The present invention is related to boards, such as flooring boards, wall boards and ceiling boards.
Board used in the construction of floors, walls and ceilings are composed of a wide variety of materials, and designed to be joined in wide variety of ways. Floor boards are often made of composite material including multiple layers of different materials. Floor boards are also joined to one another by a wide variety of structures and techniques, including standard tongue and groove connections and more complex and easy-to-use systems that employ adhesives and adhesive tape, snapping connections incorporated into board edges, angling board with interlocking edges, and overlapping edges. Many of the edges are specially designed to achieve objectives relating to strength, minimum visibility of the joint, prevention of ingress of water and dirt, durability, low cost of production and many others objectives.
In the case of flooring, there are two systems of vinyl floating floors that are currently the available in the market. These are systems in which locking tongues and locking grooves are machined into the edges of the sheet comprising the flooring board, much like typical laminate flooring of the type described in U.S. Pat. No. 6,006,486 and patents related thereto. Problems with this system include the fact that in order to have sufficient room to form a machined vinyl locking tongue and locking groove on opposite edges of the board, the board is required to be quite thick, and vinyl itself is a relatively flexible and deformable material, not well-suited for creating a strong mechanical connection. Another system relies on adhesive strips applied to the underside of adjacent panels. This system is described in U.S. Pat. Nos. 7,155,871 and 7,322,159. However, these systems do not provide a mechanical connection between boards, they cannot be readily disassembled, and are difficult to install, because once a board is placed on the joining adhesive strip, it is difficult to re-locate.
Boards that embody the inventions described herein reduce the manufacturing costs and the equipment investment, and also result in an assembly that has stable quality, is easy to assemble, is more versatile and is less susceptible to water damage.
A first embodiment of the board embodying the inventions described herein comprises a frame, a filler board disposed inside the board frame, and an upper decorative material, wherein the lower surface of the decorative material is affixed to the upper surface of the frame and upper surface of the filler board, preferably by an adhesive. The board may be square or rectangular. The board frame may be comprised of frame units having respective ends mutually connected by a dovetail (or other) connection, or may be a single continuous strip, and in either case the frame defines a central opening for receiving the filler board. The frame is provided with latch tongues and catches. The latch tongues extend outwardly from the edges of the frame, and the tongues have upwardly extending protrusions that fit into a recess formed on the underside of the frame of an adjacent board. The board is formed by the assembly of the frame and the filler board to the underside of the upper decorative material by use of an appropriate adhesive or other secure connection. The decorative material can be chosen based on need, and may be a sheet of luxury vinyl tile, carpet, a more rigid material such as high pressure laminate, or any other flooring material capable of being adhered or affixed to a filler board, which makes the floor board assembly more versatile in use.
The latch tongues are spaced apart from one another along the perimeter of the frame. Recesses are disposed in the underside of the frame at locations corresponding to the spaces between the tongues. The tongues along one side are staggered relative to the tongues on an opposite side of the frame. Similarly, the recesses on one side of the frame are staggered relative to the recesses on the opposite side of the frame. In use, two of the boards are connected with each other by inserting the tips of the tongues of a first board into recesses of a second board that has tongues and recesses that are configured in a manner that is substantially the same at that of the first board. In this manner, the latch tongues and recesses on one side a board can be engaged with the recesses and tongues at any other side of a similarly configured board. In the context of flooring, with the connection system embodying the inventions described herein, boards can be assembled in a variety of configurations to form a floating floor, and the floor can be assembled reliably without the need of adhesives or nails. Furthermore, the system is adapted to be made of materials that can readily withstand exposure to water, unlike many laminate flooring systems that include fiberboard.
