This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2011-238806 filed Oct. 31, 2011.
(i) Technical Field
The present invention relates to a blowing device and an image forming apparatus.
(ii) Related Art
There are image forming apparatuses, which form an image composed of a developer on a recording sheet, including a corona discharge unit that performs corona discharge. The corona discharge unit is used, for example, when charging a latent image carrier such as a photoconductor, when removing charges from the latent image carrier, and when transferring an unfixed image to a recording sheet.
Some corona discharge units are equipped with a blowing device that blows air to components such as a discharge wire and a grid electrode to prevent wastes such as paper dust and corona by-products from adhering to the components. In general, such a blowing device includes a blower that blows air and a duct (air duct) that guides the air to an object structure such as the corona discharge unit.
According to an aspect of the present invention, a blowing device includes a blower that blows air and an air duct including an inlet and an outlet. The air duct takes in the air through the inlet and guiding the air so that the air flows out through the outlet toward a corona discharge unit including a target component toward which the air is to be blown. The outlet of the air duct includes a through-portion in a non-overlapping region thereof, the non-overlapping region being a region of the outlet excluding an overlapping region of the outlet. The overlapping region corresponds to an interposed component of the corona discharge unit, the interposed component being located between the outlet and the target component at a position at which the interposed component overlaps the overlapping region.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
As illustrated in
The image forming unit 20 employs, for example, a known electrophotographic system. The image forming unit 20 includes a photoconductor drum 21, a charger 4A, an exposure device 23, a developing device 24, a transfer device 25, and a cleaner 26. The photoconductor drum 21 rotates in the direction indicated by arrow A (clockwise in
A corona discharge unit is used as the charger 4A. As illustrated in
The charger 4A is disposed such that the corona discharge wire 41 faces the outer peripheral surface of the photoconductor drum 21 with an appropriate distance (for example, a discharge gap) therebetween and the discharge wire 41 is present in at least an image forming region of the photoconductor drum 21 along the axial direction of the photoconductor drum 21. The charger 4A is configured such that, when the image forming apparatus 1 forms an image, an electric power supply (not shown) applies a charging potential to (a space between the photoconductor drum 21 and) the discharge wire 41.
While the charger 4A is used, the corona discharge wire 41 and the grid electrode 42 become contaminated as substances (wastes) such as paper dust of the sheet 9, corona by-product generated by the corona discharge, and toner additives adhere to them. As a result, corona discharge may not be sufficiently and uniformly performed, and defective charging such as nonuniform charging may occur. For this reason, the charger 4A is provided with a blowing device 5A that blows air toward the discharge wire 41 and the grid electrode 42 to prevent wastes from adhering to the discharge wire 41 and the grid electrode 42. The discharge wire 41 and the grid electrode 42 are examples of a target component toward which air is to be blown in the charger 4A.
In order to couple the charger 4A with the blowing device 5A, an opening 43, through which air is taken in from the blowing device 5A, is formed in a part of the top panel 40a of the shield case 40 of the charger 4A. As illustrated in
The sheet feeder 30 includes a sheet container 31 and a feeding device 32. The sheet container 31 is, for example, a tray or a cassette for holding a stack of plural sheets 9 that have, for example, appropriate sizes and characteristics and that are used to form images thereon. The feeding device 32 feeds the sheets 9, which are contained in the sheet container 31, one by one to a transport path when it becomes necessary to feed the sheet 9. There may be plural sheet containers 31 in accordance with the modes of use. In
The fixing unit 35 includes a housing 36 having a sheet inlet and a sheet outlet, and a rotary heating member 37 and a rotary pressing member 38 that are disposed in the housing 36. The rotary heating member 37 is roller-shaped or belt-shaped, and the surface of the rotary heating member 37 is heated to an appropriate temperature and maintained at the temperature. The rotary pressing member 38 is roller-shaped or belt-shaped, extends substantially in the axial direction of the rotary heating member 37. The rotary pressing member 38 is rotated while being in contact with the rotary heating member 37 with an appropriate pressure. The fixing unit 35 fixes a toner image to the sheet 9 while the sheet 9, to which the toner image has been transferred, passes a fixing region between the rotary heating member 37 and the rotary pressing member 38.
The image forming apparatus 1 forms an image as follows. Here, a basic image forming operation of forming an image on one side of the sheet 9 will be described as an example.
When a control device or the like of the image forming apparatus 1 receives an instruction to start forming an image, in the image forming unit 20, the outer peripheral surface of the photoconductor drum 21, which has started rotating, is charged by the charger 4A to an appropriate potential with a predetermined polarity. At this time, in the charger 4A, a charging potential is applied to the corona discharge wire 41 to cause corona discharge while an electric field is formed between the discharge wire 41 and the outer peripheral surface of the photoconductor drum 21, and thereby the outer peripheral surface of the photoconductor drum 21 is charged to an appropriate potential. The charging potential of the photoconductor drum 21 is adjusted through the grid electrode 42.
