1. Field of the Invention
The present invention relates to an impeller arranged to generate an air stream flowing along a center axis and more specifically, to a blower fan using such an impeller.
2. Description of the Related Art
In a conventional impeller for use in a blower fan, a plurality of blades fixed to the outer circumferential surface of a cylindrical impeller cup rotates about a center axis to thereby generate an air stream flowing along the center axis.
During rotation of the impeller, radial centrifugal forces act on the blades. The influence of the radial centrifugal forces become more significant as the rotation speed of the impeller becomes greater. In case of a blade with an increased swept-forward degree, the radial outer end of the blade is positioned more forward in the rotational direction than the base thereof. For that reason, an increased moment is generated in the base due to the radial centrifugal forces acting on the respective portions of the blade. Thus, there exists a demand that the impeller be designed to sufficiently bear the radial centrifugal forces.
U.S. Patent Application Publication No. 2008/0056899 discloses a technique in which the strength of blades is increased by interconnecting the blades with a ring-shaped connector portion to reduce the influence of radial centrifugal forces.
In the disclosure of the reference cited above, however, no consideration is given to the impeller characteristics affected by the interference between the air streams generated by rotation of the blades and the ring-shaped connector portion. This interference between the air streams generated by rotation of the blades and the ring-shaped connector portion may deteriorate the impeller characteristics.
Preferred embodiments of the present invention provide an impeller that reduces the deterioration of impeller characteristics caused by the interference between an air stream generated by rotation of blades and a connector portion arranged to interconnect the blades, and a blower fan including the impeller.
In accordance with a first preferred embodiment of the present invention, an impeller includes a substantially annular connector portion arranged to interconnect a plurality of blades, wherein the connector portion is located in a position spaced apart about 70% to about 90% of the radial length of the blades from a base of each of the blades on an outer circumferential surface of the cup portion, and a ratio of a axial height of the connector portion to a radial gap between the outer circumferential surface of the cup portion and the connector portion is substantially equal to or smaller than about 0.9.
The blades may preferably include swept-forward blades. Further, the axial intake side end of the connector portion may preferably be substantially flush with the axial intake side ends of the blades in the areas of the blades connected by the connector portion, and the axial height of the connector portion may be set smaller than the axial height of the blades. The axial exhaust side ends of the blades may preferably be inclined radially outward towards the axial intake side thereof. The axial height of the connector portion may preferably be substantially equal to the axial height of the blades in the areas of the blades connected by the connector portion.
With such a configuration, the connector portion arranged to interconnect the blades in the impeller is provided in a position spaced apart about 70% to about 90% of the radial length of the blades from the base of each of the blades. This makes it possible to suppress a noise increase caused by the interference between the air streams and the connector portion. In addition, the ratio of the axial height of the connector portion to the draft width of the air streams is preferably set to be substantially equal to or smaller than about 0.9. This makes it possible to suppress the static pressure reduction caused by the increased turbulent flow in the low air flow rate zone. Consequently, it is possible to realize an impeller with increased strength of the blades against centrifugal forces while also suppressing the deterioration of the impeller characteristics. This makes it possible to provide an impeller with increased degree of freedom.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the description of preferred embodiments of the present, the direction parallel or substantially parallel to a center axis will be referred to as an “axial direction” and the direction perpendicular or substantially perpendicular to and intersecting with the center axis will be referred to as a “radial direction”. The present invention shall not be limited to the following preferred embodiments but may be appropriately changed or modified without departing from the scope of the present invention.
Referring to
As shown in
The motor preferably includes a rotor holder 22 attached to the inner circumferential surface of the cup portion 10 of the impeller 1, a rotor magnet 23 attached to the inner circumferential surface of the rotor holder 22, a stator 26 including a stator core and coils wound around the stator core, and a sleeve bearing 21 fixed to the inner surface of a bearing retainer 25. A shaft 20 is preferably fixed to the central area of the cup portion 10. The shaft 20 is preferably inserted into and rotatably supported by the sleeve bearing 21.
In the blower fan 2, when a drive current is supplied to the coils of the stator 26, rotational torque is generated between the stator 26 and the rotor magnet 23. And, as a consequence of this rotational torque, the blades 11 arranged at the outer circumferential surface 10a of the cup portion 10 rotate about the center axis J.
The interference between the air streams generated by rotation of the blades 11 and the connector portion 12 and the influence the interference has on the characteristics of the impeller is important for the preferred embodiments of the present invention. Accordingly, the position of the connector portion 12 in the radial direction of the blades 11 are preferably accurately provided in a specific location.
As can be seen in
Accordingly, the noise increase attributable to the provision of the connector portion 12 can be substantially suppressed by providing the connector portion 12 in a position radially spaced apart about 70% to about 90% of the radial length La of the blades 11 from the base of each of the blades 11 on the outer circumferential surface 10a of the cup portion 10, for example.
