The present invention relates generally to surgical instruments, and more particularly to a versatile surgical apparatus for providing a directed stream of gas and/or fluid to a surgical site to improve visibility, wherein the apparatus can be used alone or combined with another surgical instrument and/or mounted to a fixed structure.
A difficult aspect of many surgical procedures is obtaining and maintaining clear and unobstructed visibility at the surgical site. Accordingly, the instruments and fixtures used in a surgical setting are meticulously designed and selected to ensure that the surgeons have optimum visual access to the surgical site. In most instances, irrigation and suction are used in one form or another to wash away and remove unwanted or undesirable material, fluids, or other particulates. In prolonged surgical procedures, irrigation is also useful in preventing the deleterious effects of tissue desiccation.
Visibility requirements are particularly acute when the surgery involves particularly delicate or small structures, such as those routinely encountered in vascular or neurological surgery. In a vascular anastomosis procedure, for example, even small amounts of fluid or other material can significantly affect the surgeon's view of the anastomotic site. Blood flow from the surrounding tissues or from the vessels themselves is particularly problematic for visualization of the surgical site during an anastomosis. In such procedures, standard liquid irrigation alone is often ineffective for clearing the surgical site.
Instruments using a directed gas or fluid stream to obtain a clear view of the surgical site are known. For example, U.S. Pat. No. 5,336,170 to Salerno et al. discloses a surgical site visualization wand which has a fluid delivery conduit having a fan shaped tip for delivering a pressurized gas to a target site. The visualization wand may also have a humidification or moisturizing conduit for the selective introduction of a sterile liquid in the form of a mist carried by and intermixed with the gas stream to the target site. Such arrangements tend to have the improved ability to blow away fluid or debris without desiccating tissue. U.S. Pat. No. 5,336,170 is hereby incorporated herein in its entirety, by reference thereto. Directed stream visualization instruments such as those described in U.S. Pat. No. 5,336,170 are cumbersome to operate, offering inadequate gas and liquid flow control. If the flow rate of the gas supply is too low, it will not adequately clear the targeted site of undesired material. If the gas stream is delivered at an excessive flow rate or pressure it tends to cause a certain amount of spattering of the cleared material and may displace or damage the delicate tissue structures under operation. If the flow rate of the liquid is too high it may over-irrigate the site; too low and the surrounding tissue may become desiccated.
The directed stream blower disclosed in U.S. Pat. No. 6,168,577 provides a flow controller directly on the handle of the instrument for convenient one-handed operation during use. U.S. Pat. No. 6,168,577 is hereby incorporated herein in its entirety, by reference thereto. The directed stream blower instrument of U.S. Pat. No. 6,168,577 however, like the instrument disclosed in U.S. Pat. No. 6,168,577, is a stand alone instrument that must be individually handheld, independent of other instruments that may be required for the surgical procedure. Typically, a directed stream instrument of this type is held by a surgical assistant, who must then frequently communicate with the surgeon to coordinate position of a blower mister stream, as needed, in the locations needed, at the times needed, and at the flow rates/pressures needed. Additionally, the extra space taken up by the person holding the directed stream instrument and/or the additional space required by the separate instrument itself may be deleterious, especially in instances where the surgical working space is already very limited.
U.S. Pat. No. 6,994,669 discloses a blower that is removably attachable to another surgical instrument at a distal end portion thereof. However, it appears that a proximal end portion of the blower still needs to be held by an operator, which would thereby require an occupation of an additional hand, whether that of the surgeon or a surgeon's assistant. Additionally, the direction of the blower stream does not appear to be adjustable.
U.S. Pat. No. 7,056,287 discloses a blower mounted on a distal end portion of another surgical instrument wherein the blower is adjustable via a malleable tube that includes the lumen through which pressurized gas is delivered. However, this blower is not removable from the additional surgical instrument. Also, bending of the malleable tube can cause kinking, which can adversely affect the flow characteristics of the pressurized gas through the malleable tube.
In view of the foregoing, it would be desirable to provide a blower mister instrument that is more versatile than those of the prior art, that can be used as a standalone instrument, or alternatively can be combined with another instrument, and which may even be used in still further additional operating configurations. It would further be desirable to provide a blower mister instrument that has the capability of changing and controlling a direction in which pressurized fluids are emitted from a distal tip of the instrument, wherein lumens through which the fluids are delivered are formed by conduits that do not readily kink and are not malleable. Still further it would be desirable to provide a blower mister instrument wherein a length from the distal tip to the handle of the instrument is adjustable.
In one aspect, the present invention provides a surgical blower including an elongated, flexible tube having a lumen extending therethrough; and an attachment member at a distal end portion of the blower, the attachment member being configured and dimensioned for releasable attachment to a mating member of a stabilizer instrument.
In one aspect, the present invention provides a surgical blower instrument for providing a directed stream to clear a surgical site. In at least one embodiment the instrument includes an elongated flexible tube having a first lumen extending therethrough; a malleable shaft extending alongside at least a distal portion of the elongated flexible, tube; and a handle, wherein at least a portion of the flexible, elongated tube extends through the handle and the flexible, elongated tube extends distally of the handle.
In at least one embodiment, the elongated flexible tube is a non-malleable tube.
In at least one embodiment, the elongated flexible tube comprises a second lumen, the second lumen being separate and independent of the first lumen.
In at least one embodiment, the tube is a first tube and a second tube is provided with a second lumen, wherein the second tube extends within the first lumen of the first tube.
In at least one embodiment, the elongated, flexible tube comprises a first tube, the blower further comprising a second tube comprising a second elongated, flexible tube, the second tube comprising a second lumen extending therethrough.
In at least one embodiment, the blower comprises a distal tip, wherein the distal ends of the first and second tubes are in fluid communication with the distal tip.
In at least one embodiment, the blower instrument includes a distal tip, wherein the tube is in fluid communication with the distal tip.
In at least one embodiment, the blower instrument includes an attachment member adjacent the distal tip, the attachment member being configured and dimensioned to attach to a mating member on a stabilizer instrument.
In at least one embodiment, the mating member is on a foot of the stabilizer instrument.
In at least one embodiment, the attachment member comprises a post.
In at least one embodiment, a sleeve extends distally from a distal end of the handle, and the elongated, flexible tube and the malleable shaft extend within the sleeve.
