FIELD OF THE INVENTION
The present invention relates to a high capacity particulate loader and transfer apparatus of grain, fertilizer, chemicals, particulates and granular material (hereinafter referred to as “particulates”), and more particularly, relates to an improved blower for a particulate loader and transfer apparatus.
BACKGROUND OF THE INVENTION
Particulate loader and transfer devices are well known, and as described in U.S. Pat. No. 7,431,537, may be used by farmers and others to load and transfer grain and other particulate materials in a convenient manner. These devices may include, for example, one or more blowers to create suction within an air-materials separation chamber and a vacuum pickup hose attached thereto, to transport grain or other materials from one location, into the air-materials separation chamber in the bottom of which is positioned an auger for transferring the grain or other particulate material from the air-materials separation chamber into, for example an open truck, container or other location.
Generally, the blower includes either a radial or centrifugal blower which draws the air from the air-materials separation chamber and the vacuum pickup hose extending therefrom, and exhausts the air to the atmosphere in an area adjacent to the particulate loader and transfer device. The radial or centrifugal blowers are useful in transporting large volumes of air and particulate material quickly and efficiently, which is particularly desirable in the context of particulate loader and transfer devices.
It is desirable to provide a particulate loader and transfer device with improved suction characteristics, for example, to enhance suction in the air-materials separation chamber and the vacuum pickup hose extending therefrom, to increase the distance that the particulate material can travel within the vacuum pickup hose, and to provide additional suction at the open end of and along the length of the vacuum pickup hose in the event that the particulate material is difficult to move or is fully or partially blocking the vacuum pickup hose.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a particulate loader and transfer device with improved suction characteristics, for example, to enhance suction in the air-materials separation chamber and the vacuum pickup hose extending therefrom, to increase the distance that the particulate material can travel within the vacuum pickup hose.
Another object of the present invention is to provide a particulate loader and transfer device with improved suction characteristics, for example, to provide additional suction at the open end of and along the length of the vacuum pickup hose in the event that the particulate material is difficult to move or is fully or partially blocking the vacuum pickup hose.
According to one aspect of the present invention, there is provided a blower for a particulate loader and transfer apparatus, comprising, at least one blade having a proximal and distal end, means for rotating the at least one blade in a direction about an axis of rotation, wherein the proximal end of the blade is nearer to the axis of rotation than the distal end of the blade is to the axis of rotation and wherein the blade is angled so that as the blade rotates about the axis, the proximal end of the blade precedes the distal end of the blade.
An advantage of the present invention is that it provides a particulate loader and transfer device with improved suction characteristics, for example, to enhance suction in the air-materials separation chamber and the vacuum pickup hose extending therefrom, to increase the distance that the particulate material can travel within the vacuum pickup hose.
A further advantage of the present invention is that it provides a particulate loader and transfer device with improved suction characteristics, for example, to provide additional suction at the open end of and along the length of the vacuum pickup hose in the event that the particulate material is difficult to move or is fully or partially blocking the vacuum pickup hose.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred embodiment of the present invention is described below with reference to the accompanying drawings, in which:
FIG. 1A is a front perspective view, partially in ghost, of a particulate loader and transfer apparatus;
FIG. 1B is a rear perspective view, partially in ghost, of the particulate loader and transfer apparatus illustrated in FIG. 1A;
FIG. 2
a is a perspective view, partially in ghost, of a multiple straight blade blower of one embodiment of the present invention;
FIG. 2
b is a plan view, partially in ghost, of a multiple straight blade blower of the embodiment of the present invention illustrated in FIG. 2a;
FIG. 2
c is a side view, partially in ghost, of a multiple straight blade blower of the embodiment of the present invention illustrated in FIG. 2a;
FIG. 3
a is a perspective view, partially in ghost, of a curved blade blower of one embodiment of the present invention;
FIG. 3
b is a plan view, partially in ghost, of a curved blade blower of the embodiment of the present invention illustrated in FIG. 3a;
FIG. 3