The exposure device 23 exposes the charged outer peripheral surface of the photoconductor drum 21 with light in accordance with image information, and thereby an electrostatic latent image having an appropriate potential difference is formed. Subsequently, when the electrostatic latent image formed on the photoconductor drum 111 passes the developing device 24, the electrostatic latent image is developed to form a visible toner image from toner, which is supplied from a development roller 24a and which has been charged with an appropriate polarity.
As the photoconductor drum 21 rotates, the toner image formed on the photoconductor drum 21 is transported to a transfer position at which the photoconductor drum 21 faces the transfer device 25. The sheet 9 is transported from the sheet feeder 30 to reach the transfer position at this timing, and the transfer device 25 transfers the toner image to the sheet 9. After the toner image has been transferred, the cleaner 26 cleans the outer peripheral surface of the photoconductor drum 21.
The sheet 9, to which the toner image has been transferred by the image forming unit 20, is removed from the photoconductor drum 21 and transported into the fixing unit 35. The sheet 9 is heated and pressed while the sheet 9 passes through the fixing region between the rotary heating member 37 and the rotary pressing member 38 in the fixing unit 35, and thereby the toner image is fused and fixed to the sheet 9. After the toner image has been fixed to the sheet 9, the sheet 9 is discharged from the fixing unit 35, transported to a sheet output tray (not shown) that is disposed, for example, outside of the housing 10, and held on the sheet output tray.
Thus, a color image is formed from a single color toner on one side of the sheet 9, and the basic image forming operation is finished. When an instruction to form plural images is received, the process described above is repeated for the number of the images.
Next, the blowing device 5A will be described.
As illustrated in
The blower 50 is, for example, an axial-flow fan that is controlled so as to blow an appropriate amount of air. As illustrated in
The body 54 of the air duct 51A includes an intake passage 54A, a first bent passage 54B, and a second bent passage 54C. The intake passage 54A is angular pipe-shaped and has an end portion that is open as the inlet 52 and the other end portion that is closed, and the entirety of the intake passage 54A extends in the longitudinal direction B of the charger 4A. The first bent passage 54B is angular pipe-shaped and extends from a part of the intake passage 54A near the other end portion of the intake passage 54A such that the width of the passage space is increased and such that the passage space is bent substantially perpendicularly in substantially the horizontal direction (parallel to the X-axis). The second bent passage 54C extends from an end portion of the first bent passage 54B such that the width of the passage space is maintained substantially constant and such that the passage space is bent substantially vertically downward (parallel to the Y-axis) toward the charger 4. The outlet 53 is formed at an end portion of the second bent passage 54C. The outlet 53 has a rectangular shape and has a size that is substantially the same as that of the section of the passage space 54a at the end portion. The width (in the longitudinal direction B) of the passage space 54a in the first bent passage 54B is substantially the same as that of the passage space 54a in the second bent passage 54C.
The opening of the inlet 52 of the air duct 51A has a substantially square shape. A connection duct 55, which connects the inlet 52 to the blower 50, is attached to the inlet 52, so that air blown by the blower 50 flows from the blower 50 to the inlet 52 of the air duct 51A (
As illustrated in
That is, the restraining portion 56 is formed by disposing a plate-shaped partition member 58 in the passage space 54a of the first bent passage 54B without changing the outer shape of the first bent passage 54B. To be specific, the partition member 58 is disposed such that the partition member 58 closes an upper part of the passage space 54a in the first bent passage 54B and such that the lower end of the partition member 58 is spaced apart from the bottom of the passage space 54a by a predetermined distance H. Thus, the gap 57 is formed in a lower part of the passage space 54a. The partition member 58 may be integrally formed with the duct 51A from the same material. Alternatively, the partition member 58 may be formed from a material different from that of the duct 51A.
The height H, the path length M, and the width W (length in the longitudinal direction) of the gap 57 illustrated in
As illustrated in
As illustrated in
As illustrated in
That is, three rows of through-holes 61A, 61B, and 61C are arranged so as to extend in the longitudinal direction B in the specific region S3. The through-holes 61A, 61B, and 61C are the same holes formed under the same conditions. Thus, the through-holes 61 are distributed throughout the specific region S3 of the region S of the outlet 53 with a uniform density. The passages of the through-holes 61A, 61B, and 61C extend parallel to the reference blowing direction K. In the first exemplary embodiment, the reference blowing direction K is substantially perpendicular to an end surface of the second bent passage 54C, which corresponds to the entire region S of the outlet 53, or a surface of the grid electrode 42.
