1. Field of the Invention
The present invention relates to apparatus and methods for preventing the escape of fluid from wells or pipes.
2. Description of the Prior Art
As shown by recent events in the Gulf of Mexico, oil well blowouts are a serious threat to the environment, and can be very costly. Current blowout preventers can be unreliable. While there are numerous prior inventions of blowout preventers, none are equivalent to the present invention.
U.S. Pat. No. 1,543,456 issued on Jun. 23, 1925, to Robert Stirling, discloses a blowout preventer, without the Bernoulli effect of the instant invention.
U.S. Pat. No. 3,980,138, issued on Sep. 14, 1976, to Duane L. Knopik, discloses an underground fluid recovery device, but does not disclose a funnel that is placed over a pipe from which fluid is escaping, as in the instant invention.
U.S. Pat. No. 4,220,207, issued on Sep. 2, 1980, to Neil W. Allen, discloses seafloor diverter, without the use of the Bernoulli effect, as in the instant invention.
U.S. Pat. No. 4,301,827, issued on Nov. 24, 1981, to Rajam R. Murthy and Billy J. Rice, discloses a guided-float accumulator suitable for use with a hydraulic system for an oil well blowout preventer, using reaction forces that oppose Bernoulli effect forces, rather than making use of Bernoulli effect forces as in the instant invention.
U.S. Pat. No. 4,376,467, issued on Mar. 15, 1983, to Neil W. Allen, discloses without the use of the Bernoulli effect, as in the instant invention.
U.S. Pat. No. 4,440,523, issued on Apr. 3, 1984, to Jerome H. Milgram and James Burgess, discloses a separating collector for subsea blowouts, but without air or other fluid being pumped down to create a Bernoulli effect, as in the instant invention.
U.S. Pat. No. 4,568,220, issued on Feb. 4, 1986, to John J. Hickey, discloses a system for capping and/or controlling undersea oil or gas well blowouts, but without the use of the Bernoulli effect, as in the instant invention.
U.S. Pat. No. 4,605,069, issued on Aug. 12, 1986, to McClafin et al., discloses a method for producing heavy, viscous crude oil, but it is not a blowout preventer, as is the instant invention.
U.S. Pat. No. 4,969,676, issued on Nov. 13, 1990, to Joseph L. LaMagna, discloses an air pressure pick-up tool using the Bernoulli effect, but it is not a blowout preventer, as is the instant invention.
U.S. Pat. No. 5,012,854, issued on May 7, 1991, to John A. Bond, discloses a pressure release valve for a subsea blowout preventer that is hydraulically operated, without making use of the Bernoulli effect as in the instant invention.
U.S. Pat. No. 5,199,496, issued on Apr. 6, 1993, to Clifford L. Redus and Peter L. Sigwardt, discloses a subsea pumping device incorporating a wellhead aspirator, using the Bernoulli effect, but does not disclose a funnel placed over a pipe from which fluid is escaping, as in the instant invention.
U.S. Pat. No. 6,026,904, issued on Feb. 22, 2000, to James A. Burd and Kenneth J. Huber, discloses a method and apparatus for commingling and producing fluids from multiple production reservoirs, but it is not a blowout preventer, as is the instant invention.
U.S. Pat. No. 6,059,040, issued on May 9, 2000, to Leonid L. Levitan, Vasily V. Salygin and Vladimir D. Yurchenko, discloses a method and apparatus for the withdrawal of liquid from wellbores, but unlike the instant invention, it is not a blowout preventer.
U.S. Pat. No. 6,119,779, issued on Sep. 19, 2000, to Larry Joe Gipson and Stephen Leon Carn, discloses a method and system for separating and disposing of solids from produced fluids, but unlike the instant invention, it is not a blowout preventer.
U.S. Pat. No. 6,601,888, issued on Aug. 5, 2003, to Lon McIlwraith and Andrew Christie, discloses contactless handling of objects, using the Bernoulli effect, but unlike the instant invention, it is not a blowout preventer.
U.S. Pat. No. 7,987,903, issued on Aug. 2, 2011, to Jose Jorge Prado Garcia, discloses an apparatus and method for containing oil from a deep water oil well, but does not disclose the use of the Bernoulli effect, as in the instant invention.