In at least one embodiment, at least the elongated, flexible tube is extendible beyond a distal end of the sleeve, to increase a distance between a distal end of the tube and a distal end of the sleeve.
In at least one embodiment, the blower instrument includes a clip configured and dimensioned to attach to a stationary object.
In at least one embodiment, the clip is configured and dimensioned to attach to a sternal retractor.
In at least one embodiment, the clip is longitudinally adjustable relative to the handle, to vary a distance that a distal end of the blower extends beyond the clip.
In at least one embodiment, the blower instrument comprises a flow adjustment mechanism connected to the flexible, elongated tube and adjustable to change a flow property of fluid through the lumen.
In another aspect, the present invention provides an apparatus for use in performing surgical procedures, the apparatus including: a surgical blower instrument for providing a directed stream to clear a surgical site, the blower comprising an elongated flexible tube having a lumen extending therethrough and an engagement member at a distal end portion of the blower; and a stabilizer instrument comprising a shaft; and a foot coupled to a distal end of the shaft, the foot including a mating member; the engagement member being configured and dimensioned for engagement with the mating member.
In at least one embodiment, the engagement member is configured and dimensioned for releasable attachment to the mating member.
In at least one embodiment, the flexible tube is non-malleable.
In at least one embodiment, the foot extends generally along a direction of a longitudinal axis of the foot, wherein the engagement member and the mating member, when attached, maintain a distal tip of the blower at a predefined, non-parallel angle relative the plane along which the contact surface of the contact member generally extends, while allowing rotation of the distal tip about an axis perpendicular to the plane.
In at least one embodiment, the blower further comprises a handle at a proximal end portion thereof, the flexible tube and the engagement member being extendible to increase a distance thereof from the handle.
In at least one embodiment, the foot includes a plurality of the mating members each located at relatively different locations on the foot.
In another aspect, the present invention provides a stabilizer instrument comprising a shaft and a foot coupled to a distal end of the shaft, the foot including a mating member.
In another aspect, the present invention provides a stabilizer instrument for stabilizing a portion of a tissue surface during a surgical procedure, the instrument including: an elongated shaft, a foot coupled to a distal end of the shaft and a connector mechanism at a proximal end portion of the stabilizer instrument, the connector mechanism configured to fix the instrument to a stationary object; the foot including a mating member configured to releasably mate with an attachment member on a distal end portion of a blower instrument, the mating member being configured and dimensioned for releasable attachment to the attachment member.
In at least one embodiment, the foot includes a plurality of the mating members each located at relatively different locations on the foot.
In at least one embodiment, the shaft is flexible in a first, unlocked configuration, and rigid in a second, locked configuration.
In at least one embodiment, the foot extends generally along a direction of a longitudinal axis of the foot, wherein the attachment member and the mating member, when attached, maintain a distal tip of the blower at a non-parallel angle relative to the plane along which the contact surface of the contact member generally extends, while allowing rotation of the distal tip about an axis perpendicular to the plane.
In another aspect, the present invention provides a surgical blower for providing a directed stream to clear a surgical site, wherein the blower includes: an elongated flexible tube having a lumen extending therethrough; a handle, wherein at least a portion of the flexible tube extends through the handle and the flexible tube extends distally and proximally of the handle; a clip configured and dimensioned to attach the blower to a stationary object; and an attachment member at a distal end portion of the blower, the attachment member being configured and dimensioned for releasable attachment to a mating member of another instrument; wherein the flexible tube and the attachment member are extendible to increase a distance thereof from the handle.
In at least one embodiment, the clip is longitudinally adjustable relative to the handle, to vary a distance that a distal end of the blower extends beyond the clip.
In another aspect, the present invention provides a method of facilitating a surgical procedure, the method including: stabilizing a portion of a tissue surface with a stabilizer instrument, wherein the portion includes a surgical target location; attaching a distal end portion of a blower to a foot of the stabilizer instrument; and directing fluid to the surgical target location.
In at least one embodiment, the method further includes attaching a proximal end portion of the blower to a stationary object other than the stabilizer instrument.
In at least one embodiment, the attachment of the proximal end portion includes attaching the proximal end portion to a surgical retractor.
In at least one embodiment, the method includes rotating the distal end portion to redirect a flow of the fluid.
In at least one embodiment, the method further includes detaching the distal end portion from the foot and retracting the distal end portion to reduce a distance between the distal end portion and a proximal end of the blower.
In at least one embodiment, the method includes detaching the proximal end portion and hand holding the proximal end portion.
In at least one embodiment, the method includes detaching the distal end portion from the foot and operating the blower as a handheld instrument.
In at least one embodiment, the method includes retracting the distal end portion to reduce a distance between the distal end portion and a proximal end of the blower.
In another aspect, the present invention provides a method of operating a surgical blower instrument, the method including: fixing a proximal end portion of the blower instrument to a stationary object; adjusting the blower instrument to vary a distance from a distal end of the blower instrument to a location where the blower instrument is fixed to the stationary object; and flowing fluid out of a distal end of the blower instrument.
In at least one embodiment, the adjusting comprises extending a tube out of a distal end of a sheath that the tube passes through.
In at least one embodiment, the adjusting comprises sliding a handle of the instrument relative to a clip used to perform the fixing a proximal end portion.
In another aspect, the present invention provides a stabilizer foot for use in a stabilizer instrument for stabilizing a portion of a tissue surface during a surgical procedure, wherein the foot includes: a contact member having a contact surface adapted to contact the portion of the tissue to be stabilized; and a mating member configured to releasably mate with an attachment member on a distal end portion of a blower instrument, the mating member being configured and dimensioned for releasable attachment to the attachment member.
In at least one embodiment, the foot comprises a fitting adapted to attach to a shaft of the stabilizer instrument.
In another aspect, the present invention provides an assembly for use in a surgical procedure, wherein the assembly includes: a surgical blower tip releasably attached to a stabilizer foot; an attachment member connected to and extending from the surgical blower tip; the stabilizer foot comprising a mating member; the attachment member being releasably attached to the mating member.
In another aspect, the present invention provides an assembly for use in a surgical procedure, wherein the assembly includes: a surgical blower tip releasably attached to a stabilizer foot.