The through-portion 60, which includes the through-holes 61, may be obtained by forming (molding) the through-holes 61 at the same time as forming the outlet 53 from a material the same as that of the air duct 51A. Alternatively, the through-portion 60 may be obtained by attaching a member having the through-holes 61 and made from a material different from that of the duct 51A to the specific region S3 of the outlet 53. The shape and the size the opening of each the through-holes 61, the length of each of the through-holes 61, and the density of the through-holes 61 are determined with consideration of the following factors: to maximally uniformize the velocity of air that flows through the second bent passage 54C and out of the outlet 53; the size (volume) of the duct 51A; the area of the specific region S3 of the entire region S of the outlet 53, in which the through-portion 60 is formed; and an appropriate flow rate of air that needs to flow through the duct 51A or to the charger 4A. For example, fifty to two hundred through-holes 61, each having a circular opening with a diameter in the range of 0.5 to 3.0 mm and having a linear cylindrical passage, may be arranged linearly in the longitudinal direction B in a row, and one to twenty such rows may be arranged in the transversal direction C. A part of the outlet 53 in which the through-portion 60 is formed has a thickness D (
Hereinafter, the operation of the blowing device 5A will be described.
First, the blower 50 of the blowing device 5A rotates and blows an appropriate amount of air at a preset timing such as when the image forming apparatus 1 forms an image. Air E, which is blown by the blower 50, passes through the connection duct 55 and the inlet 52 of the air duct 51A, and is taken into the passage space 54a in the body 54 (
As illustrated in
At this time, the air E1, which has flowed into the first bent passage 54B, initially become turbulent as the air E1 passes through a part of the passage space 54a having a nonuniform shape. However, as the air passes through the gap 57 of the restraining portion 56, the airflow becomes restrained (the pressure of the air is increased). As a result, when the air flows into the passage space 54a in the second bent passage 54C, the distribution of the air velocity in the longitudinal direction B of the outlet 53 is uniformized to some extent. Moreover, while the air E1 passes through the gap 57 and flows into the first bent passage 54B, the direction of airflow out of the gap 57 is aligned with a direction substantially perpendicular to the longitudinal direction B of the outlet 53. Air E2, which has flowed into the passage space 54a of the second bent passage 54C, is temporarily retained in the passage space 54a of the second bent passage 54C, which has a volume larger than that of the gap 57, and thereby nonuniformity in the velocity of the air is reduced.
As illustrated in
The through-holes 61 as the through-portion 60 of the outlet 53 are formed in the specific region S3. The specific region S3 is a part of the entire region S of the outlet 53 excluding at least the sub-region S1, which faces the portion 40ab of the top panel 40a of the shield case 40 in which an opening is not formed. Therefore, the air E3, which has been blown out from the outlet 53, passes through the opening 43, which is formed so as to be displaced in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed.
The passages of the through-holes 61 have walls that extend linearly in the reference airflow direction K. Therefore, the air E3, which has been blown out from the through-holes 61, flows so that the air substantially reliably passes through the opening 43 in the shield case 40. Because the through-holes 61 are formed under the same conditions and distributed with a uniform density, the velocities of flows of air E3 that are blown out from the through-holes 61 are substantially uniform.
As illustrated in
The air E3, which has been blown out from the outlet 53, is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed. Therefore, the amount of air that does not reach the corona discharge wire 41 and the grid electrode 42 and that is wasted is very small. Thus, the air E3, which has been blown out from the outlet 53, is efficiently blown toward the corona discharge wire 41 and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40.
Because the blowing device 5A blows air as described above, wastes such as paper dust, toner, toner additives, and corona by-products, which may adhere to the discharge wire 41 and the grid electrode 42, are kept away from the discharge wire 41 and the electrode 42. Moreover, wastes adhering to the wire 41 and the electrode 42 are removed. As a result, with the charger 4A, occurrence of abnormal charging such as nonuniform charging that may be caused by wastes adhering to parts of the discharge wire 41 and the grid electrode 42 is prevented, and thereby the outer peripheral surface of the photoconductor drum 21 is more uniformly charged. The image forming unit 20 including the charger 4A forms a toner image while restraining occurrence of an image defect (such as nonuniformity density), which may be caused by abnormal charging such as nonuniform charging, and finally forms a fine image on the sheet 9.
As illustrated in
In the shield case 40 of the charger 4B, a rectangular partition plate 40d extends in the longitudinal direction B of the charger 4B, and the partition plate 40d divides the inside of the case 40 into two spaces. Two corona discharge wires 41A and 41B are respectively disposed in the two spaces divided by the shield case 40. Two openings 43A and 43B are formed in the top panel 40a of the shield case 40 on two sides of the partition plate 40d in the longitudinal direction B. The openings 43A and 43B have rectangular shapes and extend in the longitudinal direction B. A middle portion 40ac is a part of the top panel between the two openings 43A and 43B.
A cleaner 70 of the charger 4B includes a feed guide bar 71 (rod), a movable member 72, and a cleaning member 73. The feed guide rod 71 extends above the top panel 40a of the shield case 40 in the longitudinal direction B. The movable member 72 reciprocates in the longitudinal direction B as the feed guide bar 71 rotates. The cleaning member 73 is disposed on a portion of the movable member 72 that faces the grid electrode 42, and the cleaning member 73 is in contact with the grid electrode 42.
