Bluetooth and wireless LAN arbitration

Information

  • Patent Grant
  • 8861469
  • Patent Number
    8,861,469
  • Date Filed
    Thursday, December 20, 2012
    12 years ago
  • Date Issued
    Tuesday, October 14, 2014
    10 years ago
Abstract
Bluetooth and wireless LAN arbitration is described. In embodiments, a communication device includes a Bluetooth device for Bluetooth communication according to Bluetooth protocol, and includes a wireless LAN device for network communication according to wireless network protocol. An antenna switching circuit connects the Bluetooth device to an antenna for the Bluetooth communication, and connects the wireless LAN device to the antenna for the network communication. An arbitration control system arbitrates when the Bluetooth device is connected to the antenna via the antenna switching circuit and when the wireless LAN device is connected to the antenna via the antenna switching circuit.
Description
BACKGROUND

System-on-chip (SoC) integrated circuits are being utilized in smaller and/or increasingly complex consumer electronic devices, such as cell phones, media players, digital cameras, network equipment, television client devices, and the like. Typically, all or most of the electronic circuitry, one or more microprocessors, memory, input-output logic control, communication interfaces and components, and other hardware, firmware, and/or software to run a device can be integrated within an SoC. An SoC designed for a communication device or portable computer device can be implemented to include both a Bluetooth device for short-range wireless communication, and a wireless LAN communication device for local area network wireless communication. Because a Bluetooth device and a wireless LAN device operate within the same frequencies, communications from one device can interfere with the other device. Additionally, the communications associated with one device may override and/or cancel out the communications associated with the other device.


SUMMARY

This summary introduces concepts of Bluetooth and wireless LAN arbitration, and the concepts are further described below in the Detailed Description. Accordingly, the summary should not be considered to identify essential features nor used to limit the scope of the claimed subject matter.


In embodiments of Bluetooth and wireless LAN arbitration, a communication device includes a Bluetooth device for Bluetooth communication according to Bluetooth protocol, and includes a wireless LAN device for network communication according to wireless network protocol. An antenna switching circuit connects the Bluetooth device to an antenna for the Bluetooth communication, and connects the wireless LAN device to the antenna for the network communication. An arbitration control system arbitrates when the Bluetooth device is connected to the antenna via the antenna switching circuit and when the wireless LAN device is connected to the antenna via the antenna switching circuit.


In other embodiments, a method is implemented to connect a Bluetooth device to an antenna of a communication device for Bluetooth communication according to Bluetooth protocol; connect a wireless LAN device to the antenna of the communication device for network communication according to wireless network protocol; and arbitrate when the Bluetooth device is connected to the antenna for the Bluetooth communication and when the wireless LAN device is connected to the antenna for the network communication.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of Bluetooth and wireless LAN arbitration are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:



FIG. 1 illustrates an example communication system.



FIG. 2 illustrates an example antenna switching circuit in an embodiment of Bluetooth and wireless LAN arbitration.



FIG. 3 illustrates an example system-on-chip (SoC) environment.



FIG. 4 illustrates an example method of Bluetooth and wireless LAN arbitration.



FIG. 5 illustrates various components of an example device.





DETAILED DESCRIPTION

The present disclosure describes techniques to arbitrate between two different communication schemes—e.g., Bluetooth and wireless LAN communications. The arbitration facilitates coexistence and timesharing between a Bluetooth device and a wireless LAN device that are both implemented in a communication device, such as a portable phone and/or computer device. A communication device that implements both Bluetooth and wireless LAN communication devices includes an arbitration control system that initiates and manages the various arbitration techniques, such as slave packet suppression, an inverted sniff, an asynchronous control link boundary, and/or an antenna lock to arbitrate between Bluetooth and wireless LAN communications.


While features and concepts of the described systems and methods for Bluetooth and wireless LAN arbitration can be implemented in any number of different environments, systems, networks, and/or various configurations, embodiments of Bluetooth and wireless LAN arbitration are described in the context of the following example environments.



FIG. 1 illustrates an example communication system 100 in which embodiments of Bluetooth and wireless LAN arbitration can be implemented. Example system 100 includes a communication device 102 that is implemented with a Bluetooth device 104 for Bluetooth communication according to a Bluetooth protocol for wireless communication via a short-range wireless connection. The communication device 102 is also be implemented with a wireless LAN device 106 for network communication according to a wireless network protocol (e.g., the IEEE 802.11 group of standards specify wireless LAN communication—for example 802.11a, 802.11b, 802.11g, 802.11n, 802.11 legacy, 802.11ad, and so on).


Communication device 102 can be implemented as any one or combination of a media device, communication device, computer device, gaming device, appliance device, electronic device, portable phone (e.g., cellular, VoIP, WiFi, etc.), and/or as any other type of device that includes wireless communication functionality. Communication device 102 can include various components to enable wired and/or wireless communications, as well as one or more processors (e.g., any of microprocessors, controllers, and the like), communication components, data inputs, memory components, processing and control circuits, and/or any combination of the differing components as described with reference to the example device shown in FIG. 5.