In another aspect, the present invention provides an apparatus for use in performing surgical procedures, wherein the apparatus includes: a stabilizer instrument comprising a foot having a contact member with a contact surface adapted to contact tissue to perform a stabilizing function; and a surgical blower instrument mounted to the stabilizer instrument and configured to provide a directed stream to clear a surgical site, the blower instrument comprising at least one nozzle and the blower instrument being configured for fluid communication with a source of fluid to deliver the fluid out of the at least one nozzle; wherein the blower instrument is user adjustable to change a pattern of spray delivered from the at least one nozzle to a surgical site adjacent the contact member.
In at least one embodiment, the surgical blower instrument comprises a tube, the at least one nozzle formed through a wall thereof.
In at least one embodiment, the tube is rotatable about a longitudinal axis thereof, relative to the contact member.
In at least one embodiment, the tube is axially translatable relative to the contact member.
In at least one embodiment, an actuator is connected to the tube and configured to facilitate movement of the tube by a user of the apparatus.
In at least one embodiment, a hood extends along a length of the contact member, the hood including a slot along a length thereof.
In at least one embodiment, the hood is configured and dimensioned to receive the tube therein, wherein the tube is rotatable with the hood to align the at least one nozzle with the slot thereby allowing delivery of spray through the slot, the tube being further rotatable to position the at least one nozzle out of alignment with the slot thereby preventing delivery of spray through the slot.
In at least one embodiment, the surgical blower instrument is mounted to the stabilizer instrument via a rigid post, the surgical blower instrument comprising a malleable distal portion having the at least one nozzle at a distal end thereof; wherein the malleable distal portion is manipulatable by a user to hold a desired configuration that causes the at least one nozzle to be pointed in a desired direction and orientation.
In at least one embodiment, an actuator is mounted to the shaft in fluid communication with the at least one nozzle, wherein the actuator is operable to prevent spray from flowing through the at least one nozzle in a first configuration, and to allow spray to flow through the at least one nozzle in a second configuration.
These and other features of the invention will become apparent to those persons skilled in the art upon reading the details of the instruments, apparatus, assemblies and methods as more fully described below.
10B shows mating members provided on a stabilizer foot.
Before the present instruments, apparatuses and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a lumen” includes a plurality of such lumens and reference to “the tube” includes reference to one or more tubes and equivalents thereof known to those skilled in the art, and so forth.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
The term “malleable” as used herein refers to a material property wherein the material plastically deforms under the forces applied thereto for the normal use of the material being described. For example, a tube or conduit that is malleable and is bent by hand, plastically deforms to retain the bent shape after the hand of the person performing the bending no longer contacts the tube or conduit. A “non-malleable” tube or conduit, in contrast, does not maintain the bent shape after the persons hand no longer contacts it, but either elastically returns to its original, pre-bent shape, or at least remains flexible, so that the bent shape is not maintained.
Instruments, Apparatus and Methods
Referring to the drawings in detail wherein like numerals indicate like elements, the present invention includes a blower instrument, which typically provides blower and mister functions and is configured to deliver a stream of pressurized fluid from a distal tip of the instrument. The fluid delivered may be gas or liquid or both, and is typically both, combining a pressurized gas such as carbon dioxide with an atomized liquid such as saline. The blower instrument is useful for removing unwanted materials from a surgical site, thus improving the visibility at the surgical site.
The blower instrument of the present invention is very versatile, in that it may be used in many different modes of use. In at least one embodiment, the blower instrument may be used in a handheld mode where it is handheld by the user and the stream is directed by the user. Another mode of use involves fixing a proximal end portion of the instrument to a stationary object, which may be, but is not limited to an arm of a sternal retractor, and the distal end of the instrument can be manipulated to direct the fluid flow in the desired direction, after which, the user no longer needs to handle the instrument unless and until the direction of the delivered fluid needs to be changed and/or the flow characteristics of the fluid need to be changed. Another mode of use and also other embodiments involve attaching a distal tip of the blower instrument to a foot or crosspiece of a stabilizer instrument. In at least one embodiment, this mode can be used together with fixing the proximal end portion of the blower instrument to a stationary object, or together with holding the proximal end portion of the blower instrument by hand, or the instrument can be simply laid down on a surface without fixing it thereto. In at least one embodiment, one or more openings or nozzles of the instrument may be both rotationally and translationally (axially) adjusted relative to a foot of a stabilizer.
In at least one embodiment, the blower instrument includes an extendible tube that allows the distal tip, where the fluid stream is ejected, to be extended to increase its distance from the handle of the instrument, or retracted, to decrease its distance from the handle.
In at least one embodiment, the blower instrument also includes the capability of controlling the amount of flow of fluid out the distal end thereof. Various flow control mechanisms are described.
A stabilizer instrument is provided that includes a stabilizer foot mounted to a distal end of a shaft or arm. Typically, the stabilizer instrument is provided with a mounting structure at a proximal end portion thereof that is configured to mount the stabilizer instrument to a stationary object such as a sternal retractor. The foot of the stabilizer instrument includes at least one mating member configured to releasably mate with an attachment member on the distal end portion of the blower instrument.
Tube 12 extends through instrument 10 as shown in
Malleable rod 22 may be fixed to the inner wall of sheath 18 so that it is prevented from translating relative to sheath 18. Alternatively, malleable rod 22 may be fixed to tube 12 (or to both tubes 12 and 13) and not fixed to sheath 18, so that when tube 12 (or tubes 12, 13) is/are extended beyond the distal end of sheath 18 (as described in further detail below), malleable rod 22 extends with tube 12 (or tubes 12, 13) so that the extended portion of the tube(s) may be held in a desired orientation by manipulation of the malleable rod 22. If rod 22 is fixed to sheath 18, then the extended portion of tube 12 (or tubes 12 and 13) beyond the distal end of sheath 18 is/are flexible and does/do not retain an orientation that it is manipulated to, absent some other form of fixation, since tubes 12 and 13 are non-malleable, typically being made of polyurethane or some other flexible, non-malleable plastic.
