bushing 26 even when a so-called bearing unit, in which the shaft 221 is arranged inside the bearing portion 23, is constructed.
In the case of a blower fan which allows the lower plate portion to be attached to the bushing only from above the bushing, fixing of the bushing to the bearing housing needs to be performed after the lower plate portion is attached to the bushing. In contrast, in the case of the blower fan 1, it is possible to attach the lower plate portion 132 to the bushing 26 from below the bushing 26 after the bearing mechanism 4 is assembled. Thus, an improvement in flexibility in assembling the blower fan 1 is achieved.
In the bearing mechanism 4, a radial gap is defined between an inner circumferential surface of the sleeve 233 and an outer circumferential surface of the shaft 221, and a radial dynamic pressure bearing portion 31a arranged to support the shaft 221 in the radial direction is defined in the radial gap. In addition, a thrust gap is defined between an upper surface of the sleeve 233 and a lower surface of a first thrust portion 222d. An upper thrust dynamic pressure bearing portion 34a is defined in the thrust gap. No thrust dynamic pressure bearing portion is defined on a lower side of the sleeve 233. In this case, an axial magnetic center of a stator 210 is arranged at a level lower than that of an axial magnetic center of a rotor magnet 223. A magnetic attraction force that attracts the rotor magnet 223 downward is thereby generated between the stator 210 and the rotor magnet 223. This contributes to reducing a force that lifts a rotating portion 22 relative to a stationary portion 21 during rotation of a blower fan 1. The bearing mechanism 4 according to the present modification of the first preferred embodiment is otherwise similar in structure to the bearing mechanism 4 illustrated in
Referring to
The first holder member 51 includes a shaft 511, a first thrust portion 512, and a rotor cylindrical portion 513. The rotor cylindrical portion 513 is arranged to extend downward from an outer edge portion of the first thrust portion 512. An outer circumferential surface of the first holder member 51 is a single cylindrical surface. An outer circumferential surface of the first thrust portion 512 is a top portion of the outer circumferential surface of the first holder member 51. An outer circumferential surface of the rotor cylindrical portion 513 is a portion of the outer circumferential surface of the first holder member 51 which is below the top portion thereof.
The second holder member 52 is a substantially plate-shaped annular member, and is molded by subjecting a metallic plate member to press working. The second holder member 52 includes a cover portion 521 and a “magnet holding cylindrical portion” 522. An inner edge portion of the cover portion 521 includes a “cover portion cylindrical portion” 523 arranged to extend downward. A rotor magnet 223 is fixed to an inner circumferential surface of the magnet holding cylindrical portion 522. An impeller 11 is fixed to an outer circumferential surface of the magnet holding cylindrical portion 522.
Regarding the rotor holder 5, the cover portion cylindrical portion 523 is press fitted to the rotor cylindrical portion 513, whereby the first holder member 51 is fixed to the second holder member 52.
When the blower fan 1a is assembled, the bearing mechanism 4 including the first holder member 51 is assembled beforehand. Note that, regarding the bearing mechanism 4, a lubricating oil is injected into a seal gap 35 before a bushing 26 is attached to a housing cylindrical portion 241.
Regarding the bearing mechanism 4, an annular surface 264 of a bushing base portion 260 is arranged axially opposite a lower end portion 513a of the rotor cylindrical portion 513. The annular surface 264 is arranged to cover the seal gap 35. The axial distance between the annular surface 264 and the lower end portion 513a of the rotor cylindrical portion 513, that is, a minimum axial width of a horizontal gap 266, is preferably arranged to be smaller than a maximum width of the seal gap 35. A vertical gap 263 extending in the axial direction is defined between an inner circumferential surface of a bushing cylindrical portion 262 and the outer circumferential surface of the rotor cylindrical portion 513. A minimum radial width of the vertical gap 263 is preferably arranged to be smaller than the maximum width of the seal gap 35. As in the first preferred embodiment, the bushing base portion 260 is an axially opposing portion, and the bushing cylindrical portion 262 is a radially opposing portion.