The feed guide bar 71 is a threaded bar that is disposed above the middle portion 40ac of the top panel 40a of the shield case 40. The feed guide bar 71 is rotatably supported by bearings 74 that are disposed at end portions of the shield case 40 in the longitudinal direction B. An end 71a of the feed guide bar 71 is connected to a rotational driving device (not shown) so that a driving force is transmitted from the rotational driving device. Due to the driving force transmitted from the rotational driving device, the feed guide bar 71 may be rotated in either of two directions (the normal direction and the reverse direction).
The movable member 72 includes a support portion 72a and arm portions 72b and 72c. The support portion 72a is supported by the feed guide bar 71 extending therethrough. A driving force receiving hole, which is formed in the support portion 72a, meshes with the thread of the feed guide bar 71 and receives a driving force while the movable member 72 reciprocates. The arm portions 72b and 72c branch from the support portion 72a at the middle portion 40ac of the shield case and extend toward the grid electrode 42. The bottom surfaces of the arm portions 72b and 72c face a surface of the grid electrode 42 and extend substantially parallel to the surface.
The cleaning member 73 is made from, for example, a brush-like material, and the cleaning member 73 is in contact with the surface of the grid electrode 42 and is attached to the bottom of each of the arm portions 72b and 72c. The cleaning member 73 may be made from a different material as long as the cleaning member 73 is capable of contacting with a surface of the grid electrode 42 and cleaning the surface.
When the cleaner 70 is not used (for example, while charging is performed), the movable member 72 is at rest at a stand-by position. The stand-by position is a position at which the cleaning member 73 does not contact the surface of the grid electrode 42 and the movable member 72 does not hinder charging, such as an end of the shield case 40 in the longitudinal direction B. During cleaning, the feed guide bar 71 rotates alternatingly in opposite directions, and thereby the movable member 72 reciprocates in the longitudinal direction B from the stand-by position and back to the stand-by position. Thus, the cleaning member 73 reciprocates in contact with the surface of the grid electrode 42, and thereby wastes adhering to the surface are removed from the surface.
In the cleaner 70, the feed guide bar 71 extends substantially parallel to the top panel 40a of the shield case 40, and the feed guide bar 71 (excluding the bearings 74 and portions around the bearings 74) is located above (the middle portion 40ac of) the top panel 40a and below the outlet 53 of an air duct 51B of the blowing device 5B (see
The blowing device 5B according to the second exemplary embodiment has a structure the same as that of the blowing device 5A according to the first exemplary embodiment except that a part of the outlet 53 of the air duct 51 is changed. Therefore, in the following description and drawings, the same portions will be denoted by the same numerals and description of such portions will be omitted unless it is necessary.
As illustrated in
As illustrated in
As illustrated in
That is, in the specific regions S7 and S8, three rows of through-holes 61A, 61B, and 61C and three rows of through-holes 61D, 61E, and 61F extend in the longitudinal direction B (see
Hereinafter, the operation of the blowing device 5B will be described.
First, the blower 50 of the blowing device 5B rotates and blows an appropriate amount of air at a preset timing such as when the image forming apparatus 1 forms an image. As in the case of the blowing device 5A according to the first exemplary embodiment, air E, which is blown by the blower 50, passes through the connection duct 55 and is taken into the passage space 54a in the body 54 through the inlet 52 of the air duct 51B. Then, the air E passes through the passage space 54a of the intake passage 54A and flows into the passage space 54a of the first bent passage 54B (see, for example, arrows E1a and E1b in
As illustrated in
As described above, the through-holes 61 in the through-portions 60A and 60B of the outlet 53B are formed in the specific regions S7 and S8. The specific regions S7 and S8 are parts of the entire region S of the outlet 53B excluding at least the sub-regions S1, S2, and S6, respectively facing the portions 40ab and 40aa of the top panel 40a of the shield case 40, in which the opening 43 is not formed, and the feed guide bar 71 of the cleaner 70. Therefore, two flows of air E4a and E4b blown out from the outlet 53B respectively passes through the two openings 43A and 43B formed in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab (including the middle portion 40ac) of the top panel 40a of the shield case 40, in which the opening 43 is not formed, and the feed guide bar 71 of the cleaner 70.
The passages of the through-holes 61 in the through-portions 60A and 60B have walls that extend linearly in the reference airflow direction K. Therefore, the flows of air E4a and E4b, which have been blown out from the through-holes 61, move so that the flows of air reliably pass through the two openings 43A and 43B in the shield case 40. Because the through-holes 61 are formed under the same conditions and distributed throughout the through-portions 60A and 60B with a uniform density, the velocities of flows of air E4a and E4b that are blown out from the through-holes 61 are substantially uniform.