In a second embodiment, there is provided a four-sided board having a plurality of latch tongues on each side extending outwardly from the board, each latch tongue having an upwardly extending projection; the board having at least one locking bar located on its underside for engaging the upwardly extending projection of at least one of the latch tongues; wherein the latch tongues along each side of the frame are located at positions that are staggered with respect to the locations of latch tongues on an opposite side of the frame; each latch tongue on the board having a width, and each of the latch tongues being separated from an adjacent latch tongue on the same side by a minimum space, the minimum space between latch tongues on the board being at least as wide as the widest latch tongue on a board, such that any side of a board may be connected to any side of another board of the same configuration. The board may be square or rectangular. In an embodiment, the board may be a single, integrally formed unit. In an embodiment, the latch tongues may be been made separately from the board and affixed thereto. In a preferred embodiment, the latch tongues are integrally formed with the board. The four-sided board may comprise a single four-sided piece of material, e.g. plastic or wooden material, with the latch tongues extending outwardly from the four-sided piece of material, and optionally integrally formed therewith. However, in a preferred embodiment, the board comprises a frame defining a space. In an embodiment struts and/or a mesh may be disposed within the space of the frame, the struts and/or mesh optionally being integrally formed with one or more sides of the frame. In an embodiment, a filler board is disposed within the frame. In an embodiment, the board further comprises an upper material having an exposed upper face and an underside. The filler board may be disposed within the space defined by the frame. The underside of the upper material may be attached to an upper surface of the frame, and the underside of the upper material may be attached to an upper surface of the filler board. The latch tongues preferably extend outwardly from the frame. The locking bar may have a length, when measured in the direction along a side of the board, greater than at least one tongue on the board. Optionally, a locking bar extends along the entire length of the space between the tongues to which is closest disposed. The locking bar may form part of at least one recess formed in the underside of the frame for engaging at least one latch tongue. The configuration of the latches, the components with which they engage, such as the recess or locking bar, and the materials of any of the components of the board in this second embodiment may be as described herein for the first embodiment or as described below in relation to the embodiments described in relation to the figures or appended claims.
The materials that may be used in the board are described below. This will be applicable to all possible embodiments of the board described herein, unless otherwise stated.
The board may comprise a plastic. If the board comprises a frame, the frame may comprise a plastic. If the board comprises a filler board within the frame, as described herein, the filler board may comprise a plastic. In an embodiment, both the frame and filler board comprise a plastic, the plastic of the frame and filler board being the same as or different from one another.
Preferably, one or more, preferably all, latch tongues on the floor board are integrally formed with the board, and optionally the latch tongues and base board comprise a plastic. If a frame is present, one or more, preferably all, latch tongues are preferably integrally formed with the frame on which they are disposed, and optionally the latch tongues and the frame comprise a plastic.
If a frame is present, it may be a four sided-frame, wherein each side of the frame is integrally formed with the two sides of the frame with which it is connected, and optionally each side of the frame comprises a plastic, which may be as described herein. If a frame is present, the aperture defined by the four sides of the frame may optionally have a mesh material therein, which may be in contact with and integrally formed with the sides of the frame. If a frame is present, the aperture defined by the four sides of the frame may optionally have a filler board as described therein.
The frame may comprise a thermoplastic or thermosetting plastic. Preferably, the frame comprises a thermoplastic material. Preferably, the frame comprises a non-crystalline thermoplastic material. Such non-crystalline thermoplastic materials are sometimes termed amorphous plastics. Preferably, the frame comprises one or more plastics selected from polycarbonate, polystyrene, high-impact polystyrene, styrene copolymers, polyamide (PA), acrylonitrile-butadiene-styrene (ABS), vinyl chloride copolymers, and polyvinyl chloride. These plastics are typically non-crystalline plastics. Such plastics have been found to provide a suitable balance of properties for ensuring that, when joining two adjacent floor boards together by sliding them in the same plane, the tongues to flex sufficiently and then interconnect with the recess(es) and/or locking bar(s), but when joined, the connection made is sufficiently rigid for general normal use that the floor boards do not come apart.
Preferably, the frame comprises acrylonitrile-butadiene-styrene (ABS) and/or polystyrene (PS). The ABS may comprise a mixture of acrylonitrile-styrene copolymer (SAN) and acrylonitrile-butadiene copolymer. In a preferred embodiment, ABS includes, but is not limited to, a material including polybutadiene rubber particles in an acrylonitrile matrix. Such a material can be made by mixing styrene and acrylonitrile monomers to a polybutadiene latex, and warming the mixture (e.g. to a temperature of 50° C. or more) if necessary, to allow dissolution of the monomers; the styrene and acrylonitrile monomers are then polymerised. This typically results in a mixture of polybutadiene, polybutadiene grafted with acrylonitrile and styrene, and styrene-acrylonitrile co-polymer.