In this example, communication device 102 includes a device manager 108 (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, etc.). Communication device 102 may also be associated with a user (i.e., a person) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.


The Bluetooth device 104 of communication device 102 includes a Bluetooth transceiver 110 for Bluetooth communication 112 with an additional Bluetooth-enabled communication device 114. For example, communication device 102 can be a cellular phone that implements Bluetooth (e.g., Bluetooth device 104) to communicate with a wireless headset or earpiece (e.g., Bluetooth device 114). The Bluetooth device 104 may also include other components, such as a digital signal processor (not shown) to process Bluetooth signals in conformance with a Bluetooth protocol, and can include a Bluetooth baseband (not shown) that is implemented to control sniff timing.


The wireless LAN device 106 of communication device 102 includes a wireless LAN transceiver 116 for network communication 118 with a wireless LAN access point 120 of a wireless LAN system. The wireless LAN device 106 may also include other components, such as a baseband processor (BBP) and a media access controller (MAC) (not shown). A baseband processor is implemented to process signals, to include encoding and decoding, as well as error correction. A MAC is implemented to process received and/or transmitted signals.


Communication device 102 includes an antenna switching circuit 122 that is implemented to connect the Bluetooth device 104 to an antenna 124 for Bluetooth communication 112, and/or connect the wireless LAN device 106 to the antenna 124 for network communication 118. In an embodiment, the antenna switching circuit 122 is utilized to arbitrate between Bluetooth and wireless LAN communications. Alternatively and/or in addition, the antenna switching circuit 122 is implemented for approximate simultaneous Bluetooth transmission and wireless LAN reception, Bluetooth transmission and wireless LAN transmission, Bluetooth reception and wireless LAN reception, and/or Bluetooth reception and wireless LAN transmission. In various embodiments, the antenna switching circuit 122 can be implemented as described with reference to the example antenna switching circuit shown in FIG. 2.


In this example, communication device 102 also includes an arbitration control system 126 that may be implemented as computer-executable instructions maintained by a memory and executed by a processor to implement embodiments of Bluetooth and wireless LAN arbitration. In various embodiments, the arbitration control system 126 may be implemented as hardware, software, firmware, or any combination thereof to arbitrate when the Bluetooth device 104 is connected to the antenna 124 via the antenna switching circuit 122 and/or when the wireless LAN device 106 is connected to the antenna 124 via the antenna switching circuit 122.


In various embodiments, the arbitration control system 126 includes an arbitration manager 128 that is implemented to control parameters and coordinate scheduling timing between the Bluetooth device 104 and the wireless LAN device 106. The arbitration control system 126 also includes a coexistence arbiter 130 that is implemented to control point of contention decisions and control the antenna switching circuit 122 to arbitrate between Bluetooth and wireless LAN communications. Although described as components or modules of the arbitration control system 126, the arbitration manager 128 and/or the coexistence arbiter 130 can be implemented as components that are independent of the arbitration control system 126. In addition, the arbitration manager 128 and/or the coexistence arbiter 130 can be implemented together or individually as hardware, software, firmware, or any combination thereof to implement embodiments of Bluetooth and wireless LAN arbitration.


In an embodiment, the arbitration control system 126 implements slave packet suppression to arbitrate Bluetooth and wireless LAN communications for communication device 102, as described in commonly-owned U.S. patent application Ser. No. 12/370,953, entitled “Reducing Interference Between Wireless Network”, which is incorporated by reference herein.


In an embodiment, the arbitration control system 126 implements an antenna lock to arbitrate Bluetooth and wireless LAN communications for communication device 102. The wireless LAN device 106 can operate in a power save mode, and the arbitration control system 126 initiates that the antenna switching circuit 122 connects the antenna 124 to the Bluetooth device 104 for Bluetooth communication 112 when the wireless LAN device 106 operates in the power save mode. The arbitration control system 126 can also be implemented to initiate an antenna lock and initiate that the antenna switching circuit 122 connects the antenna 124 to the wireless LAN device 106 for an antenna lock duration during which a beacon transmission 132 is received from the wireless LAN access point 120.



FIG. 2 illustrates an example of an antenna switching circuit 200 that is implemented to arbitrate between Bluetooth and wireless LAN communications. The antenna switching circuit 200 connects a Bluetooth device 202 to an antenna 204 for Bluetooth transmission (Tx) and reception (Rx), and/or connects a wireless LAN device 206 to the antenna 204 for wireless network transmission (Tx) and reception (Rx). In an embodiment, the antenna switching circuit 200 is an example of the antenna switching circuit 122 described with reference to FIG. 1. The antenna switching circuit 200 is implemented for approximate simultaneous wireless LAN transmission and Bluetooth reception via a first communication path 208; wireless LAN reception and Bluetooth reception via a second communication path 210; and/or Bluetooth transmission and wireless LAN reception via a third communication path 212.