As illustrated in
The flows of air E4a and E4b, which have been blown out from the outlet 53B, are not blown toward the portions 40aa and 40ab (including the middle portion 40ac) of the top panel 40a of the shield case 40, in which the openings 43A and 43B are not formed, and the feed guide bar 71 of the cleaner 70. Therefore, the amount of air that does not reach the two corona discharge wires 41A and 41B and the grid electrode 42 and that is wasted is very small. Thus, the flows of air E4a and E4b, which have been blown out from the outlet 53B, are efficiently blown toward the two corona discharge wires 41A and 41B and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40 and the feed guide bar 71 of the cleaner 70.
Because the blowing device 5B blows air as described above, wastes described above, which may adhere to the two discharge wires 41A and 41B and the grid electrode 42, are kept away from the wires 41A and 41B and the electrode 42. Moreover, wastes adhering to the wires 41A and 41B and the electrode 42 are removed. As a result, occurrence of abnormal charging such as nonuniform charging that may be caused by wastes adhering to parts of the discharge wires 41A and 41B and the grid electrode 42 of the charger 4B is prevented, and thereby the outer peripheral surface of the photoconductor drum 21 is more uniformly charged. The image forming unit 20 including the charger 4B forms a toner image while restraining occurrence of an image defect due to abnormal charging such as nonuniform charging and finally forms a fine image on the sheet 9.
As illustrated in
As illustrated in
Hereinafter, the operation of the blowing device 5C will be described.
The blower 50 of the blowing device 5C blows air E at a preset timing such as when the image forming apparatus 1 forms an image. As in the case of the blowing device 5A according to the first exemplary embodiment, the air passes through the connection duct 55 and the inlet 52 of the air duct 51C, and is taken into the passage space 54a in the body 54. Then, the air passes through the passage space 54a of the intake passage 54A and flows into the passage space 54a of the first bent passage 54B (see, for example, arrows E1a and E1b in
As illustrated in
As described above, the through-holes 61 of the through-portion 60C of the outlet 53C are formed in the specific region S3. The specific region S3 is a part of the entire region S of the outlet 53 excluding at least the sub-regions S1 and S2, which respectively face the portions 40aa and 40ab of the top panel 40a of the shield case 40 in which the opening 43 is not formed. Therefore, flows of air E3a and E3b, which have been blown out from the outlet 53C, pass through the opening 43 formed in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed.
Moreover, among the through-holes 61 in the through-portion 60C, the passages of (the rows of) the through-holes 61A and 61B have walls that extend linearly in the reference airflow direction K. Therefore, the air E3a, which has been blown out from the through-holes 61A and 61B, flows so that the air reliably passes through the opening 43 in the shield case 40. On the other hand, among the through-holes 61 in the through-portion 60C, the passages of (the row of) the through-holes 61G has walls that are inclined at the angle θ with respect to the reference airflow direction K. Therefore, air E3b, which has been blown out from the through-holes 61G, flows in a direction having the angle θ with respect to the reference airflow direction K, passes through the opening 43 in the shield case 40, and then flows diagonally in the case 40. Thus, the air E3b, which has been blown out from the inclined through-holes 61G, reaches the portion 42a of the grid electrode, which is shielded by the portion 40aa of the top panel of the shield case 40 in which the opening 43 is not formed.
As illustrated in
The flows of air E3a and E3b, which have been blown out from the outlet 53C, are not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed. Therefore, the amount of air that does not reach the corona discharge wire 41 and the grid electrode 42 and that is wasted is very small. Moreover, the air E3b, which has been blown out from the inclined through-holes 61G, reaches the portion 42a of the grid electrode, which is shielded by the portion 40aa of the top panel of the shield case 40 in which the opening 43 is not formed.
Thus, the flows of air E3a and E3b, which have been blown out from the outlet 53C, are efficiently blown toward the corona discharge wire 41 and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40. Moreover, the air is also efficiently blown toward the portion 42a of the grid electrode 42, which is shielded by the interposed components.
In particular, with the blowing device 5C, wastes are more effectively prevented from adhering to the entire region of the grid electrode 42 (in particular, in the transversal direction C). Therefore, the photoconductor drum 21 is more uniformly charged in the rotation direction A (process direction). As a result, occurrence of nonuniform charging in the process direction and forming of a nonuniform image due to the nonuniform charged are reliably prevented.
As illustrated in
Among the four rows of through-holes 61H, 61J, 61K, and 61L of the through-portion 60D, the through-holes 61J, 61K, and 61L, are formed in a region of the outlet 53D excluding an end portion of the specific region S3 that is farther from the center of the outlet 53D in the transversal direction C (a left end portion of the region S3 in
As illustrated in
Hereinafter, the operation of the blowing device 5D will be described.
The blower 50 of the blowing device 5D blows air E at a preset timing such as when the image forming apparatus 1 forms an image. As in the case of the blowing device 5A according to the first exemplary embodiment, the air passes through the connection duct 55 and the inlet 52 of the air duct 51D, and is taken into the passage space 54a in the body 54. Then, the air passes through the passage space 54a of the intake passage 54A and flows into the passage space 54a of the first bent passage 54B (see, for example, arrows E1a and E1b in
As illustrated in
As described above, the through-holes 61 of the through-portion 60D of the outlet 53D are formed in the specific region S3 of the entire region S of the outlet 53D. Therefore, flows of air E5a, E5b, E5c, and E5d, which have been blown out from the outlet 53D, pass the opening 43 formed in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed.