The frame may comprise high-impact polystyrene (HIPS), sometimes termed toughened polystyrene. High-impact polystyrene includes, but is not limited to, a mixture of a rubber (e.g. styrene-butadiene rubber) and polystyrene. High-impact polystyrene may be made, for example, by mixing a rubber material (e.g. styrene-butadiene rubber), with styrene, then polymerising the styrene monomer. This typically results in a mixture of the rubber material, the polystyrene, and a graft polymer in which styrene chains are attached to the backbone of the rubber polymer. Mechanical properties of High Impact Polystyrene may further be improved by blending with Styrene-Butadiene-Styrene (SBS) copolymers, or by grafting of maleic anhydride (HIPS-g-MA). High Impact Polystyrene and ABS are described in, for example Plastics Materials, Seventh Edition, authored by J. A. Brydson, and published by Butterworth Heinemann, which is incorporated herein by reference in its entirety.
Preferably, the base board, and, if present, the frame, comprises a plastic having a Young's modulus of 0.5 to 10 GPa, optionally 1 to 7 GPa, optionally 1 to 5 GPa, optionally, 1.8 to 4 GPa, optionally 2 to 3.5 GPa, as measured using ASTM D638-10 test, also identifiable under the digital object identifier (DOI) number: 10.1520/D0638-10. A skilled person can commercially obtain or make plastic materials having such a property.
If the base board comprises a filler board within the frame, the filler board may comprise a material different from the frame. The filler board may comprise a material that is less dense than the frame. The filler board may comprise a material that forms a porous or a non-porous sheet. The filler board may optionally include a material comprising cellular voids, e.g. a foamed material. The foamed material may include open and/or closed pores. The filler board may comprise a fibrous material, e.g. a fabric material that may comprise fibres that are woven, knitted or non-woven, such as a felt material. The filler board preferably comprises a thermoplastic. The frame may comprise a first plastic and the filler board may comprise a second plastic. If the frame comprises a first plastic, the filler board may comprise a second plastic, wherein the second plastic is less dense than the first plastic. The compression modulus of the second plastic is optionally no more and/or no less than 30%, optionally 20%, optionally 10%, optionally 5%, of the value of the compression modulus of the first plastic. The compression moduli of the first and second plastics can be measured using an appropriate ASTM test, for example: ASTM D1621-10 Standard Test Method for Compressive Properties Of Rigid Cellular Plastics, or ASTM D695-10 Standard Test Method for Compressive Properties of Rigid Plastics.
The filler board may comprise a sheet of foamed or non-foamed plastic material.
The filler board may comprise one or more materials selected from plastic, rubber and fibrous cellulosic material, e.g. paper or card. The filler board preferably comprises a plastic selected from polyvinylchloride (PVC), vinylchloride copolymers, ethylene-vinylacetate copolymers (EVA), and a polyolefin, e.g. polyethylene or polypropylene or ethylene-propylene copolymers. The filler board preferably comprises a plastic selected from polyvinylchloride (PVC), vinylchloride copolymers and ethylene-vinylacetate copolymers (EVA). The filler board may optionally include a plastic material comprising cellular voids, e.g. a foamed plastic material. The foamed plastic material may include open and/or closed pores. The filler board may have a thickness that is the same as, more than or less than the thickness of the frame within which it is disposed, the thickness of the filler board being the resting thickness of the filler board, if compressible.
In an embodiment, the frame comprises a plastic selected from plastics selected from polycarbonate, polystyrene, acrylonitrile-butadiene-styrene (ABS), and polyvinyl chloride, and the filler board comprises a plastic selected from polyvinylchloride (PVC), vinylchloride copolymers, ethylene-vinylacetate copolymers (EVA), and a polyolefin, e.g. polyethylene or polypropylene or ethylene-propylene copolymers. In an embodiment, the frame comprises a plastic selected from polystyrene, optionally high impact polystyrene, and acrylonitrile-butadiene-styrene (ABS), and the filler board comprises a material selected from polyvinylchloride (PVC) and ethylene-vinylacetate copolymers (EVA).
The materials described above for the filler board have been found to provide sufficient support for the overlying upper material, and avoid the overlying upper material sagging in the aperture defined by the frame under normal use, while giving the board a certain degree of flexibility, allowing it to conform, over time, to uneven surfaces on which the board may be laid. They have also been found to have advantageous in the acoustic properties of the board.
The upper material may comprise any suitable material. If the board is for use as a flooring board, the material should ideally be suitable for walking upon in normal use. The upper material may comprise, for example, veneer, cork, vinyl, linoleum, stone, metal, wood, carpet, ceramic material and the like. The upper material may comprise a sheet having a printed and/or embossed pattern thereon. The printed and/or embossed pattern may show a pattern such as wood grain or that of a polished stone surface, such as marble.