The antenna switching circuit 200 includes an antenna switch 214 (e.g., a SP3T switch) that connects the first communication path 208, second communication path 210, or third communication path 212 to the antenna 204. The second communication path 210 includes a receive switch 216 (e.g., a SP3T switch) and a low noise amplifier 218 for wireless LAN reception and/or Bluetooth reception via a coupler 220 that couples signals to the wireless LAN device 206 and to the Bluetooth device 202. The first communication path 208 includes a coupler 222 to the receive switch 216 for Bluetooth reception. The coupler 222 also couples to a power amplifier 224 for wireless LAN transmission, and the power amplifier 224 can be enabled or disabled by use of a bypass switch 226. Similar to the first communication path 208, the third communication path 212 includes a coupler 228 to the receive switch 216 for wireless LAN reception. The coupler 228 also couples to a power amplifier 230 for Bluetooth transmission, and the power amplifier 230 can be enabled or disabled by use of a bypass switch 232.



FIG. 3 illustrates an example system-on-chip (SoC) 300 to implement various embodiments of Bluetooth and wireless LAN arbitration in any type of a consumer, electronic, and/or computing device. An SoC may be implemented in a fixed or mobile device, such as any one or combination of a communication device, media device, computer device, portable telephone (e.g., cellular, VoIP, WiFi, etc.), television set-top box, video processing and/or rendering device, appliance device, gaming device, electronic device, vehicle, workstation, and/or in any other type of device that may include Bluetooth and wireless LAN functionality.


In this example, the SoC 300 is integrated with electronic circuitry, a microprocessor 302, input-output (I/O) logic control 304 (e.g., to include electronic circuitry, generally), communication interfaces and components, and other hardware, firmware, and/or software. The SoC 300 also includes a memory controller 306 and a memory device 308, such as any type of a nonvolatile memory, and/or other suitable electronic data storage devices that can be any type of flash memory device, including NAND, NOR, and NROM memory. The SoC 300 also includes a device interface 310 to interface with a device or other peripheral component, such as when installed in any of the various communication and/or computer devices described herein. In various embodiments, the SoC 300 can be implemented with any number and combination of the different components described with reference to the SoC 300. Alternatively, the SoC 300 may be implemented without any of the aforementioned components, but rather implemented with alternate components to implement embodiments of Bluetooth and wireless LAN arbitration.


The SoC 300 also includes an integrated data bus 312 that couples the various components of the SoC for data communication between the components. A data bus in the SoC can be implemented as any one or a combination of different bus structures, such as a memory bus or memory controller, an advanced system bus, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. In addition, a device that includes SoC 300 can be implemented with any number and combination of differing components as further described with reference to the example device shown in FIG. 5.


In various embodiments of Bluetooth and wireless LAN arbitration, the SoC 300 includes a communication system 314 that implements a Bluetooth device 316 with a Bluetooth transceiver 318 for Bluetooth communication, and a wireless LAN device 320 with a wireless LAN transceiver 322 for wireless network communication. The communication system 314 also includes an arbitration control system 324 and an antenna switching circuit 326. The arbitration control system 324 can be implemented as computer-executable instructions maintained by memory device 308 and executed by microprocessor 302. Examples of the various components, functions, and/or modules, as well as corresponding functionality and features, are described with reference to the respective components of example system 100 shown in FIG. 1. Alternatively or in addition, components of the communication system 314 can be implemented as hardware, firmware, fixed logic circuitry, or any combination thereof that is implemented in connection with the I/O logic control 304 and/or other processing and control circuits of SoC 300.


An example method 400 is described with reference to FIG. 4 in accordance with one or more embodiments of Bluetooth and wireless LAN arbitration. Generally, any of the functions, methods, procedures, components, and modules described herein can be implemented using hardware (e.g., fixed logic circuitry), software, firmware, manual processing, or any combination thereof. A software implementation of a function, method, procedure, component, or module represents program code that performs specified tasks when executed on a computing-based processor. The example method(s) may be described in the general context of computer-executable instructions, which can include software, applications, routines, programs, objects, components, data structures, procedures, modules, functions, and the like.



FIG. 4 illustrates an example method 400 of Bluetooth and wireless LAN arbitration, and is directed to an antenna lock. The order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or an alternate method.


At block 402, a connection to an antenna is arbitrated between a Bluetooth device and a wireless LAN device in a communication device. For example, the arbitration control system 126 at communication device 102 arbitrates connecting the Bluetooth device 104 to the antenna 124 for Bluetooth communication 112 and connecting the wireless LAN device 106 to the antenna 124 for network communication 118. The arbitration control system 126 controls an antenna switching circuit 122 that connects the Bluetooth device 104 to the antenna 124 for Bluetooth communication and connects the wireless LAN device 106 to the antenna 124 for network communication.