Next, a lower plate portion 132 is attached to a lower portion of an outer circumferential surface of the bushing 26. A stator 210 is attached to an upper portion of the outer circumferential surface of the bushing 26. Lead wires of coils 212 are connected to a circuit board 25 arranged on the lower plate portion 132.
Next, the rotor magnet 223 and the impeller 11 are fixed to the inner circumferential surface and the outer circumferential surface, respectively, of the magnet holding cylindrical portion 522 of the second holder member 52, and the cover portion cylindrical portion 523 is press fitted to the first holder member 51 from above the first holder member 51. Referring to
Also in the second preferred embodiment, the bushing 26 functions as a seal cover arranged to cover the seal gap 35, and the likelihood that dust will enter into the bearing mechanism 4 is thereby reduced. Because entry of dust into the bearing mechanism 4 is prevented when the bearing mechanism 4 is fitted to another member of the blower fan 1a, the fitting of the bearing mechanism 4 to the other member of the blower fan 1a does not need to be carried out in an extremely clean space. Even in the case where both assemblage of the bearing mechanism 4 and the fitting of the bearing mechanism 4 to the other member of the blower fan 1a are carried out in a clean room, covering of the seal gap 35 with the bushing 26 contributes to reducing the likelihood that an extraneous material will be adhered to a surface of the lubricating oil. As a result, an improvement in reliability of the bearing mechanism 4 is achieved.
An improvement in flexibility in assembling the blower fan 1a is achieved by the rotor holder 5 being made up of the first and second holder members 51 and 52, which are separate members.
In the case where the lower plate portion can be attached to the bushing only from above the bushing, the lower plate portion, the stator, and the second holder member, in the order named, need to be attached to the bearing mechanism. In contrast, in the case of the bearing mechanism 4, the lower plate portion 132 can be attached to the bushing 26 from below the bushing 26, and therefore, each of the stator 210 and the second holder member 52 may be attached to the bearing mechanism 4 either before or after the lower plate portion 132 is attached to the bearing mechanism 4. As a result, an improvement in flexibility in assembling the blower fan 1a is achieved.
In the blower fan 1a, an axial magnetic center of a stator 210 is arranged at a level lower than that of an axial magnetic center of a rotor magnet 223 as is the case with
When the blower fan 1a is assembled, a stator 210 is attached to an outer circumferential surface of the bushing 26 from below the bearing mechanism 4. Next, a lower plate portion 132 is attached to the lower portion of the bushing 26. A second holder member 52 is press fitted to a first holder member 51 from above the first holder member 51. Also in the blower fan 1a according to the present modification of the second preferred embodiment, a seal gap 35 is covered with the bushing 26, and this contributes to preventing dust from entering into the bearing mechanism 4 when the blower fan 1a is assembled. Note that, in the case of the blower fan 1a, the stator 210 may be attached to the outer circumferential surface of the bushing 26 from above the bearing mechanism 4.
The inner bushing 61 is arranged in an annular shape, and includes a tubular bushing base portion 611, a bushing annular portion 612, and a bushing upper cylindrical portion 613. The bushing base portion 611 is fixed to an outer circumferential surface of a housing cylindrical portion 241 through adhesion or press fit. Note that both adhesion and press fit may be used. The bushing annular portion 612 is arranged to extend radially outward from an upper end of the bushing base portion 611. That is, the bushing annular portion 612 is arranged to extend radially outward from an outer circumferential surface of a bearing portion 23. A horizontal gap 266 is defined between the bushing annular portion 612 and a lower end portion 513c of a rotor cylindrical portion 513.
The bushing upper cylindrical portion 613 is arranged to extend upward continuously from an outer edge portion of the bushing annular portion 612. The bushing annular portion 612 is an axially opposing portion arranged axially opposite the lower end portion 513c of the rotor cylindrical portion 513. The bushing annular portion 612 is arranged to cover a seal gap 35 defined between the rotor cylindrical portion 513 and the housing cylindrical portion 241. The axial distance between a tip of the rotor cylindrical portion 513 and an annular surface 264 arranged radially inside the bushing upper cylindrical portion 613, that is, a minimum axial width of the horizontal gap 266, is preferably arranged to be smaller than a maximum width of the seal gap 35.