The connector portion 12 is preferably arranged radially inwards of the radial outer ends 11b of the blades 11. Therefore, the inner surface of the connector portion 12 preferably functions as the inner surface of a housing in the areas 11A of the blades 11 which is arranged radially inwards of the connector portion 12. In other words, no gap exists between the inner surface of an imaginary housing (namely, the inner surface of the connector portion 12) and the areas 11A of the blades 11 arranged radially inwards of the connector portion 12. By virtue of such a configuration, the reverse air streams are only weakly generated in the areas 11A of the blades 11 arranged radially inwards of the connector portion 12. Most of the reverse air streams pass through the areas 11B of the blades 11 arranged radially outwards of the connector portion 12. As a result, the areas 11B of the blades 11 arranged radially outwards of the connector portion 12 are arranged to prevent of the reverse air streams. This makes it possible to improve the static pressure characteristics in a low air flow rate zone while simultaneously maintaining the air flow rate characteristics of the impeller 1 in the areas 11A of the blades 11 arranged radially inwards of the connector portion 12.
The strength of the blades 11 with respect to resisting centrifugal forces is increased by interconnecting the blades 11 with the connector portion 12. The strength increasing effect is particularly evident when the blades 11 are swept-forward blades. The term “swept-forward blades” used herein means that, as shown, for example, in
It should also be noted that a static pressure characteristics of the impeller 1 provided with the connector portion 12 also has a relationship to the arrangement of elements. For example, as shown in
The failure of the static pressure to become sufficiently high in the low air flow rate zone A is likely due to the following reasons. As shown in
Thus, for the purpose of suppressing the reduction of the static pressure in the low air flow rate zone A, preferred embodiments of the present invention are arranged to provide a flow path where the air streams flowing in an oblique direction do not make contact with the connector portion 12. The following examples help to illustrate the reasons for this suppression of the reduction of the static pressure.
In cases where the radial dimension and axial height of the blades 11 are kept constant as illustrated in
To this end, impellers 1 through 5 differing in the outer diameter D of the cup portion 10, the draft width W and the axial height L of the connector portion 12 were prepared as shown in
As can be seen in
In other words, as shown in
Therefore, a flow path where the air streams flowing in the oblique direction do not make contact with the connector portion 12 can be provided if the ratio L/W of the axial height L of the connector portion 12 to the radial gap W between the outer circumferential surface 10a of the cup portion 10 and the inner circumferential surface of the connector portion 12 is set substantially equal to or smaller than about 0.9. Consequently, it is possible to suppress the reduction of the static pressure in the low air flow rate zone A.
When the flow path where the air streams flowing in the oblique direction do not make contact with the connector portion is provided by making the axial height of the connector portion 12 smaller than the axial height of the blades 11, it is preferred that, as shown in
In case where the cup portion 10, the blades 11 and the connector portion 12 are provided by a single piece through resin molding, for example, the configuration in which the axial height of the connector portion 12 is set smaller than the axial height of the blades 11 may possibly make the structure of molds needed to make a single piece are complicated. This is undesirable in terms of the manufacturing cost.
As a solution to this problem, it is preferred that, as shown in
If the axial height of the connector portion 12 is set substantially equal to the axial height of the blades 11 in this manner, it becomes much easier to produce the cup portion 10, the blades 11 and the connector portion 12 into a single piece by, for example, injection molding or other methods.
When the axial exhaust side ends (lower ends) 11e of the blades 11 are inclined radially outward towards the axial intake side, the gap between the lower ends 11e of the blades 11 and the stator vanes 31 grows wider as shown in
As a solution to this problem, it is preferred that, as shown in
While the ratio L/W of the axial height L of the connector portion 12 to the radial gap W between the outer circumferential surface 10a of the cup portion 10 and the inner circumferential surface of the connector portion 12 is preferably set equal to or smaller than about 0.9 in various preferred embodiments of the present invention, the lower limit value of the ratio L/W is not particularly limited. For example, the lower limit value of the axial height L of the connector portion may be appropriately set depending on the strength of the blades 11 against centrifugal forces. In addition, the upper limit value of the radial gap W between the outer circumferential surface 10a of the cup portion 10 and the inner circumferential surface of the connector portion 12 may be suitably set depending on the outer diameter of the blower fan.
In the preferred embodiments of the present invention, the shape of the cup portion 10, the blades 11, the connector portion 12 and the stator vanes 31 and the relative positional relationship therebetween are not limited to the ones shown in
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-030538 | Feb 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4569631 | Gray, III | Feb 1986 | A |
4569632 | Gray, III | Feb 1986 | A |
4684324 | Perosino | Aug 1987 | A |
5755557 | Alizadeh | May 1998 | A |
6241474 | Alizadeh et al. | Jun 2001 | B1 |
6514052 | Bostwick | Feb 2003 | B2 |
6554574 | Spaggiari | Apr 2003 | B1 |
D511824 | Chen et al. | Nov 2005 | S |
7484925 | Carlson et al. | Feb 2009 | B2 |
7946824 | Iwase et al. | May 2011 | B2 |
20020141871 | Medamaranahally | Oct 2002 | A1 |
20050180849 | Chen et al. | Aug 2005 | A1 |
20070258812 | Lee et al. | Nov 2007 | A1 |
20080056899 | Jiang et al. | Mar 2008 | A1 |
20100068060 | Ota et al. | Mar 2010 | A1 |
20100086405 | Higo et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2002-081695 | Mar 2002 | JP |
WO 2008072516 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110200429 A1 | Aug 2011 | US |