At block 404, connection of the Bluetooth device to the antenna is initiated for Bluetooth communication when the wireless LAN device operates in a power save mode. For example, the arbitration control system 126 at communication device 102 initiates the antenna switching circuit 122 to connect the antenna 124 to the Bluetooth device 104 for Bluetooth communication 112 when the wireless LAN device 106 operates in a power save mode.


At block 406, the Bluetooth device is connected to the antenna for Bluetooth communication. For example, the antenna switching circuit 122 connects the Bluetooth device 104 to the antenna 124 for Bluetooth communication 112. At block 408, an antenna lock and connection of the wireless LAN device to the antenna is initiated for an antenna lock duration. For example, the arbitration control system 126 at communication device 102 initiates an antenna lock and connection of the wireless LAN device 106 to the antenna 124 for an antenna lock duration.


At block 410, a beacon transmission is received from a wireless LAN access point during the antenna lock duration. For example, the wireless LAN device 106 at communication device 102 receives the beacon transmission 132 from the wireless LAN access point 120 during the antenna lock duration when the wireless LAN device 106 is connected to the antenna 124 as initiated by the arbitration control system 126.



FIG. 5 illustrates various components of an example device 500 that can be implemented as any type of device that includes wireless communication components and/or implements various embodiments of Bluetooth and wireless LAN arbitration. For example, device 500 can be implemented to include the example communication system of communication device 102 as shown in FIG. 1 and/or can include the system-on-chip (SoC) 300 shown in FIG. 3. In various embodiments, device 500 may be implemented as any one or combination of a wired and/or wireless device, media device, computer device, communication device, portable telephone (e.g., cellular, VoIP, WiFi, etc.), television set-top box, video processing and/or rendering device, appliance device, gaming device, electronic device, vehicle, workstation, access point, and/or as any other type of device. Device 500 may also be associated with a user (i.e., a person) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.


Device 500 includes wireless communication devices 502 (e.g., a Bluetooth device and/or a wireless LAN device) that enable wireless communication of device data 504 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 504 or other device content can include configuration settings of the device and/or information associated with a user of the device. Device 500 also includes one or more data inputs 506 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs and any other type of audio, video, and/or image data.


Device 500 also includes communication interfaces 508 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 508 provide a connection and/or communication links between device 500 and a communication network by which other electronic, computing, and communication devices can communicate data with device 500.


Device 500 includes one or more processors 510 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of device 500, to communicate with other electronic and computing devices, and to implement embodiments of Bluetooth and wireless LAN arbitration. Alternatively or in addition, device 500 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 512. Although not shown, device 500 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.


Device 500 also includes computer-readable media 514, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device can include any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 500 can also include a mass storage media device 516.


Computer-readable media 514 provides data storage mechanisms to store the device data 504, as well as various device applications 518 and any other types of information and/or data related to operational aspects of device 500. For example, an operating system 520 can be maintained as a computer application with the computer-readable media 514 and executed on processors 510. The device applications 518 can include a device manager 522 (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, etc.). The device applications 518 also include an arbitration control system 524 when device 500 implements various embodiments of Bluetooth and wireless LAN arbitration. In this example, the device applications 518 are shown as software modules and/or computer applications. Alternatively or in addition, the arbitration control system 524 can be implemented as hardware, software, firmware, or any combination thereof.


Device 500 can also include an audio and/or video input-output system 526 that provides audio data to an audio system 528 and/or provides video data to a display system 530. The audio system 528 and/or the display system 530 can include any devices that process, display, and/or otherwise render audio, video, and image data. Video signals and audio signals can be communicated from device 500 to an audio device and/or to a display device via an RF (radio frequency) link, S-video link, composite video link, component video link, DVI (digital video interface), analog audio connection, or other similar communication link. In an embodiment, the audio system 528 and/or the display system 530 are implemented as external components to device 500. Alternatively, the audio system 528 and/or the display system 530 are implemented as integrated components of example device 500.


Although embodiments of Bluetooth and wireless LAN arbitration have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. For example, one or more method blocks of the methods described above can be performed in a different order (or concurrently) and still achieve desirable results. Moreover, the specific features and methods are disclosed as example implementations of Bluetooth and wireless LAN arbitration. In addition, various techniques for arbitrating between two different communication schemes are described above in connection with Bluetooth and wireless LAN communications, the techniques are applicable for arbitrating between other types of communication schemes.