c is a side view, partially in ghost, of a curved blade blower of the embodiment of the present invention illustrated in FIG. 3a;
FIG. 4
a is a perspective view, partially in ghost, of a curved blade blower of one embodiment of the present invention having a set of long curved blades and a set of short curved blades;
FIG. 4
b is a plan view, partially in ghost, of a curved blade blower of the embodiment of the present invention illustrated in FIG. 4a;
FIG. 4
c is a side view, partially in ghost, of a curved blade blower of the embodiment of the present invention illustrated in FIG. 4a;
FIG. 5
a is a perspective view, partially in ghost, of an extended curved blade blower of one embodiment of the present invention having a set of extended curved blades;
FIG. 5
b is a plan view, partially in ghost, of an extended curved blade blower of the embodiment of the present invention illustrated in FIG. 5a;
FIG. 5
c is a side view, partially in ghost, of an extended curved blade blower of the embodiment of the present invention illustrated in FIG. 5a;
FIG. 6
a is a perspective view, partially in ghost, of an extended curved blade blower of one embodiment of the present invention having a set of extended curved blades that are gently angled in a forward direction at the proximal end thereof;
FIG. 6
b is a plan view, partially in ghost, of an extended curved blade blower of the embodiment of the present invention illustrated in FIG. 6a;
FIG. 6
c is a side view, partially in ghost, of an extended curved blade blower of the embodiment of the present invention illustrated in FIG. 6a;
FIG. 6
d is a cross-sectional view of the proximal end of an extended curved blade blower of the embodiment of the present invention illustrated in FIG. 6a.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described.
In a particulate loader and transfer apparatus of the present invention such as is illustrated in FIGS. 1A and 1B, an air-material separating chamber 2 is generally provided, having an inlet 4 which is adapted to connect to a vacuum pickup hose (not shown), relatively low pressure being created within the air-material separating chamber 2 and the vacuum pickup hose by way of one or more blowers 6 in communication with the air-material separating chamber 2, the particulate material being drawn through the vacuum pickup hose and inlet 4 and into the air-material separating chamber 2 as a result of the relatively low pressure within the air-material separating chamber 2, the particulate material thereafter separating itself from the airflow within the air-material separating chamber 2 (the air-material separation being aided by a separating drum 10 within the air-material separating chamber 2 through which separating drum 10 only air and small particles may pass) the particulate material falling onto an auger 8 which extends generally upwardly and outwardly from the air-material separating chamber 2 and which transports the particulate material from the bottom of the air-material separating chamber 2, within a tubular housing 12 enclosing the auger tube 8, through an end-dump housing 14 to a waiting truck, container or other particulate storage area. As illustrated in FIG. 1B, the blower 6 is, for example, driven by way of a series of pulleys 7, 9 and 11 and a belt arrangement 13 (preferably driven by a power takeoff (not shown) by way of a drive shaft 22 in a conventional manner), a pulley 11 being secured to the blower shaft 66 in a conventional manner to drive the blower shaft 66 and blower 6. The air drawn from the air-material separating chamber 2 by the blower is exhausted to atmosphere by way of an exhaust outlet 24.
With reference to FIGS. 2a, 2b, and 2c, in one embodiment of the present invention, the particulate loader and transfer apparatus has a blower 6 as illustrated in FIGS. 2a, 2b, and 2c. In this embodiment of the present invention, the blower 6 preferably has a set of 12 straight steel blades 52, each of which is angled (as illustrated by the arrow 86) relative to a radial reference line 88, and each of which is welded, riveted or otherwise securely fastened to a rear steel rotor plate 58 and to a front steel rotor plate 56 (it being understood that while FIGS. 2a and 2b illustrate 12 straight steel blades 52, fewer than or more than 12 blades may alternatively be used, and while FIGS. 2a and 2b illustrate the blades 52 at an angle of approximately 45° to the radial reference line 88, a wide range of angles may alternatively be used, and that in alternative embodiments of the present invention, aluminum or other alternative materials may be used for the blades 52, rear steel rotor plate 58 and front steel rotor plate 56). When the blower is rotated (as indicated by the arrow 60) about the blower shaft 66 to which the rear steel rotor plate 58 is securely fastened (by way of, for example a hub 71 to which the rear steel rotor plate 58 is securely fastened, by way of, for example bolts or rivets 69, the hub 71 being bolted or otherwise securely fastened to the blower shaft in a conventional manner known to a person skilled in the art), air is drawn into the air inlet 50 (as generally indicated by the arrow 62A) and is drawn through the blower to the air outlet 54 (as generally indicated by the arrows 62 and 62B).