The bushing upper cylindrical portion 613 is arranged radially outward of the rotor cylindrical portion 513. The bushing upper cylindrical portion 613 is a radially opposing portion arranged opposite to an outer circumferential surface of the rotor cylindrical portion 513. A minute vertical gap 263 extending in the axial direction is defined between an inner circumferential surface of the bushing upper cylindrical portion 613 and the outer circumferential surface of the rotor cylindrical portion 513. Provision of the vertical gap 263 contributes to reducing evaporation of a lubricating oil from the seal gap 35. A minimum radial width of the vertical gap 263 is preferably arranged to be smaller than the maximum width of the seal gap 35. The inner bushing 61 is a seal cover arranged to cover the seal gap 35.
The outer bushing 62 is substantially cylindrical in shape, and is fixed to an outer circumferential surface of the inner bushing 61. The outer bushing 62 includes an annular raised portion 261 arranged to project radially outward from an outer circumferential surface thereof. The raised portion 261 is arranged to extend continuously in the circumferential direction. A stator 210 is fixed to the outer circumferential surface of the outer bushing 62 on an upper side of the raised portion 261. The raised portion 261 and a lower end of a core back of the stator 210 are arranged to be in axial contact with each other. A lower plate cylindrical portion 134 of a lower plate portion 132 is fixed to the outer circumferential surface of the outer bushing 62 on a lower side of the raised portion 261. The raised portion 261 and the lower plate cylindrical portion 134 are arranged to be in axial contact with each other. Note that the raised portion 261 and the core back may be arranged to be out of contact with each other. Also note that the raised portion 261 and the lower plate cylindrical portion 134 may be arranged to be out of contact with each other. Lower ends of coils 212 are arranged at a level lower than that of a lower surface of the raised portion 261.
Preferably, a minute gap extending in the axial direction is defined between the outer bushing 62 and the bushing upper cylindrical portion 613. A minimum radial width of this minute gap is arranged to be smaller than the minimum radial width of the vertical gap 263. In the case where the bushing upper cylindrical portion 613 is fixed to the outer bushing 62 through press fit, the bushing upper cylindrical portion 613 may be deformed to bring the inner circumferential surface of the bushing upper cylindrical portion 613 into contact with the outer circumferential surface of the rotor cylindrical portion 513. Provision of the minute gap between the outer bushing 62 and the bushing upper cylindrical portion 613 contributes to preventing a deformation of the bushing upper cylindrical portion 613. This contributes to defining the vertical gap 263 with high precision.
The outer circumferential surface of the inner bushing 61 includes a shoulder portion including a downward facing surface, while an inner circumferential surface of the outer bushing 62 includes a shoulder portion including an upward facing surface. The outer bushing 62 can be attached to the inner bushing 61 from below the inner bushing 61. Relative axial positions of the inner bushing 61 and the outer bushing 62 are easily determined by axial contact between the shoulder portion of the inner bushing 61 and the shoulder portion of the outer bushing 62. The outer circumferential surface of the inner bushing 61 is an attachment surface 614 to which the lower plate portion 132 is attached indirectly.
When the blower fan 1b is assembled, the bearing mechanism 4 is assembled beforehand. At this time, the inner bushing 61 is fixed to the housing cylindrical portion 241, so that the seal gap 35 is covered with the inner bushing 61. Independently of assemblage of the bearing mechanism 4, each of the stator 210 and the lower plate portion 132 is fixed to the outer bushing 62. Then, lead wires of the coils 212 are connected to a circuit board 25 arranged on the lower plate portion 132. Thereafter, the outer bushing 62 is fixed to the outer circumferential surface of the inner bushing 61 from below the inner bushing 61, with the result that the bearing mechanism 4 and the stationary portion 21 are assembled as a single unit. Thereafter, a second holder member 52 is press fitted to a first holder member 51 from above the first holder member 51. Note that the second holder member 52 may be attached to the first holder member 51 before the outer bushing 62 is fixed to the inner bushing 61.