In an embodiment, the upper material comprises one or more sheets of plastic material. If the upper material comprises more than one sheet of plastic material, the sheets of plastic material may be put together using any known technique, such as a technique selected from extrusion, calendering, solvent welding, ultrasonic welding and adhesive assisted lamination. The one or more sheets of plastic material may comprise any suitable plastic, including, but not limited to, a plastic selected from polyvinylchloride (PVC), a polyolefin, polyurethane and urethane-acrylate co-polymers. The polyolefin may be selected from polypropylene, ethylene-propylene copolymers and polyethylene. The upper material may comprise a sheet comprising plastic having a printed pattern thereon. The sheet comprising plastic having a printed pattern thereon may have one or more overlying layers thereon, which are preferably sufficiently transparent that the printed pattern can be seen through the one or more overlying layers.
Optionally, if the upper material comprises a sheet having a printed pattern thereon, one or more further sheets may be disposed between the base board, which may comprise the frame and filler board as described herein, and the sheet having a printed pattern thereon. The one or more further sheets may be made of the same or different type of plastic as the sheet having the printed pattern thereon. The one or more further sheets, the printed sheet, and optionally any overlying layer thereon may all optionally comprise polyvinylchloride (PVC) or a vinylchloride copolymer.
The upper material preferably comprises a plurality of sheets comprising plastic material, preferably PVC or a vinylchloride copolymer. The upper material preferably comprises at least two, optionally at least three, optionally at least four sheets comprising plastic material, preferably PVC or a vinylchloride copolymer. The total thickness of the plurality of sheets of the upper material is preferably 5 mm or less, optionally 4 mm or less, optionally 3 mm or less, optionally 2 mm or less. The total thickness of the plurality of sheets of the upper material is preferably 0.5 mm or more, preferably 1 mm or more. The plastic of any of the components described herein may further comprise one or more organic or inorganic additives known in the art, and/or one or more intermediate support or carrying layers, including reinforcement in the form of glass fibers, or other non-woven systems, or by using cross directional polymer layers.
The base board, for example the frame and filler board, may be adhered to the upper material using any known adhesive. Suitable adhesives are commercially available and can be selected by the skilled person, depending on the nature of the materials to be adhered. Suitable adhesives include, but are not limited to, hot-melt adhesives, contact adhesives, multi-component adhesives. Multi-component adhesives, including, but not limited to adhesives having a combination of components selected from (i) polyester resin and polyurethane resin; (ii) a polyol and a polyurethane resin, and (iii) an acrylic polymer and a polyurethane resin. In an embodiment, the adhesive may be selected from cyanoacrylate adhesive and a neoprene adhesive, e.g. a water-based neoprene adhesive.
Compared to existing techniques, the present invention has a lower manufacture cost, lower equipment investment, stable quality and is versatile in use.
The inventions set forth herein are described with reference to the above-described drawings and some specific examples or embodiments. There are three embodiments described, and they are merely exemplary of the many variations that will be apparent to those skilled in the art. They include a first embodiment depicted in
In
Examples of suitable vinyl chloride-containing polymers for the vinyl flooring sheet of the upper material 103 include any such vinyl polymer having the desirable combination of properties like flexibility, resistance to walking, ease of cleaning and the like. These include homopolymers and copolymers of vinyl chloride.
Examples of suitable PVC-free floor covering vinyl polymer materials for the vinyl flooring sheet of the upper material 103 include, but are not limited to, polyethylene, polypropylene, ethylene-vinyl acetate copolymers of low density or very low density having the desirable combination of properties like flexibility, resistance to walking, ease of cleaning and the like. These include ethylene-vinyl acetate copolymers with a melt index between 0.3 and 8.0 g/10 min (190° C./2.16 according to DIN 53 73) as described for instance in EP-0 528 194-B.
Other floor covering vinyl polymer materials are described in U.S. Pat. No. 6,287,706, U.S. Pat. No. 5,458,953, EP 0603,310-B and EP 0528,194-B, the content of which is hereby incorporated by reference.
The protective coat of a polymer adhesive to said vinyl chloride-containing polymer or PVC-free floor covering vinyl polymer material may be made of any coating material having the desirable combination of properties like glass transition temperature, elongation at break, and tensile strength, such as, but not limited to, polyurethane or polyacrylate lacquers.