Moreover, among the through-holes 61 in the through-portion 60D, the passages of (the row of) the through-holes 61H have walls that extend linearly in the reference airflow direction K. Therefore, the air E5a, which has been blown out from the through-holes 61H, flows so that the air reliably passes through the opening 43 in the shield case 40. On the other hand, among the through-holes 61 in the through-portion 60D, the passages of (the rows of) the through-holes 61J, 61K, and 61L have walls that are inclined at different angles with respect to the reference airflow direction K. Therefore, the flows of air E5b, E5c, and E5d, which have been blown out from the through-holes 61J, 61K, and 61L, move in directions having different angles with respect to the reference airflow direction K, pass through the opening 43 in the shield case 40, and then move diagonally in the case 40. Thus, the flows of air E5b, E5c, and E5d, which have been blown out from the gradually inclined through-holes 61, reach the portions 42a and 42b of the grid electrode, which are respectively shielded by the portion 40aa of the top panel of the shield case 40 in which the opening 43 is not formed and by the discharge wire 41.
As illustrated in
The flows of air E5a, E5b, E5c, and E5d, which have been blown out from the outlet 53D, are not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed. Therefore, the amount of air that does not reach the corona discharge wire 41 and the grid electrode 42 and that is wasted is very small. Moreover, the flows of air E5b, E5c, and E5d, which have been blown out from the inclined through-holes 61J, 61K, and 61L, reach the portions 42a and 42b of the grid electrode, which is shielded by the portion 40aa of the top panel of the shield case 40, in which the opening 43 is not formed, and the discharge wire 41.
Thus, the flows of air E5a, E5b, E5c, and E5d, which have been blown out from the outlet 53D, are efficiently blown toward the corona discharge wire 41 and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40 and the discharge wire 41. Moreover, the air is also efficiently blown toward the portions 42a and 42b of the grid electrode 42, which is shielded by the interposed components.
With the blowing device 5D, wastes are more effectively prevented from adhering to the entire region of the grid electrode 42 (in particular, in the transversal direction C) than with the blowing device 5C according to the third exemplary embodiment. Therefore, the photoconductor drum 21 is more uniformly charged in the rotation direction A (process direction) than with the blowing device 5C. As a result, occurrence of nonuniform charging in the process direction and forming of a nonuniform image due to the nonuniform charging are more reliably prevented.
As illustrated in
In the through-portions 60E and 60F in the specific regions S7 and S8 of the outlet 53E, three rows of through-holes 61A, 61M, and 61P and three rows of through-holes 61F, 61Q, and 61R extend in the longitudinal direction B of the specific regions S7 and S8, respectively. In each of the regions S7 and S8, the three rows are arranged in the transversal direction C.
Among the three rows of through-holes 61A, 61M, and 61P of the through-portion 60E, the through-holes 61M and 61P, which are formed in a region excluding an end portion of the specific region S8 of the outlet 53E farther from the center of the outlet 53E in the transversal direction C (a left end portion of the portion S8 in
On the other hand, the through-holes 61A and 61F of the through-portions 60E and 60F are formed in the end portions of the specific regions S8 and S7 that are farther from the center of the outlet 53E so as to extend substantially parallel to (uninclined with respect to) the reference airflow direction K, as with the through-holes 61A and 61F of the outlet 53B according to the second exemplary embodiment. The through-holes 61A, 61M, 61P, 61F, 61Q, and 61R have circular openings with the same diameter and linear cylindrical passages.
As illustrated in
Hereinafter, the operation of the blowing device 5E will be described.
The blower 50 of the blowing device 5E blows air E at a preset timing such as when the image forming apparatus 1 forms an image. As in the case of the blowing device 5A according to the first exemplary embodiment, the air passes through the connection duct 55 and the inlet 52 of the air duct 51E, and is taken into the passage space 54a in the body 54. Then, the air passes through the passage space 54a of the intake passage 54A and flows into the passage space 54a of the first bent passage 54B (see, for example, arrows E1a and E1b in
As illustrated in
As described above, the through-holes 61 in the through-portions 60E and 60F of the outlet 53E are formed in the specific regions S8 and S7 of the entire regions S of the outlet 53E. Therefore, the flows of air E6a, E6b, E6c, E6d, E6e, and E6f, which have been blown out from the outlet 53E, pass through the opening 43 formed in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed, and the middle portion 40ac of the top panel 40a.