Claims
  • 1. A communication device, comprising: a Bluetooth device configured for Bluetooth communication according to a Bluetooth protocol;a wireless local area network (WLAN) device configured for network communication according to a wireless network protocol; andan antenna switching circuit configured to connect the Bluetooth device to an antenna for the Bluetooth communication via one of three different communication paths and further configured to connect the WLAN device to the antenna for the network communication via the same or another of the three different communication paths, each of the three different communication paths: being connectable to the antenna via a single-pole triple-throw (SP3T) switch coupled to the antenna; andhaving respective receive portions that are connectable to a reception coupler via another SP3T switch, the reception coupler operably coupled to respective receive ports of the WLAN device and the Bluetooth device.
  • 2. The communication device of claim 1, further comprising an arbitration control system configured to arbitrate when the Bluetooth device is connected to the antenna via the antenna switching circuit and when the WLAN device is connected to the antenna via the antenna switching circuit.
  • 3. The communication device of claim 2, wherein the arbitration control system is further configured to initiate an antenna lock and cause the antenna switching circuit to connect the antenna to the WLAN device for an antenna lock duration during which a beacon transmission is scheduled for reception from a WLAN access point.
  • 4. The communication device of claim 2, wherein the WLAN device is further configured to operate in a power save mode and the arbitration control system is further configured to initiate, via the antenna switching circuit, connection of the antenna to the Bluetooth device for the Bluetooth communication when the WLAN device operates in the power save mode.
  • 5. The communication device of claim 1, wherein at least one of the different communication paths is connected between the SP3T switch coupled to the antenna and the other SP3T switch that enables connection to the reception coupler.
  • 6. The communication device of claim 1, wherein use of the three different communication paths of the antenna switching circuit enables approximately simultaneous Bluetooth and WLAN communication.
  • 7. The communication device of claim 1, wherein the communication device comprises one or more of a media device, communication device, computer device, gaming device, appliance device, electronic device, or a portable phone.
  • 8. A method comprising: connecting, via one of three different communication paths of an antenna switching circuit, a Bluetooth device to an antenna of a communication device for Bluetooth communication according to a Bluetooth protocol; andconnecting, via the same or another of the three different communication paths of the antenna switching circuit, a wireless local area network (WLAN) device to the antenna of the communication device for network communication according to a wireless network protocol, each of the three different communication paths: being connectable to the antenna via a single-pole triple-throw (SP3T) switch coupled to the antenna; andhaving respective receive portions that are connectable to a reception coupler via another SP3T switch, the reception coupler operably coupled to respective receive ports of the WLAN device and the Bluetooth device.
  • 9. The method of claim 8, further comprising: arbitrating when the Bluetooth device is connected to the antenna via the antenna switching circuit and when the WLAN device is connected to the antenna via the antenna switching circuit; andinitiating connection of the Bluetooth device to the antenna for the Bluetooth communication when the WLAN device operates in a power save mode.
  • 10. The method of claim 9, further comprising: initiating an antenna lock and connection of the WLAN device to the antenna for an antenna lock duration; andreceiving a beacon transmission from a WLAN access point during the antenna lock duration.
  • 11. The method of claim 8, wherein each of the three different communication paths is configured to respectively enable Bluetooth reception and WLAN transmission, Bluetooth reception and WLAN reception, or Bluetooth transmission and WLAN reception.
  • 12. The method of claim 11, wherein the one of the different communication paths that is configured to respectively enable Bluetooth reception and WLAN reception is connected from the SP3T switch to the other SP3T switch.
  • 13. The method of claim 11, wherein the other SP3T switch is connected to the reception coupler via a low-noise amplifier configured to amplify received communications.
  • 14. The method of claim 8, wherein use of the three different communication paths of the antenna switching circuit enables approximately simultaneous Bluetooth and WLAN communication.
  • 15. A System-on-Chip (SoC) comprising: a Bluetooth communication block configured for Bluetooth communication according to a Bluetooth protocol;a wireless local area network (WLAN) communication block configured for network communication according to a wireless network protocol; andan antenna switching circuit configured to connect the Bluetooth communication block to an antenna for the Bluetooth communication via one of three different communication paths and further configured to connect the WLAN communication block to the antenna for the network communication via the same or another of the three different communication paths, each of the three different communication paths: being connectable to the antenna via a first single-pole triple-throw (SP3T) switch operably coupled to the antenna; andhaving respective receive portions that are connectable to a reception coupler via a second SP3T switch, the reception coupler operably coupled to respective receive ports of the WLAN communication block and the Bluetooth communication block.
  • 16. The SoC of claim 15, wherein the WLAN communication block is further configured to operate in a power save mode.
  • 17. The SoC of claim 16, further comprising an arbitration controller configured to arbitrate when the Bluetooth communication block is connected to the antenna via the antenna switching circuit and when the WLAN communication block is connected to the antenna via the antenna switching circuit.
  • 18. The SoC of claim 17, wherein the arbitration controller is further configured to cause the antenna switching circuit to connect the antenna to the Bluetooth communication block for the Bluetooth communication when the WLAN communication block operates in the power save mode.
  • 19. The SoC of claim 15, wherein each of the three different communication paths is configured to respectively enable Bluetooth reception and WLAN transmission, Bluetooth reception and WLAN reception, or Bluetooth transmission and WLAN reception.
  • 20. The SoC of claim 15, wherein use of the three different communication paths of the antenna switching circuit enables approximately simultaneous Bluetooth and WLAN communication.
RELATED APPLICATION