The vinyl chloride-containing polymer or PVC-free floor covering vinyl polymer material may further comprise one or more organic or inorganic additives known in the art, and/or one or more intermediate support or carrying layers made of PVC or PVC-free polymer materials, including reinforcement in the form of glass fibers, or other non-woven systems, or by using cross directional layers of PVC or PVC-free polymer materials for stabilisation, and a bottom surface layer made of PVC or PVC-free polymer materials. The filler board 103 is also a vinyl sheet, but instead of having a decorative upper layer, the upper and lower faces of the filler board have the same material as the bottom surface of the upper material 103.
The adhesive 107 is Scotch-Weld™ 30, a water based neoprene adhesive, available from 3M which is known to adhere well to both high impact polystyrene (the plastic of which the frame 101 is made) and PVC (the material of which underside of vinyl sheet 103 is made). While two different types of connecting methods (such as adhesives) could be used, i.e., one joining underside the upper sheet 103 to the upper surface of the frame 101, and another joining the underside the upper sheet 103 to the upper surface of the filler board 102, it is preferable that a single connection method, i.e., a single adhesive compatible with all three joined surfaces (the underside of the vinyl upper material 103, the top of the frame and the top of the vinyl filler board). By selecting a filler board 102 such that it has an upper surface that is the same as the lower surface of the upper material 103, the choice of adhesive may be simplified, since compatibility between that common surface and the material of the frame 101 is the primary compatibility requirement. If the material of filler board is chosen such that its upper surface does not match that of the bottom of the upper material or the top surface of the frame, then an adhesive must be selected such that it is compatible with all three materials used (i.e., the bottom of the upper material, the top of the filler layer an the top of the frame), or two different connecting methods (such as two different adhesives) may be required, one to join the upper material to the filler board, and another to join the upper material to the frame.
While dimension A2 (the lateral dimension of the intermediate section 118 of the tongue 105 in
While the long sides of boards B2 and B3 may be angled into engagement with board B1, it should be noted that those connections can also be accomplished by a slide-snapping operation, i.e., for example by aligning the tongues 105 on a portion of the long side of board B2 (and/or B3) with spaces 109 between tongues on board B1, and pushing the boards toward each other while they are generally co-planar.
In
As with the first and second embodiments, tongues 205 extend outwardly from a lower edge of the frame 201, and those tongues are spaced from each other by spaces 209.
Where structures similar to earlier-described embodiments are present in the third embodiment, the tens digit and units digit of the reference numerals are chosen to correspond to the two digit reference numerals used to describe the first and second embodiments.
The strip 301 has tongues 305 separated by spaces 309, and the underside of the strip 301 has locking bars 322 and recesses 306 between the tongues 305, and the tongues 305, bars 332 and recesses 306 have a configuration that matches with and connect to similar tongues 205 and locking bars 222 at the edges of boards 208. As with a full-sized board 208, the strip 308 has a tongue 305 with a protrusion 317 and an intermediate section 318 with an upper surface 320. The protrusion 317 has a locking surface 314, a generally flat top surface 316, beveled nose 311, and blunt tip 312. Above the tongue is a face 328 below the upper edge of the strip. The strip locking has spaces 309 between tongues 305, and recesses 306 and locking bars 322 on its underside. The locking bar has a beveled guide surface 321 and locking surface 324. The recess 306 is bounded by the locking surface 324 and by a top surface 323, which is generally flat. The recess 306 is adapted to receive the tongue 205 of a board 208, as an adjacent board would.
The inventions discussed above have been described with respect to some specific examples of structure and materials, including LVT or other vinyl sheet, carpet and HPL (high pressure laminate), direct pressure laminate, ceramic tile, needle felt, wood, paper, printed or non-printed plastic material) for the upper material, and vinyl sheet, PVC (poly vinyl chloride) foam or EVA (ethylene-vinyl acetate), foamed EVA, TPE (thermoplastic elastomers such as, but not limited to, ethylene-propylene-diene copolymers), polystyrene, polyester, polyamide, polyolefin (foamed or not foamed), all of them eventually consisting of different layers with different structures/build, for the filler board, and high impact polystyrene (HIPS), ABS (acrylonitrile butadiene styrene), PP (polypropylene), PE (polyethylene), PA (polyamide) for the frame material. With regard to the connection of the upper material, filler board and frame, the assemblies shown herein are joined by Scotch-Weld™ 30 water based neoprene adhesive, but other techniques, such as hotmelt, PA-hotmelt, reactive hotmelt, solvent based neoprene adhesives, other water based neoprene adhesives, solvent welding, heat welding, thermoforming and ultrasonic welding may be used, depending on the materials being joined. However, these materials are only examples and are not intended to limit the scope of the invention. Indeed, persons of skill in the art may select other materials that may be called for or suggested by a particular application or design objective. The invention is not limited to the above-described embodiments or by the accompanying drawings. On the contrary, such boards can be made in different materials, shapes and dimensions while still remaining within the scope of the inventions claimed below.