Moreover, among the through-holes 61 in the through-portion 60E, the passages of (two rows of) the through-holes 61A and 61F have walls that extend linearly in the reference airflow direction K. Therefore, the flows of air E6a and E6d, which have been blown out from the through-holes 61A and 61F, move so that the air reliably passes through the two openings 43A and 43B in the shield case 40. On the other hand, among the through-holes 61 in the through-portion 60E, the passages of (the rows of) the inclined through-holes 61M, 61P, 61Q, and 61R have walls that are inclined at different angles with respect to the reference airflow direction K. Therefore, the flows of air E6b, E6c, E6e, and E6f, which have been blown out from the through-holes 61, move in directions having the angles θ with respect to the reference airflow direction K, pass through the two openings 43A and 43B in the shield case 40, and then move diagonally in the case 40. Thus, the flows of air E5b, E5c, and E5d, which have been blown out from the inclined through-holes 61, reach the portions 42c and 42d of the grid electrode, which are respectively shielded by the portions 40aa, 40ab, and 40ac of the top panel of the shield case 40, in which the openings 43A and 43B are not formed, and by the discharge wires 41A and 41B.
As illustrated in
The flows of air E6a, E6b, E6c, E6d, E6e, and E6f, which have been blown out from the through-holes 61 in the outlet 53E, are not blown toward the portions 40aa, 40ab, and 40ac of the top panel 40a of the shield case 40, in which the opening 43 is not formed, and the discharge wires 41A and 41B. Therefore, the amount of air that does not reach the corona discharge wires 41A and 41B and the grid electrode 42 and that is wasted is very small. Moreover, the flows of air E6b, E6c, E6e, and E6f, which have been blown out from the inclined through-holes 61M, 61P, 61Q, and 61R, reach the portions 42c and 42d of the grid electrode, which are shielded by the portions 40aa, 40ab, and 40ac of the top panel of the shield case 40, in which the opening 43 is not formed, and the discharge wires 41A and 41B.
Thus, the flows of air E6a, E6b, E6c, E6d, E6e, and E6f, which have been blown out from the outlet 53E, are efficiently blown toward the corona discharge wires 41A and 41B and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40 and the discharge wires 41A and 41B. Moreover, the air is also efficiently blown toward the portions 42c and 42d of the grid electrode 42, which is shielded by the interposed components.
As illustrated in
In the through-portion 60G in the specific region S3 of the outlet 53F, four rows of through-holes 62A, 62B, 63A, and 63B extend in the longitudinal direction B. Among the four rows of through-holes 62A, 62B, 63A, and 63B of the through-portion 60G, the through-holes 63A and 63B are formed near the center of the specific region S3 of the outlet 53F in the transversal direction C (a right end portion of S3 in
As illustrated in
When the passages of the inclined through-holes 63A and 63B are longer than the uninclined through-holes 62A and 62B (and if the areas of the openings are the same), the amount of air that passes through the inclined through-holes 63A and 63B may be smaller than that through the uninclined through holes 62A and 62B, and thereby nonuniformity in the distribution, in the transversal direction C, of the amount of air blown out from the outlet 53F may occur. The areas of the openings of the inclined through-holes 63A and 63B are appropriately set so as to reduce such nonuniformity in the amount of air. In setting the areas of the openings in this manner, the areas of the openings of the uninclined through-holes 62A and 62B, which are smaller than those of the inclined through-holes 63A and 63B, may be the same as each other or may be different from each other.
Hereinafter, the operation of the blowing device 5F will be described.
The blower 50 of the blowing device 5F blows air E at a preset timing such as when the image forming apparatus 1 forms an image. As in the case of the blowing device 5A according to the first exemplary embodiment, the air passes through the connection duct 55 and the inlet 52 of the air duct 51F, and is taken into the passage space 54a in the body 54. Then, the air passes through the passage space 54a of the intake passage 54A and flows into the passage space 54a of the first bent passage 54B (see, for example, arrows E1a and E1b in
As illustrated in
As described above, the through-holes 61 in the through-portion 60G of the outlet 53F are formed in the specific region S3 in the entire region S of the outlet 53F. Therefore, flows of air E7a and E7b, which has been blown out from the outlet 53F, pass through the opening 43 formed in the top panel 40a of the shield case 40. The air is not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed.
Moreover, among the through-holes 61 in the through-portion 60G, the passages of (the rows of) the through-holes 62A and 62B have walls that extend linearly in the reference airflow direction K. Therefore, the air E7a, which has been blown out from the through-holes 62A and 62B, flows so that the air reliably passes through the opening 43 in the shield case 40. On the other hand, among the through-holes 61 in the through-portion 60g, the passages of (two row of) the through-holes 63A and 63B have walls that are inclined at an angle with respect to the reference airflow direction K. Therefore, the air E7b, which has been blown out from the through-holes 63A and 63B, flows in a direction having the angle θ with respect to the reference airflow direction K, passes through the opening 43 in the shield case 40, and then flows diagonally in the case 40. Thus, the air E7b, which has been blown out from the inclined through-holes 63A and 63B, reaches the portion 42a of the grid electrode, which is shielded by the portion 40aa of the top panel of the shield case 40 in which the opening 43 is not formed.