The present disclosure is a continuation of U.S. application Ser. No. 12/616,454, filed on Nov. 11, 2009, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (164)
Number Name Date Kind
4337463 Vangen Jun 1982 A
5673291 Dent Sep 1997 A
6320919 Khayrallah et al. Nov 2001 B1
6816452 Maehata Nov 2004 B1
7239882 Cook Jul 2007 B1
7342895 Serpa et al. Mar 2008 B2
7551948 Meier et al. Jun 2009 B2
7564826 Sherman et al. Jul 2009 B2
7580397 Arai et al. Aug 2009 B2
7595768 Li et al. Sep 2009 B2
7599671 Kopikare et al. Oct 2009 B2
7626966 Ruiter et al. Dec 2009 B1
7711004 Xu May 2010 B2
7717342 Wang May 2010 B2
7734253 Chen et al. Jun 2010 B2
7957340 Choi et al. Jun 2011 B2
7966036 Kojima Jun 2011 B2
8014329 Gong Sep 2011 B2
8045922 Sherman et al. Oct 2011 B2
8072913 Desai Dec 2011 B2
8078111 Jovicic et al. Dec 2011 B2
8126502 Trainin Feb 2012 B2
8149715 Goel et al. Apr 2012 B1
8165102 Vleugels et al. Apr 2012 B1
8170002 Wentink May 2012 B2
8170546 Bennett May 2012 B2
8189506 Kneckt et al. May 2012 B2
8229087 Sumioka et al. Jul 2012 B2
8254296 Lambert Aug 2012 B1
8256681 Wang Sep 2012 B2
8274894 Kneckt et al. Sep 2012 B2
8310967 Goel Nov 2012 B1
8340034 Lee Dec 2012 B1
8472427 Wheeler et al. Jun 2013 B1
8493992 Sella et al. Jul 2013 B2
8496181 Wang Jul 2013 B2
8526348 Desai Sep 2013 B2
8553561 Chokshi et al. Oct 2013 B1
8599814 Vleugels et al. Dec 2013 B1
8626067 Ko et al. Jan 2014 B2
8655278 Laroche et al. Feb 2014 B2
8665848 Wentink Mar 2014 B2
8750278 Wagholikar et al. Jun 2014 B1
8767771 Shukla et al. Jul 2014 B1
8804690 Wheeler et al. Aug 2014 B1
8817662 Mahaffy et al. Aug 2014 B2
8817682 Goel et al. Aug 2014 B1
20020025810 Takayama et al. Feb 2002 A1
20020049854 Cox et al. Apr 2002 A1
20030040316 Stanforth et al. Feb 2003 A1
20030214430 Husted et al. Nov 2003 A1
20040013128 Moreton Jan 2004 A1
20040105401 Lee Jun 2004 A1
20040192222 Vaisanen et al. Sep 2004 A1
20040233881 Kang et al. Nov 2004 A1
20040264396 Ginzburg et al. Dec 2004 A1
20040264397 Benveniste Dec 2004 A1
20050018641 Zhao et al. Jan 2005 A1
20050025104 Fischer et al. Feb 2005 A1
20050025174 Fischer et al. Feb 2005 A1
20050038876 Chaudhuri Feb 2005 A1
20050135360 Shin et al. Jun 2005 A1
20050174962 Gurevich Aug 2005 A1
20050186962 Yoneyama et al. Aug 2005 A1
20050195786 Shpak Sep 2005 A1
20050206554 Yamaura Sep 2005 A1
20050215197 Chen et al. Sep 2005 A1
20050250528 Song et al. Nov 2005 A1
20050254423 Berghoff Nov 2005 A1
20050281278 Black et al. Dec 2005 A1
20060007863 Naghian Jan 2006 A1
20060079232 Omori et al. Apr 2006 A1
20060120338 Hwang et al. Jun 2006 A1
20060199565 Ammirata Sep 2006 A1
20060200862 Olson et al. Sep 2006 A1
20060215601 Vleugels et al. Sep 2006 A1
20060251198 Ma et al. Nov 2006 A1
20060252418 Quinn et al. Nov 2006 A1
20060264179 Bonneville et al. Nov 2006 A1
20060268756 Wang et al. Nov 2006 A1
20060268804 Kim et al. Nov 2006 A1
20060282541 Hiroki Dec 2006 A1
20060282667 Kim et al. Dec 2006 A1
20060286935 Utsunomiya et al. Dec 2006 A1
20070010237 Jones et al. Jan 2007 A1
20070010247 Mouna-Kingue et al. Jan 2007 A1
20070014314 O'Neil Jan 2007 A1
20070109973 Trachewsky May 2007 A1
20070178888 Alfano et al. Aug 2007 A1
20070183443 Won Aug 2007 A1
20070206519 Hansen et al. Sep 2007 A1
20070206762 Chandra et al. Sep 2007 A1
20070223430 Desai et al. Sep 2007 A1
20070238482 Rayzman et al. Oct 2007 A1
20070242645 Stephenson et al. Oct 2007 A1
20070268862 Singh et al. Nov 2007 A1
20070286298 Choi et al. Dec 2007 A1
20070297388 Appaji et al. Dec 2007 A1
20080056201 Bennett Mar 2008 A1
20080069034 Buddhikot et al. Mar 2008 A1
20080080446 Chung Apr 2008 A1
20080095058 Dalmases et al. Apr 2008 A1
20080095059 Chu Apr 2008 A1
20080100494 Yamaura May 2008 A1
20080130595 Abdel-Kader Jun 2008 A1
20080137580 Axelsson et al. Jun 2008 A1
20080139212 Chen et al. Jun 2008 A1
20080161031 Tu Jul 2008 A1
20080170550 Liu et al. Jul 2008 A1
20080181154 Sherman Jul 2008 A1
20080187003 Becker Aug 2008 A1