Clip 30 is longitudinally slidable relative (along the directions of the arrows shown in
Referring again to
Attachment member 42 may be attached to the mating member on the foot of a stabilizer instrument even while instrument 10 is in the configuration shown in
As shown in
Distal tip 14 can be maintained in the configuration (non-extended configuration) shown in
As shown, stabilizer instrument 100 is adapted to be mounted to a sternal retractor assembly for performing a mid-sternal surgical procedure on the beating heart, although the present invention is not limited to such an application, as described above. Stabilizer 100 includes an elongated shaft or arm 130 which may be rigid, or which may have a flexible, unlocked configuration and a rigid, locked configuration, as shown. In the example shown, shaft/arm 130 is a multi-jointed device which provides the flexibility needed to reach less direct surfaces of the heart from the incision opening. A connector mechanism 140 is connected to a proximal end of shaft/arm 130 and is configured to fix the stabilizer 100 to a stationary object such as a sternal retractor. The stabilizer instrument 100 may be fixed to other types of stationary objects rather than a sternal retractor. Actuator 150 is provided to change states of arm 130 between flexible and rigid, and may also be configured to fix and release connector 140 to and from a stationary object.
A stabilizer foot 120 is coupled to the distal end of shaft/arm 130 via a fitting 124. The configuration of the fitting may vary. In the example shown in
Stabilizer foot 120 includes at least one mating member 46. The embodiment of
Attachment member 42 extends from distal tip 14/nozzle 20 at an angle that maintains the orientation of the distal tip 14/nozzle 20 at a predefined angle relative to the plane that the contact member 122 generally extends along, so that the distal tip is oriented non-parallel to the plane.
Further details about stabilizer instrument 100 as well as a sternal retractor that it can be mounted to (blower instrument can be mounted thereto as well, using clip 30) can be found in U.S. Pat. No. 6,758,808 which is hereby incorporated herein, in its entirety, by reference thereto.
A tube 64 having a closed distal end and at least one nozzle 20′ is provided which is configured and dimensioned to slide axially within hood 60 as well as to rotate about its longitudinal axis relative to hood 60. An actuator 66 (e.g., lever arm, as shown, or other actuator that is readily manipulatable by a human user) is attached to the proximal end portion of tube 64 and is operable by a user to translate and/or rotate the tube 64. Sufficient friction exists between the tube 64 and hood 60 to maintain the tube 64 in its intended position once it has been placed there by operating actuator 66. Optionally, a friction member 68, such as an O-ring or the like, may be attached to the hood at or near the exit location of the tube 64, to establish additional friction for holding tube 64 in a desired position and orientation.
The angle of spray can be adjusted by rotating tube 64, as nozzles 20′ may assume different angular orientations relative to slot 62 and still remain fully or partially aligned with slot 62. The axial location of the spray is adjustable by pulling the tube 64 out of the hood 60 or pushing the tube 64 further into the hood 60.
In the embodiment shown in
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention.
This application is a 371 National Stage Application of International Application No. PCT/US11/26490 filed Feb. 28, 2011, which claims the benefit of U.S. application Ser. No. 12/714,037, filed Feb. 26, 2010, the disclosures of which are herein incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/026490 | 2/28/2011 | WO | 00 | 12/13/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/106777 | 9/1/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
452131 | Haughawout | May 1891 | A |
810675 | Richter | Jan 1906 | A |
1202698 | Ford | Oct 1916 | A |
2296793 | Kirschbaum | Sep 1942 | A |
2590527 | Fluck | Mar 1952 | A |
2693795 | Grieshaber | Nov 1954 | A |
2863444 | Winsten | Dec 1958 | A |
3392722 | Jorgensen | Jul 1968 | A |
3683926 | Suzuki | Aug 1972 | A |
3720433 | Rosfelder | Mar 1973 | A |
3783873 | Jacobs | Jan 1974 | A |
3858578 | Milo | Jan 1975 | A |
3858926 | Ottenhues | Jan 1975 | A |
3882855 | Schulte et al. | May 1975 | A |
3983863 | Janke et al. | Oct 1976 | A |
4047532 | Phillips et al. | Sep 1977 | A |
4048987 | Hurson | Sep 1977 | A |
4049000 | Williams | Sep 1977 | A |
4049002 | Kletschka | Sep 1977 | A |
4052980 | Grams et al. | Oct 1977 | A |
4108178 | Betush | Aug 1978 | A |
4226228 | Shin et al. | Oct 1980 | A |
4230119 | Blum | Oct 1980 | A |
4306561 | de Medinaceli | Dec 1981 | A |
4366819 | Kaster | Jan 1983 | A |
4368736 | Kaster | Jan 1983 | A |
4421107 | Estes et al. | Dec 1983 | A |
4428368 | Torii | Jan 1984 | A |
4434791 | Darnell | Mar 1984 | A |
4461284 | Fackler | Jul 1984 | A |
4492229 | Grunwald | Jan 1985 | A |
4617916 | LeVahn et al. | Oct 1986 | A |
4627421 | Symbas et al. | Dec 1986 | A |
4637377 | Loop | Jan 1987 | A |
4646747 | Lundback | Mar 1987 | A |