The amount of air E7b blown out from the inclined through-holes 63A and 63B is larger than that of the air E7a blown out from the through-holes 62A and 62B, because the areas of the openings of the inclined through-holes 63A and 63B are larger than those of the uninclined through-holes 62A and 62B. Therefore, the distribution of the amount of (the flows E7a and E7b of) air, which is blown out from the entirety of the through-portion 60G, in the transversal direction C of the outlet 53F (which is substantially the same as the rotation direction A of the photoconductor drum 21) is made substantially uniform (the difference in the amounts of the flows of air E7a and E7b are substantially zero).
As illustrated in
The flows of air E7a and E7b, which have been blown out from the outlet 53F, are not blown toward the portions 40aa and 40ab of the top panel 40a of the shield case 40, in which the opening 43 is not formed. Therefore, the amount of air that does not reach the corona discharge wire 41 and the grid electrode 42 and that is wasted is very small. Moreover, the air E7b, which has been blown out from the inclined through-holes 63A and 63B, reaches the portion 42a of the grid electrode, which is shielded by the portion 40aa of the top panel of the shield case 40 in which the opening 43 is not formed. The amount of air E7b blown out from the through-holes 63A and 63B is substantially the same as that of air E7a blown out from the uninclined through-holes 62A and 62B.
Thus, the flows of air E7a and E7b, which have been blown out from the outlet 53F, are efficiently blown toward the corona discharge wire 41 and the grid electrode 42 only with a small loss, although there are interposed components such as parts of the shield case 40. Moreover, the air is also efficiently blown toward the portion 42a of the grid electrode 42, which is shielded by the interposed components.
In particular, with the blowing device 5F, wastes are more effectively prevented from adhering to the entire region of the grid electrode 42 (in particular, in the transversal direction C) than in the cases of the blowing devices 5C and 5D according to the third and fourth exemplary embodiments. Therefore, the photoconductor drum 21 is more uniformly charged in the rotation direction A (process direction) than in the cases of the blowing devices 5C and 5D. As a result, occurrence of nonuniform charging in the process direction and forming of a nonuniform image due to the nonuniform charging are reliably prevented.
In the blowing devices 5A to 5F according to the first to sixth exemplary embodiments, the through-portion 60 of the outlet 53 of the air duct 51 includes the through-holes 61, which have circular cross sections and are arranged in a matrix pattern at a regular pitch in the longitudinal direction B and in the transversal direction C of the outlet 53 (see
In the case where the through-holes 61 are dot-shaped holes formed in the through-portion 60 of the outlet 53 of the air duct 51, the openings of the through-holes 61 need not be circular and may have another shape (such as a triangular, a square, or a polygonal shape).
The through-holes 61 of the through-portions 60 of the outlet 53 of the air duct 51 need not be dot-shaped holes that are commonly described in the first to sixth exemplary embodiments. Through-holes of different type may be used.
For example, as illustrated in
Interposed components that are interposed between the outlet 53 of the air duct 51 of the blowing device 5 and a target component of the charger 4 toward which air is to be blown are not limited to parts of the shield case 40, components of the cleaner 70, and the discharge wire 41, which have been described in the first to sixth exemplary embodiments; and may be other components and the like. The cleaner 70 may be a manual cleaner. Here, the term “manual cleaner” refers to a cleaner including, for example, an operation bar that substantially corresponds to the feed guide bar 70 of the automatic cleaner 70, a movable member attached to an end of the operation bar, and a cleaning member attached to an arm portion of the movable member. Cleaning is performed by reciprocating the operation bar in the longitudinal direction B of the charger 4. In this case, the operation bar is an interposed component that is always located above the top panel 40a of the shield case 40 when cleaning is not performed.
The charger 4, to which the blowing device 5 is provided, may be a so-called corotron corona discharge unit that does not include the grid electrode 42. A corona discharge unit toward which the blowing device 5 blows air may be a corona discharge unit that removes charges of the photoconductor drum 21, or a corona discharge unit that charges or removes charges from an object other than the photoconductor drum.
The configuration of the image forming apparatus 1, such as the method of forming an image, is not particularly limited as long as the image forming apparatus 1 includes a corona discharge unit toward which the blowing device 5 needs to blow air. As appropriate, the image forming apparatus 1 may be an image forming apparatus that forms an image that is not composed of a developer.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2011-238806 | Oct 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4745282 | Tagawa et al. | May 1988 | A |
20070036577 | Okabe et al. | Feb 2007 | A1 |
20090074463 | Nishio et al. | Mar 2009 | A1 |
20110121510 | Tsuda et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
10-198128 | Jul 1998 | JP |
2001-235930 | Aug 2001 | JP |
2001-331016 | Nov 2001 | JP |
Entry |
---|
Machine translation of JP 10198128 A, publication date: Jul. 31, 1998. |
Number | Date | Country | |
---|---|---|---|
20130108307 A1 | May 2013 | US |