In the third preferred embodiment, similarly to the second preferred embodiment, the blower fan 1b is assembled with the seal gap 35 covered with the inner bushing 61, and this contributes to reducing the likelihood that dust will enter into the bearing mechanism 4 during assemblage of the blower fan 1b. The same is true of other preferred embodiments of the present invention described below. The vertical gap 263 being arranged radially outward of the seal gap 35 contributes to more securely preventing dust from entering into the bearing mechanism 4.
An outer circumferential surface of the inner bushing 61 is arranged radially outward of an outer circumferential surface of the rotor cylindrical portion 513. An upper portion of an outer bushing 62 is arranged radially outside the rotor cylindrical portion 513. A minute vertical gap 263 extending in the axial direction is defined between an inner circumferential surface of the upper portion of the outer bushing 62 and the outer circumferential surface of the rotor cylindrical portion 513. Therefore, the inner bushing 61 is a seal cover that includes an axially opposing portion but does not include a radially opposing portion. The outer bushing 62 functions as an indirect seal cover which includes the radially opposing portion. The same is true of
In the case where the inner bushing 61 includes only the axially opposing portion without including the radially opposing portion, the outer circumferential surface of the inner bushing 61 is as a rule an attachment surface to which a lower plate portion 132 is attached indirectly, in order to enable the vertical gap to be defined or to enable a stator 210 to be fixed beforehand. However, the lower plate portion 132 may be directly attached to the outer circumferential surface of the inner bushing 61, with the stator 210 fixed on the lower plate portion 132, for example.
Similarly to the lower portion of the bushing base portion 611 illustrated in
The seal cover 7 includes an axially opposing portion 71 and a radially opposing portion 72. The seal cover 7 is defined by a single continuous member. The axially opposing portion 71 is arranged in the shape of an annular plate, and is arranged to extend radially outward from an outer circumferential surface of a bearing portion 23. Note that the axially opposing portion 71 may not necessarily be in the shape of a plate as long as the axially opposing portion 71 is in an annular shape. The axially opposing portion 71 is arranged axially opposite a lower end portion of a rotor cylindrical portion 222b. The axially opposing portion 71 and the lower end portion of the rotor cylindrical portion 222b are arranged to together define a horizontal gap 266 therebetween. A minimum width of the horizontal gap 266 is arranged to be smaller than a maximum width of a seal gap 35. The radially opposing portion 72 is arranged to extend upward continuously from an outer edge portion of the axially opposing portion 71. The radially opposing portion 72 is arranged in the shape of a cylinder. The radially opposing portion 72 is arranged radially outside the rotor cylindrical portion 222b, and is arranged radially opposite an outer circumferential surface of the rotor cylindrical portion 222b. The rotor cylindrical portion 222b and the radially opposing portion 72 are arranged to together define a vertical gap 263 therebetween. A minimum width of the vertical gap 263 is also arranged to be smaller than the maximum width of the seal gap 35.
The axially opposing portion 71 is fixed to the outer circumferential surface of the housing cylindrical portion 241. The bushing 26 is fixed to the outer circumferential surface of the housing cylindrical portion 241 on a lower side of the axially opposing portion 71. Therefore, a portion of the outer circumferential surface of the bearing portion 23 which is below the seal cover 7 is an attachment surface 244 to which a lower plate portion 132 arranged to support the bearing portion 23 is attached indirectly.
The outer circumferential surface of the housing cylindrical portion 241 of the bearing portion 23 includes a projection 245 arranged to project radially outward. The projection 245 may be either arranged to extend in an annular shape, occupying every circumferential position, or made up of a projection or projections arranged at a circumferential position or positions. The projection 245 is arranged to be in axial contact with an upper portion of the axially opposing portion 71. The axial position of the seal cover 7 relative to the bearing portion 23 can thereby be determined easily.
A blower fan in which the bearing mechanism 4 illustrated in
Also in the case of the bearing mechanism 4 illustrated in
The lower cylindrical portion 73 is arranged to extend downward from an inner circumferential portion of the axially opposing portion 71, which is arranged in the shape of an annular plate. An inner circumferential surface of the lower cylindrical portion 73 is arranged to be in contact with an outer circumferential surface of a bearing portion 23. The seal cover 7 is thereby securely fixed to the bearing portion 23. In addition, an improvement in parallelism of the radially opposing portion 72 with a central axis J1 is thereby achieved to prevent a contact between a rotor cylindrical portion 222b and the radially opposing portion 72.