4673161 | Flynn et al. | Jun 1987 | A |
4688570 | Kramer et al. | Aug 1987 | A |
4702230 | Pelta | Oct 1987 | A |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4726356 | Santilli et al. | Feb 1988 | A |
4726358 | Brady | Feb 1988 | A |
4736749 | Lundback | Apr 1988 | A |
4747395 | Brief | May 1988 | A |
4754746 | Cox | Jul 1988 | A |
4803984 | Narayanan et al. | Feb 1989 | A |
4808163 | Laub | Feb 1989 | A |
4829985 | Couetil | May 1989 | A |
4852552 | Chaux | Aug 1989 | A |
4854318 | Solem et al. | Aug 1989 | A |
4863133 | Bonnell | Sep 1989 | A |
4865019 | Phillips | Sep 1989 | A |
4869457 | Ewerlof | Sep 1989 | A |
4884559 | Collins | Dec 1989 | A |
4892526 | Reese | Jan 1990 | A |
4925443 | Heilman et al. | May 1990 | A |
4941872 | Felix et al. | Jul 1990 | A |
4949707 | LeVahn et al. | Aug 1990 | A |
4955896 | Freeman | Sep 1990 | A |
4962758 | Lasner et al. | Oct 1990 | A |
4971037 | Pelta | Nov 1990 | A |
4973300 | Wright | Nov 1990 | A |
4989587 | Farley | Feb 1991 | A |
4991578 | Cohen | Feb 1991 | A |
4993862 | Pelta | Feb 1991 | A |
5009660 | Clapham | Apr 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5025779 | Bugge | Jun 1991 | A |
5036868 | Berggren et al. | Aug 1991 | A |
5037428 | Picha et al. | Aug 1991 | A |
5052373 | Michelson | Oct 1991 | A |
5053041 | Ansari et al. | Oct 1991 | A |
5080088 | LeVahn | Jan 1992 | A |
5098369 | Heilman et al. | Mar 1992 | A |
5119804 | Anstadt | Jun 1992 | A |
5131905 | Grooters | Jul 1992 | A |
5133724 | Wilson, Jr. et al. | Jul 1992 | A |
5159921 | Hoover | Nov 1992 | A |
RE34150 | Santilli et al. | Dec 1992 | E |
5167223 | Koros et al. | Dec 1992 | A |
5171254 | Sher | Dec 1992 | A |
5203769 | Clement et al. | Apr 1993 | A |
5231974 | Giglio et al. | Aug 1993 | A |
5242386 | Holzer | Sep 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5318013 | Wilk | Jun 1994 | A |
5336170 | Salermo et al. | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5382756 | Dagan | Jan 1995 | A |
5383840 | Heilman et al. | Jan 1995 | A |
5417709 | Slater | May 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5489280 | Russell | Feb 1996 | A |
5498256 | Furnish | Mar 1996 | A |
5503617 | Jako | Apr 1996 | A |
5509890 | Kazama | Apr 1996 | A |
5512037 | Russell et al. | Apr 1996 | A |
5514075 | Moll et al. | May 1996 | A |
5514076 | Ley | May 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5529571 | Daniel | Jun 1996 | A |
5547458 | Ortiz et al. | Aug 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5607446 | Beehler et al. | Mar 1997 | A |
5613937 | Garrison et al. | Mar 1997 | A |
5713951 | Garrison et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5749892 | Vierra et al. | May 1998 | A |
5755660 | Tyagi | May 1998 | A |
5772583 | Wright et al. | Jun 1998 | A |
5782746 | Wright | Jul 1998 | A |
5795291 | Koros et al. | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5807243 | Vierra et al. | Sep 1998 | A |
5813410 | Levin | Sep 1998 | A |
5820373 | Okano et al. | Oct 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5836311 | Borst et al. | Nov 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846193 | Wright | Dec 1998 | A |
5846194 | Wasson et al. | Dec 1998 | A |
5846219 | Vancaillie | Dec 1998 | A |
5865730 | Fox et al. | Feb 1999 | A |
5868770 | Rygaard | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5876332 | Looney | Mar 1999 | A |
5879291 | Kolata et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891017 | Swindle et al. | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5899425 | Corey, Jr. et al. | May 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5908382 | Koros et al. | Jun 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5947125 | Benetti | Sep 1999 | A |
5947896 | Sherts et al. | Sep 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5967972 | Santilli et al. | Oct 1999 | A |
5967973 | Sherts et al. | Oct 1999 | A |
5976080 | Farascioni | Nov 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5984865 | Farley et al. | Nov 1999 | A |
5984867 | Deckman et al. | Nov 1999 | A |
6007486 | Hunt et al. | Dec 1999 | A |
6007523 | Mangosong | Dec 1999 | A |
6013027 | Khan et al. | Jan 2000 | A |
6015378 | Borst et al. | Jan 2000 | A |
6017304 | Vierra et al. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6027476 | Sterman et al. | Feb 2000 | A |
6030340 | Maffei et al. | Feb 2000 | A |
D421803 | Koros et al. | Mar 2000 | S |
6032672 | Taylor | Mar 2000 | A |
6033362 | Cohn | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6050266 | Benetti et al. | Apr 2000 | A |
6063021 | Hossain et al. | May 2000 | A |
6071295 | Takahashi | Jun 2000 | A |
6099468 | Santilli et al. | Aug 2000 | A |
6102853 | Scirica et al. | Aug 2000 | A |
6102854 | Carfier et al. | Aug 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6139492 | Vierra et al. | Oct 2000 | A |
6168577 | Niederjohn et al. | Jan 2001 | B1 |
6190311 | Glines et al. | Feb 2001 | B1 |
6193652 | Berky et al. | Feb 2001 | B1 |
6200263 | Person | Mar 2001 | B1 |
6210323 | Gilhuly et al. | Apr 2001 | B1 |
6213940 | Sherts et al. | Apr 2001 | B1 |
6213941 | Benetti et al. | Apr 2001 | B1 |
6231506 | Hu et al. | May 2001 | B1 |