20080232287 Shao et al. Sep 2008 A1
20080259846 Gonikberg et al. Oct 2008 A1
20080261640 Yoshida Oct 2008 A1
20080262991 Kapoor et al. Oct 2008 A1
20080279163 Desai Nov 2008 A1
20080320108 Murty et al. Dec 2008 A1
20090010210 Hiertz et al. Jan 2009 A1
20090067396 Fischer Mar 2009 A1
20090137206 Sherman et al. May 2009 A1
20090175250 Mathur et al. Jul 2009 A1
20090196210 Desai Aug 2009 A1
20090239471 Tran et al. Sep 2009 A1
20090245133 Gupta et al. Oct 2009 A1
20090245279 Wan et al. Oct 2009 A1
20090247217 Hsu et al. Oct 2009 A1
20090258603 Ghaboosi et al. Oct 2009 A1
20090268652 Kneckt et al. Oct 2009 A1
20090285264 Aldana et al. Nov 2009 A1
20100011231 Banerjea et al. Jan 2010 A1
20100029325 Wang et al. Feb 2010 A1
20100061244 Meier et al. Mar 2010 A1
20100069112 Sun et al. Mar 2010 A1
20100130129 Chang et al. May 2010 A1
20100135256 Lee et al. Jun 2010 A1
20100138549 Goel et al. Jun 2010 A1
20100165896 Gong et al. Jul 2010 A1
20100238793 Alfano et al. Sep 2010 A1
20100316027 Rick et al. Dec 2010 A1
20100322213 Liu et al. Dec 2010 A1
20110002226 Bhatti Jan 2011 A1
20110007675 Chiou et al. Jan 2011 A1
20110009074 Hsu et al. Jan 2011 A1
20110097998 Ko et al. Apr 2011 A1
20110103363 Bennett May 2011 A1
20110161697 Qi et al. Jun 2011 A1
20110188391 Sella et al. Aug 2011 A1
20110194519 Habetha Aug 2011 A1
20110205924 Gonikberg et al. Aug 2011 A1
20110274040 Pani et al. Nov 2011 A1
20120087341 Jang et al. Apr 2012 A1
20120099476 Mahaffy Apr 2012 A1
20120115420 Trainin May 2012 A1
20120213162 Koo et al. Aug 2012 A1
20120213208 Hsu et al. Aug 2012 A1
20120276938 Wagholikar et al. Nov 2012 A1
20120294396 Desai Nov 2012 A1
20130130684 Gomes et al. May 2013 A1
20130176903 Bijwe Jul 2013 A1
20130225068 Kiminki et al. Aug 2013 A1
20130287043 Nanda et al. Oct 2013 A1
20140003318 Desai Jan 2014 A1
20140043966 Lee et al. Feb 2014 A1
20140044106 Bhagwat Feb 2014 A1
Foreign Referenced Citations (11)
Number Date Country
1860827 Nov 2007 EP
2006174162 Jun 2006 JP
WO-2006043956 Apr 2006 WO
WO-2006090254 Aug 2006 WO
WO-2007008981 Jan 2007 WO
WO-2007064822 Jun 2007 WO
WO-2008707777 Jun 2008 WO
WO-2009101567 Aug 2009 WO
WO-2011056878 May 2011 WO
WO-2013104989 Jul 2013 WO
WO-2013119810 Aug 2013 WO
Non-Patent Literature Citations (61)
Entry
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification (Release 10)”, 3GPP TS 36.331; V10.5.0; 3GPP Organizational Partners, 2012, 302 pages.
“Advisory Action”, U.S. Appl. No. 12/646,721, Aug. 13, 2013, 3 pages.
“Draft Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements”, IEEE P802.11s/D1.03, Apr. 2007, 251 pages.
“Final Office Action”, U.S. Appl. No. 12/646,802, Nov. 15, 2012, 15 pages.
“Final Office Action”, U.S. Appl. No. 12/646,721, Jun. 6, 2013, 16 pages.
“Final Office Action”, U.S. Appl. No. 12/186,429, Oct. 13, 2011, 23 pages.
“Final Office Action”, U.S. Appl. No. 12/542,845, Sep. 25, 2012, 23 pages.
“Further Higher Data Rate Extension in the 2.4 GHz Band”, IEEE P802.11g/D8.2,DRAFT Supplement to STANDARD [for] Information Technology, Apr. 2003, 69 pages.
Haas, et al.,“Gossip-Based Ad Hoc Routing”, IEEE/ACM Transactions on Networking, vol. 14, No. 3, Jun. 2006, pp. 479-491.
“IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment”, IEEE Computer Society, Oct. 14, 2010, pp. 12-18, 23, 65-68.
“Non-Final Office Action”, U.S. Appl. No. 12/167,841, Jul. 15, 2011, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/099,169, Mar. 28, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/429,090, Oct. 24, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/479,124, Sep. 27, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/646,721, Nov. 7, 2012, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/646,721, May 10, 2012, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/646,802, Mar. 29, 2012, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/186,429, Apr. 25, 2011, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,845, Apr. 4, 2012, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,845, Oct. 23, 2013, 29 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/249,740, Mar. 26, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/249,740, Oct. 16, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/099,169, Oct. 4, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 12/167,841, Nov. 25, 2011, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 12/186,429, Jun. 6, 2013, 9 pages.