The expanded portion 74 is arranged at a junction between the axially opposing portion 71 and the radially opposing portion 72. The expanded portion 74 can be considered to be a portion defined by an increased axial width of the axially opposing portion 71 relative to the axial width of a remaining portion of the axially opposing portion 71. Since the axially opposing portion 71 expands upward in the expanded portion 74, the expanded portion 74 can also be considered to be a portion defined by an increased radial width of the radially opposing portion 72. Although the expanded portion 74 illustrated in
Provision of the expanded portion 74 contributes to increasing rigidity of the seal cover 7 at the junction between the axially opposing portion 71 and the radially opposing portion 72, and thereby improving strength of the seal cover 7. Note that only one of the lower cylindrical portion 73 and the expanded portion 74 may be provided as necessary in another modification of the third preferred embodiment.
The bearing portion 23 illustrated in
While preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described preferred embodiments, but a variety of modifications are possible.
In the bearing mechanism 4 illustrated in
Note that each of the first and second radial dynamic pressure groove arrays may be defined in the outer circumferential surface of the shaft 221 in a modification of any of the above-described preferred embodiments. Also note that the first thrust dynamic pressure groove array may be defined in the lower surface of the first thrust portion 222d. Also note that the second thrust dynamic pressure groove array may be defined in the upper surface of the second thrust portion 224. Also note that the first thrust dynamic pressure groove array may be made up of a collection of grooves arranged in the herringbone pattern. Also note that the second thrust dynamic pressure groove array may also be made up of a collection of grooves arranged in the herringbone pattern.
In a modification of the third preferred embodiment, only one thrust dynamic pressure bearing portion, i.e., the upper thrust dynamic pressure bearing portion, may be provided as in each of the preferred embodiments of the present invention illustrated in
Note that, in a modification of the first preferred embodiment, the outer circumferential surface of the bushing 26 may be a cylindrical surface centered on the central axis J1. Also note that the diameter of the outer circumferential surface of the bushing 26 may be arranged to gradually increase with increasing height. Even in this case, it is possible to attach the lower plate portion 132 to the bushing 26 from below the bushing 26. The same is true of the second preferred embodiment. Also note that, in a modification of the third preferred embodiment, the outer circumferential surface of the outer bushing 62 may be a cylindrical surface centered on the central axis J1. Also note that the diameter of the outer circumferential surface of the outer bushing 62 may be arranged to gradually increase with increasing height.
Note that the downward facing surface which is arranged opposite to the upper surface of the second thrust portion 224 in the plate accommodating portion 239 is not limited to the lower surface of the sleeve 231. That is, the lower thrust dynamic pressure bearing portion may be defined between the second thrust portion 224 and a member other than the sleeve 231.
Note that, in a modification of any of the preferred embodiments illustrated in
The blower fan 1 is used to cool electronic components in a slim device, such as a tablet personal computer, a notebook personal computer, or the like.
Bearing mechanisms according to preferred embodiments of the present invention may be used in motors used for a variety of purposes. Blower fans including the bearing mechanisms according to preferred embodiments of the present invention may be used, for example, to cool electronic components in cases, or to supply air to a variety of objects. Furthermore, the blower fans may be used for other purposes as well.
Number | Date | Country | Kind |
---|---|---|---|
2011-146730 | Jun 2011 | JP | national |
2011-242502 | Nov 2011 | JP | national |
2012-060726 | Mar 2012 | JP | national |
This application is a continuation of U.S. application Ser. No. 13/482,754, filed on May 29, 2012, which claims the benefit of priority from the prior Japanese Patent Application No. 2011-146730, filed on Jun. 30, 2011, Japanese Patent Application No. 2011-242502, filed on Nov. 4, 2011 and Japanese Patent Application No. 2012-060726, filed on Mar. 16, 2012, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13482754 | May 2012 | US |
Child | 14887903 | US |