6251065 | Kochamba et al. | Jun 2001 | B1 |
6283912 | Hu et al. | Sep 2001 | B1 |
6290644 | Green, II et al. | Sep 2001 | B1 |
6315717 | Benetti et al. | Nov 2001 | B1 |
6331158 | Hu et al. | Dec 2001 | B1 |
6348036 | Looney et al. | Feb 2002 | B1 |
6350229 | Borst et al. | Feb 2002 | B1 |
6361493 | Spence et al. | Mar 2002 | B1 |
6364833 | Valerio | Apr 2002 | B1 |
6371906 | Borst et al. | Apr 2002 | B1 |
6375611 | Voss et al. | Apr 2002 | B1 |
6390976 | Spence et al. | May 2002 | B1 |
6475142 | Parsons et al. | Nov 2002 | B1 |
6506149 | Peng et al. | Jan 2003 | B2 |
6558314 | Adelman et al. | May 2003 | B1 |
6565508 | Scirica et al. | May 2003 | B2 |
6602183 | Levi et al. | Aug 2003 | B1 |
6607479 | Kochamba et al. | Aug 2003 | B1 |
6626830 | Calafiore et al. | Sep 2003 | B1 |
6641604 | Adelman et al. | Nov 2003 | B1 |
6656113 | Green, II et al. | Dec 2003 | B2 |
6676597 | Guenst et al. | Jan 2004 | B2 |
6685632 | Hu et al. | Feb 2004 | B1 |
6701930 | Benetti et al. | Mar 2004 | B2 |
6730020 | Peng et al. | May 2004 | B2 |
6733445 | Sherts et al. | May 2004 | B2 |
6743169 | Taylor et al. | Jun 2004 | B1 |
6758808 | Paul et al. | Jul 2004 | B2 |
6804866 | Lemke et al. | Oct 2004 | B2 |
6849044 | Voss et al. | Feb 2005 | B1 |
6890292 | Kochamba et al. | May 2005 | B2 |
6893391 | Taylor | May 2005 | B2 |
6899670 | Peng et al. | May 2005 | B2 |
6902523 | Kochamba et al. | Jun 2005 | B2 |
6936002 | Kochamba et al. | Aug 2005 | B2 |
6969349 | Spence et al. | Nov 2005 | B1 |
6994669 | Gannoe et al. | Feb 2006 | B1 |
7018328 | Mager et al. | Mar 2006 | B2 |
7056287 | Taylor et al. | Jun 2006 | B2 |
7137949 | Scirica et al. | Nov 2006 | B2 |
7179224 | Willis et al. | Feb 2007 | B2 |
7195591 | Spence et al. | Mar 2007 | B2 |
7226409 | Peng et al. | Jun 2007 | B2 |
7326173 | Guenst et al. | Feb 2008 | B2 |
7338434 | Haarstad et al. | Mar 2008 | B1 |
7377895 | Spence et al. | May 2008 | B2 |
7404792 | Spence et al. | Jul 2008 | B2 |
7438680 | Guenst et al. | Oct 2008 | B2 |
7497823 | Parihar et al. | Mar 2009 | B2 |
7621911 | Ariola, Jr. | Nov 2009 | B2 |
7736307 | Hu et al. | Jun 2010 | B2 |
8162817 | Spence et al. | Apr 2012 | B2 |
8277476 | Taylor et al. | Oct 2012 | B2 |
8317695 | Spence et al. | Nov 2012 | B2 |
20020016527 | Hancock | Feb 2002 | A1 |
20040030223 | Calafiore et al. | Feb 2004 | A1 |
20070066958 | Wright | Mar 2007 | A1 |
20070179344 | Spence et al. | Aug 2007 | A1 |
20070255272 | Ariola | Nov 2007 | A1 |
20080139879 | Olson et al. | Jun 2008 | A1 |
20090299131 | Green, II et al. | Dec 2009 | A1 |
20100210916 | Hu et al. | Aug 2010 | A1 |
20120078061 | Calafiore et al. | Mar 2012 | A1 |
20120157788 | Serowski et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
90 04513 | Jun 1990 | DE |
0 293 760 | Dec 1988 | EP |
0 293 760 | Dec 1988 | EP |
0 293 760 | Dec 1988 | EP |
0 630 629 | May 1994 | EP |
668 058 | Aug 1995 | EP |
0 993 806 | Apr 2000 | EP |
473451 | Jan 2015 | FR |
168216 | Sep 1921 | GB |
2 233 561 | Jan 1991 | GB |
2 267 827 | Dec 1993 | GB |
WO 8704081 | Jul 1987 | WO |
WO 9414383 | Jul 1994 | WO |
WO 9418881 | Sep 1994 | WO |
WO 9501757 | Jan 1995 | WO |
WO 9515715 | Jun 1995 | WO |
WO 9517127 | Jun 1995 | WO |
WO 9600033 | Jan 1996 | WO |
WO 9710753 | Mar 1997 | WO |
WO 9726828 | Jul 1997 | WO |
WO 9732514 | Sep 1997 | WO |
WO 9732514 | Sep 1997 | WO |
WO 9740752 | Nov 1997 | WO |
WO 9827869 | Jul 1998 | WO |
WO 9848703 | Nov 1998 | WO |
WO 9849947 | Nov 1998 | WO |
WO 9908585 | Feb 1999 | WO |
WO 9909892 | Mar 1999 | WO |
WO 9916367 | Apr 1999 | WO |
WO 0006041 | Feb 2000 | WO |
WO 0010466 | Mar 2000 | WO |
WO 0016367 | Mar 2000 | WO |
WO 0042920 | Jul 2000 | WO |
WO 0042921 | Jul 2000 | WO |
WO 0042935 | Jul 2000 | WO |
WO 0042936 | Jul 2000 | WO |
WO 0042937 | Jul 2000 | WO |
Entry |
---|
Partial Supplementary European Search Report dated Feb. 12, 2015, issued for corresponding EP Patent Application No. 11748232.3, 6 pages. |
Maquet Axius TM Blower/Mister Instructions for Use, Maquet Cardiovascular LLC, 1999. |
Clampless Beating Heart Surgery, Maquet Cardiovascular LLC, internet publication, http://www.maquet.com/content/MAQUET-CardiacSurgery/Documents/Brochures/CBH—BROCHU—FAMILYBROCH—EN—US.pdf, Apr. 2008. |
International Search Report and Written Opinion, PCT/US11/26490, Apr. 19, 2011. |
Westaby, S. et al., “Less Invasive Coronary Surgery: Consensus From the Oxford Meeting,” The Annals of Thoracic Surgery, 62:924-31, 1996. |
Zumbro, et al., AA Prospective Evaluation of the Pulsatile Assist Device, The Annals of Thoracic Surgery, vol. 28, No. 2, Aug. 1979, pp. 269-273. |
Akins, et al., Preservation of Interventricular Septal Function in Patients Having Coronary Artery Bypass Graft Without Cardiopulmonary Bypass, @ American Heart Journal, vol. 107, No. 2, Feb. 1984, pp. 304-309. |
Ancalmo, N. and J. L. Ochsner: “A Modified Sternal Retractor,” Ann. Thorac, Surg. 21 (1976) 174. |
Angelini, G.D., M.D. et al., “Fiber-Optic Retractor for Harvesting the Internal Mammary Artery,” Ann. Thorac. Surg. (1990; 50:314-5). |
Angelini, G.D., M.D., Simple, Inexpensive Method of Heart Retraction During Coronary Artery Bypass Surgery, Ann. Thora. Surg 46:46-247, Aug. 1988. |