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE Std 802.11b-1999/Cor 1-2001,Amendment 2: Higher-speed Physical Layer (PHY) extension in the 2.4 GHz band, Nov. 7, 2001, 23 pages.
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE Std 802.11a-1999,High-speed Physical Layer in the 5 GHz Band, 1999, 91 pages.
“Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—,IEEE, Apr. 2003, pp. 1-69.
“PCT Search Report and Written Opinion”, Application No. PCT/US2011/054358, Dec. 16, 2011, 13 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/IB2013/000390, Aug. 21, 2013, 19 Pages.
“Restriction Requirement”, U.S. Appl. No. 12/167,841, May 12, 2011, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/186,429, Jul. 10, 2013, 2 pages.
Mujtaba “TGn Sync Proposal Technical Specification”, IEEE 802.11-04/0889r6,This document presents the technical specification for the MAC and the PHY layer of the TGn Sync proposal to IEEE 802.11 TGn, May 18, 2005, pp. 1-131.
Mujtaba “TGn Sync Proposal Technical Specification”, IEEE 802.11-04 / Wireless LANs, May 2005, pp. 1-131.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/025144, Jun. 5, 2013, 10 pages.
“Final Office Action”, U.S. Appl. No. 12/484,563, Apr. 24, 2012, 18 pages.
“Final Office Action”, U.S. Appl. No. 12/616,454, Apr. 11, 2012, 19 pages.
“International Search Report and Written Opinion”, PCT Application PCT/US2012/035597, Aug. 6, 2012, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/484,563, Oct. 4, 2011, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/732,036, Aug. 9, 2012, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/616,454, Dec. 22, 2011, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 12/616,454, Aug. 22, 2012, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 12/484,563, Jul. 9, 2012, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 12/716,569, Apr. 19, 2012, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 12/732,036, Feb. 21, 2013, 8 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 12/716,569, Jul. 23, 2012, 2 pages.
“IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, IEEE Std. 802.11-2007, Jun. 12, 2007, 1232 pages.
“IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 1: Radio Resource Measurement of Wireless LANs; IEEE Std 802.11k-2008, Jun. 12, 2008, 244 pages.
“IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements”, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Std. 802.11-2012, Mar. 29, 2012, 2793 pages.
“Introduction to 802.11n Outdoor Wireless Networks”, InscapeData White Paper, Mar. 29, 2011, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/673,363, Nov. 29, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/923,949, Dec. 17, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/099,169, Feb. 12, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/249,740, Mar. 11, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/479,124, Jan. 30, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/673,363, Mar. 24, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/923,949, Mar. 31, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/646,721, May 8, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/646,802, May 21, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/458,227, Jul. 3, 2014, 10 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/479,124, Apr. 18, 2014, 5 pages.
Continuations (1)
Number Date Country
Parent 12616454 Nov 2009 US
Child 13722354 US