U.S. Pat. No. 8,016,030, issued on Sep. 13, 2011, to Jose Jorge Prado Garcia, discloses an apparatus and method for containing oil from a deep water oil well, but does not disclose the use of the Bernoulli effect, as in the instant invention.
U.S. Patent Application Publication No. 2010/0171331, published on Jul. 8, 2010, discloses a Bernoulli gripper for holding two-dimensional components such as silicon-based wafers, but it is not a blowout preventer, as is the instant invention.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
The present invention is a blowout preventer including a large frustoconical funnel or valve, made of metal or other suitable material. The large end of the funnel is placed over a well pipe (or other pipe) through which oil (or natural gas or other fluid) is blowing out. The small end of the funnel is connected to a return pipe. A high pressure pipe with a smaller diameter is inserted into the well pipe. Air is pumped under high pressure through the high pressure pipe, separating the oil and forcing the oil that is not kept down in the well pipe by the pressure up through the return pipe. The Bernoulli effect keeps the funnel on the well pipe. A first gasket at the top end of the channel prevents leaks. Channels and rotating blades near the top of the funnel accelerate the flow, reducing pressure and increasing the suction due to the Bernoulli effect. This results in the sucking down of the funnel into the oil flowing from the pipe, as the increased velocity of the oil acts like the thrust of a ram jet, forcing the funnel down onto the well pipe. In underwater applications, the added pressure provided by the water to the outside of the funnel will also aid in the attachment of the funnel to the well pipe. At a depth of one mile below the surface of the sea, the water pressure is 2,300 to 2,500 pounds per square inch.
This Continuation-In-Part includes the following additional features: 1. Jets by which the funnel may be moved into alignment with the well pipe. 2. Sensing devices on moveable arms. 3. A stopper that may be forced into the well pipe. 4. One-way valves in the stopper. 5. Stacked turbines in the return pipe. 6. A second gasket with pivoting overlapping plates.
Accordingly, it is a principal object of the invention to prevent damage to the environment from oil well blowouts.
It is another object of the invention to prevent economic loss from oil well blowouts.
It is a further object of the invention to prevent damage to the environment from any kind of fluid escaping from a pipe.
Still another object of the invention is to prevent economic loss from any kind of fluid escaping from a pipe.
It is an object of the invention to provide improved elements and arrangements thereof in an apparatus for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes.
These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The present invention is a blowout preventer that may be used with oil or gas wells, under the sea or on land.
The following are the new features in this Continuation-In-Part, which is a fifth preferred embodiment of the invention, shown in
1. Jets 34 (shown in
2. Sensing devices 40 selected from the group comprising lights and cameras, sonar, and global positioning system devices, on movable arms 42 (shown in
3. A stopper or plug 46 (shown in
4. One-way valves 56, (shown in
5. A plurality of turbines 57 (shown in
6. A second gasket 58 (shown in
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
This application is based on and claims the benefit of Regular Utility patent application Ser. No. 12/960,495, filed Dec. 4, 2010, which is incorporated herein by reference, and of which it is a Continuation-In-Part.
Number | Name | Date | Kind |
---|---|---|---|
1543456 | Stirling | Jun 1925 | A |
3980138 | Knopik | Sep 1976 | A |
4220207 | Allen | Sep 1980 | A |
4301827 | Murthy et al. | Nov 1981 | A |
4376467 | Allen | Mar 1983 | A |
4440523 | Milgram et al. | Apr 1984 | A |
4568220 | Hickey | Feb 1986 | A |
4605069 | McClaflin et al. | Aug 1986 | A |
4969676 | LaMagna | Nov 1990 | A |
5012854 | Bond | May 1991 | A |
5199496 | Redus et al. | Apr 1993 | A |
6026904 | Burd et al. | Feb 2000 | A |
6059040 | Levitan et al. | May 2000 | A |
6119779 | Gipson et al. | Sep 2000 | A |
6601888 | McIlwraith et al. | Aug 2003 | B2 |
7987903 | Prado Garcia | Aug 2011 | B1 |
8016030 | Prado Garcia | Sep 2011 | B1 |
20100171331 | Jonas et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 12960495 | Dec 2010 | US |
Child | 13533964 | US |