Anstadt, M.D., et al., Direct Mechanical Ventricular Actuation for Cardiac Arrest in Humans, @ Chest, vol. 100, No. 1, Jul. 1991. |
Antinori, C. et al., A Method of Retraction During Reoperative Coronary Operations Using the Favaloro Retractor, @ The Society of Thoracic Surgeons: 1989. |
Archer, DO, et al., Coronary Artery Revascularization Without Cardiopulmonary Bypass, @ Texas Heart Institute Journal, vol. 11, No. 1, Mar. 1984, pp. 52-57. |
Arom, K.V., et al., “Mini-Sternotomy for Coronary Artery Bypass Grafting,” The Annals of Thoracic Surgery 1996; 61:1271-2. |
Ballantyne, M.D., et al., Delayed Recovery of Severally >Stunned= Myocardium with the Support of a Left Ventricular Assist Device After Coronary Artery Bypass Graft Surgery, @ Journal of the American College of Cardiology, vol. 10, No. 3, Sep. 1987, pp. 710-712. |
Bedellino, M.M., et al., “The Cardiac Rag—Simple Exposure of the Heart,” Texas Heart Institute Journal, vol. 15, No. 2, 1988, 134-35. |
Beg, R.A., et al., “Internal Mammary Retractor,” Ann Thorac, Surg., vol. 39, No. 1, pp. 286-287, Jan. 1985. |
Benetti, et al., Direct Coronary Surgery with Saphenous Vein Bypass Without Either Cardiopulmonary Bypass or Cardiac Arrest, @ The Journal of Cardiovascular Surgery, vol. 26, No. 3, May-Jun. 1985, pp. 217-222. |
Benetti, et al., Direct Myocardial Revascularization Without Extracorporeal Circulation, @ Chest, vol. 100, No. 2 Aug. 1991, pp. 312-316. |
Bonatti, J., et al., “A Single Coronary Artery Bypass Grafting—A Comparison Between Minimally Invasive Off Pump Techniques and Conventional Procedures,” European Journal of Cardio-Thoracic Surgery, 14 (Supp. I) (1998) S7-S12. |
Borst, et al., Coronary Artery Bypass Grafting Without Cardiopulmonary Bypass and Without Interruption of Native Coronary Flow Using a Novel Anastomosis Site Restraining Device (Octopus @), @ J Am Coll Cardiol, May 1996, vol. 27, No. 6, pp. 1356-1364. |
Borst, et al., Regional Cardiac Wall Immunobilization for Open Chest and Closed Chest Coronary Artery Bypass Grafting on the Beating Heart; >Octopus = Method, @ Circulation, Oct. 15, 1995, vol. 92, No. 8, supplement 1, 1-177. |
British Heart Journal, “Coronary Surgery Without Cardiopulmonary Bypass,” pp. 203-205, 1995. |
Buffolo, et al., Direct Myocardial Revascularization Without Cardiopulmonary Bypass, @ Thoac. Cardiovasc. Surgeon, 33 (1985) pp. 26-29. |
Bugge, M., “A New Internal Mammary Artery Retractor,” Thorac. Cardiovasc Surgeon 38, pp. 316-317 (1990). |
Calafiore, A. M., et al., “Minimally Invasive Coronary Artery Bypass Grafting,” The Annals of Thoracic Surgery, 62:1545-8, 1996. |
Campalani et al., “A New Self-Retaining Internal mammary Artery Retractor.” J. Cardiovas. Surg., vol. 28. (1987). |
Cartier, R, MD., “Triple Coronary Artery Revascularization on the Stabilized Beating Heart: Initial Experience,” Montreal Heart Institute, CJS, vol. 41, No. 4, pp. 283-288, Aug. 1998. |
Chaux, A. and C. Blanche, “A New Concept in Sternal Retraction: Applications for Internal Mammary Artery Dissection and Valve Replacement Surgery,” Ann. Thorac. Surg. 42, pp. 473-474, Oct. 1986. |
Cooley, D. A., “Limited Access Myocardial Revascularization,” Texas Heart Institute Journal, pp. 81-84, vol. 23, No. 2, 1996. |
Correspondence and Brief Communications, Archives of Surgery—vol. 115, 1136-37, Sep. 1980. |
Cremer, J, MD, “Off-Bypass Coronary Bypass Grafting Via Minithoracotomy Using Mechanical Epicardial Stabilization,” The Annals of Thoracic Surgery, 63:S79-83, 1997. |
DelRossi, A J and Lemole, GM, “A New Retractor to Aid in Coronary Artery Surgery,” The Annals of Thoracic Surgery, vol. 36, No. 1, 101-102, Jul. 1983. |
Fanning, MD., Reoperative Coronary Artery Bypass Grafting Without Cardiopulmonary Bypass, @ The Annals of Thoracic Surgery, vol. 55, No. 2, Feb. 1993, pp. 486-489. |
Favaloro, M.D., et al, Direct Myocardial Revascularization by Saphenous Vein Graft, @ The Annals of Thoracic Surgery, vol. 10, No. 2, Aug. 1970. |
Fonger, et al., Enhanced Preservation of Acutely Ischemic Myocardium with Transeptal Left Ventricular Assist, @ The Annals of Thoracic Surgery, vol. 57, No. 3, Mar. 1994, pp. 570-575. |
Gacioch, et al., Cardiogenic Shock Complicating Acute Myocardial Infarction: The Use of Coronary Angioplasty and the Integracion of the New Support Device into Patient Management, @ Journal of the American College of Cardiology, vol. 19, No. 3, Mar. 1, 1992. |
Green, GE., “Technique of Internal Mammary-Coronary Artery Anastomosis,” The Journal of Cardiovascular Surgery, 78:455-79, 1979. |
Groopman, J., “Heart Surgery, Unplugged; Making the Coronary Bypass Safer, Cheaper, and Easier,” The New Yorker, Jan. 11, 1999, pp. 43-46, 50-51. |
Guzman, F. M.D., “Transient Radial Nerve Injury Related to the Use of a Self Retraining Retractor for Internal Mammary Artery Dissection,” J. Cardiovasc. Surg. 30, 1989, pp. 1015-1016. |
Hasan, RI, et al., “Technique of Dissecting the Internal Mammary After Using the Moussalli Bar,” European Journal of Cardiothoracic Surgery, 4:571-572, 1990. |
Itoh, Toshiaki, M.D., et al., “New Modification of a Mammary Artery Retractor,” Ann. Thorac. Surg. 9, 1994; 57:1670-1. |