With reference to FIGS. 3a, 3b, and 3c, in one embodiment of the present invention, the particulate loader and transfer apparatus has a blower 6 as illustrated in FIGS. 3a, 3b, and 3c. In this embodiment of the present invention, the blower 6 preferably has a set of 12 curved steel blades 70, each of which is angled (as illustrated by the arrow 86) relative to a radial reference line 88, and each of which is welded, riveted or otherwise securely fastened to a rear steel rotor plate 58 and to a front steel rotor plate 56 (it being understood that while FIGS. 3a and 3b illustrate 12 curved steel blades 70, fewer than or more than 12 blades may alternatively be used, and while FIGS. 3a and 3b illustrate the proximal end of the blades 70 at an angle of approximately 45° to the radial reference line 88, a wide range of angles may alternatively be used, and that in alternative embodiments of the present invention, aluminum or other alternative materials may be used for the blades 70, rear steel rotor plate 58 and front steel rotor plate 56). When the blower is rotated (as indicated by the arrow 60) about the blower shaft 66 to which the rear steel rotor plate 58 is securely fastened (by way of, for example a hub 71 to which the rear steel rotor plate 58 is securely fastened, by way of, for example bolts or rivets 69, the hub 71 being bolted or otherwise securely fastened to the blower shaft in a conventional manner known to a person skilled in the art), air is drawn into the air inlet 50 (as generally indicated by the arrow 62A) and is drawn through the blower to the air outlet 54 (as generally indicated by the arrows 62 and 62B).
With reference to FIGS. 4a, 4b, and 4c, in one embodiment of the present invention, the particulate loader and transfer apparatus has a blower 6 as illustrated in FIGS. 4a, 4b, and 4c. In this embodiment of the present invention, the blower 6 preferably has a set of 12 long curved steel blades 80, each of which is angled (as illustrated by the arrow 86) relative to a radial reference line 88, and each of which is welded, riveted or otherwise securely fastened to a rear steel rotor plate 58 and to a front steel rotor plate 56, and additionally, has a set of 12 short curved steel blades 82, each of which is alternately between the long curved steel blades 80 (it being understood that while FIGS. 4a and 4b illustrate 12 long curved steel blades 80 and 12 short curved steel blades, fewer than or more than 12 long blades (and correspondingly fewer or more short blades) may alternatively be used, and while FIGS. 4a and 4b illustrate the proximal end of the blades 80 at an angle of approximately 45° to the radial reference line 88, a wide range of angles may alternatively be used, and that in alternative embodiments of the present invention, aluminum or other alternative materials may be used for the long curved blades 80, the short curved blades 82, the rear steel rotor plate 58 and front steel rotor plate 56). When the blower is rotated (as indicated by the arrow 60) about the blower shaft 66 to which the rear steel rotor plate 58 is securely fastened (by way of, for example a hub 71 to which the rear steel rotor plate 58 is securely fastened, by way of, for example bolts or rivets 69, the hub 71 being bolted or otherwise securely fastened to the blower shaft in a conventional manner known to a person skilled in the art), air is drawn into the air inlet 50 (as generally indicated by the arrow 62A) and is drawn through the blower to the air outlet 54 (as generally indicated by the arrows 62 and 62B).