Izzat, FRCS, et al., Cardiac Stabilizer for Minimally Invasive Direct Coronary Artery Bypass, @ Elsevier Science Inc., 1997 by the Society of Thoracic Surgeons. |
Japanese Journal of Thoracic Surgery, vol. 42, No. 2, 1989. |
Kazama, S. et al., “Fabric Heart Retractor for Coronary Artery Bypass Operations,” The Annals of Thoracic Surgery, 55:1582-3, 1993. |
Kolessov, M.D., Mammary Artery-Coronary Artery Anastomosis as Method of Treatment for Angina Pectoris, @ Thoracic and Cardiovascular Surgery, vol. 54, No. 4, Oct. 1967, pp. 535-544. |
Konishi, T. MD, et al., “Hybrid-Type Stabilizer for Off-Pump Direct Coronary Artery Bypass Grafting,” Annals of Thoracic Surgery 66:961-2, 1998. |
Kresh, et al., Heart-Mechanical Assist Device Interaction, @ Trans. Am. Soc. Artif. Intern. Organs, vol. XXXII, 1986, pp. 437-443. |
Lavergne, et al., “Transcatheter Radiofrequency Ablation of Atrial Tissue Using a Suction Catheter,” PACE, vol. 12, Jan. 1989, Part II, pp. 177-186. |
Lonn, M.D., et al. Coronary Artery Operation Supported by the Hemopump: An Experimental Study on Pigs, @ The Annals of Thoracic Surgery, vol. 58, No. 1, Jul. 1994, pp. 516-523. |
Matsuura, A. MD, et al., “A New Device for Exposing the Circumflex Coronary Artery,” The Annals of Thoracic Surgery, 59:1249-50, 1995, pp. 1249-1250. |
McGee, et al. Extended Clinical Support with an Implatnable Left Ventricular Assist Device, @ Trans. Am Soc. Artif. Intern. Organs, vol. XXXV, 1989, pp. 614-616. |
McKeown, P.P. et al., “A Modified Sternal Retractor for Exposure of the Internal Mammary Artery,” Ann. Thorac. Surg. 32 (1981) 619. |
Ochsner, JL, et al., “Surgical Management of Diseased Intracavitary Coronary Arteries,” The Annals of Thoracic Surgery, vol. 38, No. 4, July, pp. 356-362, Oct. 1984. |
Parsonnet, V. MD, et al., “Graduated probes for Coronary Bypass Surgery,” The Journal of Thoracic and Cardiovascular Surgery, vol. 68, No. 3, 424-26 (Sep. 1974). |
Parsonnet, V. MD, et al., “Self-Retaining Epicardial Retractor for Aortocoronary Bypass Surgery,” The Journal of Thoracic and Cardiovascular Surgery, 629-30 1979. |
Perrault, L. et al., “Snaring of the Target Vessel in Less Invasive Bypass Operations Does Not Cause Endothelial Dysfunction,” The Society of Thoracic Surgeons, pp. 751-755, 1997. |
Pfister, et al., Coronary Artery Bypass Without Cardiopulmonary Bypass, @ The Annals of Thoracic Surgery, vol. 54, No. 6, Dec. 1992, pp. 1085-1092. |
Phillips, Steven J., M.D. et al., “A Versatile Retractor for Use in Harvesting the Internal Mammary Artery and Performing Standard Cardiac Operations,” J. Thorac. Cardiovasc. Surg. (1989; 97:633-5). |
Pittman, John, M.D., et al., “Improved Visualization of the Internal Mammary Artery with a New Retractor System,” Ann. Thorac. Surg., 1989; 48:869-70. |
Riahi, et al., A Simple Technique and Device to Provide a Bloodless Operative Field in Coronary Artery Surgery Without Cross-Clamping the Aorta, @ The Journal of Thoracic and Cardiovascular Surgery, vol. 66, No. 6., Dec. 1973, pp. 974-978. |
Robicsek, F., “Aortic Spoon-Jaw Clamp for Aorta-Saphenous Vein Anastomosis,” Journal of Cardiac Surgery, 10:583-585, 1995. |
Robinson, et al., A Minimally Invasive Surgical Method for Coronary Revascularization—Preliminary Experience in Five Patients, @ Circulation, Oct. 15, 1995, vol. 92, No. 8, 1-176. |
Rousou, J. et al., “Cardiac Retractor for Coronary Bypass Operations,” The Society of Thoracic Surgeons, pp. 52:877-878, 1991. |
Roux, D. MD. et al., “New Helper Instrument in Cardiac Surgery,” The Annals of Thoracic Surgery, 48: 595-6, 1989. |
Roux, D., M.D. et al., “Internal Mammary Artery Dissection: A Three Dimensional Sternal Retractor,” J. Cardiovasc. Surg., 1989; 30:996-7. |
Ruzevich et al. Long-Term Follow-up of Survivors of Postcardiotomy Circulatory Support, @ Trans. Am. Soc. Artif. Intern. Organs, vol. XXXIV, 1988, pp. 116-124. |
Scholz, et al. Transfemoral Placement of the Left Ventricular Assist Device >Hemopump= During Mechanical Resuscitation, @ Thoracic and Cardiovascular Surgeon, vol. 38 (1990) pp. 69-72. |
Trapp and R. Bisarya, To Use or Not to Use the Pump Oxygenator in Coronary Bypass Operations, @ The Annals of Thoracic Surgery, vol. 19, No. 1, Jan. 1975, pp. 108-109. |
Trapp, et al., “Placement of Coronary Artery Bypass Graft without Pump Oxygenator,” Journal of the Society of Thoracic Surgeons and The Southern Thoracic Surgeons Assn. vol. 19, No. 1, Jan. 1975. |
Vigano, M., “Tecnica Operatoria,” Minerva Cardioangiologica, vol. 23—N. 6-7 (1975). |
Vincent, J.G., “Compact Single Post Internal Mammary Artery Dissection Retractor,” Eur. J. Cardio-Thor. Surg. 3 (1989) 276-277. |
Burfeind, Jr., et al., High-Flow Gas Insufflation to Facilitate MIDCABG: Effects on Coronary Endothelium. Ann. Thorac Surg, 66:1246-1249, 1998. |
Hoerstrup, et al., Improved Visualization in Minimally Invasive coronary Bypass Graffing, Ann. Thorac Surg 1998, 66-936-4, 1998. |
Maddaus, et al., Coronary Artery Surgery Without caadiopulmonary Bypass: Usefulness of the Surgical Blower-Humidifer. Journal of Cardiac Surgery, vol. 7:348-350, 1992. |
Number | Date | Country | |
---|---|---|---|
20140018748 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12714037 | Feb 2010 | US |
Child | 13581291 | US |