With reference to FIGS. 5a, 5b, and 5c, in one embodiment of the present invention, the particulate loader and transfer apparatus has a blower 6 as illustrated in FIGS. 5a, 5b, and 5c. In this embodiment of the present invention, the blower 6 preferably has a set of 12 extended curved steel blades 90, each of which is angled (as illustrated by the arrow 86) relative to a radial reference line 88, and each of which is welded, riveted or otherwise securely fastened to a rear steel rotor plate 58 and to a front steel rotor plate 56 (it being understood that while FIGS. 5a and 5b illustrate 12 curved steel blades 90, fewer than or more than 12 blades may alternatively be used, and while FIGS. 5a and 5b illustrate the proximal end of the blades 90 at an angle of approximately 20°-45° to the radial reference line 88, a wide range of angles may alternatively be used, and that in alternative embodiments of the present invention, aluminum or other alternative materials may be used for the blades 90, rear steel rotor plate 58 and front steel rotor plate 56). In this embodiment of the present invention each of the blades 90 extends a short distance 91 beyond the circumference 51 of the inlet 50 (in an alternative embodiment while some of the blades 90 beyond the circumference 51 of the inlet 50, some of the blades 90 extend only to the circumference 51, it being understood that these blades are positioned on the blower 60 in a balanced way so that no portion of the blower is out of balance relative to the other portions of the blower). When the blower is rotated (as indicated by the arrow 60) about the blower shaft 66 to which the rear steel rotor plate 58 is securely fastened (by way of, for example a hub 71 to which the rear steel rotor plate 58 is securely fastened, by way of, for example bolts or rivets 69, the hub 71 being bolted or otherwise securely fastened to the blower shaft in a conventional manner known to a person skilled in the art), air is drawn into the air inlet 50 (as generally indicated by the arrow 62A) and is drawn through the blower to the air outlet 54 (as generally indicated by the arrows 62 and 62B).
With reference to FIGS. 6a, 6b, 6c and 6d, in one embodiment of the present invention, the particulate loader and transfer apparatus has a blower 6 as illustrated in FIGS. 6a, 6b, 6c and 6d. In this embodiment of the present invention, the blower 6 preferably has a set of 12 extended curved steel blades 100, each of which is angled (as illustrated by the arrow 86) relative to a radial reference line 88, and each of which is welded, riveted or otherwise securely fastened to a rear steel rotor plate 58 and to a front steel rotor plate 56 (it being understood that while FIGS. 6a and 6b illustrate 12 curved steel blades 100, fewer than or more than 12 blades may alternatively be used, and while FIGS. 6a and 6b illustrate the proximal end of the blades 90 at an angle of approximately 20°-45° to the radial reference line 88, a wide range of angles may alternatively be used, and that in alternative embodiments of the present invention, aluminum or other alternative materials may be used for the blades 100, rear steel rotor plate 58 and front steel rotor plate 56). In this embodiment of the present invention the proximal end 101 of each of the blades 100 extends a distance beyond the circumference 51 of the inlet 50 and near the proximal end thereof, the edge of the blade 63 nearest the rotational axis of the blower is gently angled or curved in the direction of rotation 60 as illustrated in the cross-sectional view of the proximal end of the blade illustrated in FIG. 6D (in an alternative embodiment while some of the blades 100 beyond the circumference 51 of the inlet 50, some of the blades 100 extend only to the circumference 51, it being understood that these blades are positioned on the blower 60 in a balanced way so that no portion of the blower is out of balance relative to the other portions of the blower). When the blower is rotated (as indicated by the arrow 60) about the blower shaft 66 to which the rear steel rotor plate 58 is securely fastened (by way of, for example a hub 71 to which the rear steel rotor plate 58 is securely fastened, by way of, for example bolts or rivets 69, the hub 71 being bolted or otherwise securely fastened to the blower shaft in a conventional manner known to a person skilled in the art), air is drawn into the air inlet 50 (as generally indicated by the arrow 62A) and is drawn through the blower to the air outlet 54 (as generally indicated by the arrows 62 and 62B).
The present invention has been described herein with regard to preferred embodiments. However, it will be obvious to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as described herein.