An embodiment of the floor board described herein was tested for its acoustic properties. The embodiment was of the design of the third embodiment as described above in relation to FIGS. 10-14—this is described as “Embodiment 3” in the results tables below. The frame in the Embodiment 3 tested was made of injection moulded high impact polystyrene, with all latch tongues integrally formed with the sides of the frame, and all recesses formed in the underside of the frame. The filler board was a sheet of non-foamed PVC having a 3.6 mm thickness, the same as the thickness of the frame. The upper material was that of a Luxury Vinyl Tile material, and had four layers of calendared PVC, the bottom two of which had been stretched and allowed to relax, each having the directionality of stretching at 90° to the other, the second-from-top layer being a printed PVC layer, and the top layer being a transparent wear PVC layer. Together, the four layers of calendared PVC had a total thickness of 2 mm. The top wear layer had a thickness of 0.3 mm. The acoustic test methodology and the test results are given below.
In building acoustics, two different modes of sound transmission are known. The first one is sound reflected by a building element into the same room, also known as drum sound. The second one is the transmission of sound through a building element to an adjacent room.
For sound reflection or drum sound, a number of standards exist. A widely used standard is the EPLF021029-3 (European Producers of Laminate Flooring), version of 29 Oct. 2004. The measurement method is based on measurements with a standard tapping machine in a semi-anechoic room. The test sample is installed on a concrete floor and tested under load. Eight tapping positions and four microphone positions are used for the measurement.
Each measurement is performed versus a reference floor, delivered by EPLF. The sound pressure levels of both the reference floor and the test floor are measured using in the 250-6300 Hz spectrum.
The post-measurement calculation accounts for the loudness of the reflected sound, according to the psycho acoustical definition of loudness by Prof. Zwicker and expresses the result as a single value loudness N.
Loudness N is defined in ISO 532:1975 and is a standardized method to measure the perceived strength of sounds. The loudness concept includes the frequency dependence of the hearing system. The unit is sone. 1 sone corresponds with a 1 kHz tone at 40 dB. Loudness is a linear measure. A doubling of the sone values results in a doubling of the perceived loudness.
The four lowest measurements of each sample are averaged to come to a Nm value.
The difference between the reference floor and the test floor is calculated in % and gives the reduction in loudness.
Depending on the percentage reduction compared to the reference floor, the tested floor is classified in classes SL0 to SL60 or higher, having reductions of
A number of constructions were tested, with the following results:
Flooring types 1 to 5 in the table above represent commercially available flooring, tested for comparison purposes. Unexpectedly Embodiment 3, performed better than all conventional LVT products tested. Furthermore, it outperforms the laminate floors test, even when these are installed over 2.5 mm PP underlayment foam.
The walking noise (drum sound/reflected sound) of embodiments described in this application is clearly advantageous.
For sound transmission, also known as contact sound, a widely used standard is ISO 140-6:1998, ISO 140-8:1997 with references to ISO 140-1:1997, ISO 140-2:1991, ISO 717-2:1996 and EN 5079:1990. This family of standards describes how to measure the sound transmission to adjacent rooms through building elements.
In short, the measurement is done as follows:
Ln=Li+10 log(A/A0) in dB
Where:
The contact sound improvement ΔLw is then expressed as the difference between the sound pressure level on the reference floor versus the test floor (in dB). For some standard flooring qualities, the following results were obtained:
The following conclusions can be drawn:
The general conclusion from the acoustics study described above is that embodiments of the present invention perform as well as or better than laminate floor coverings for the drum sound/walking noise test and has an equal performance in the sound transmission test.
The above Examples clearly show the advantages provided by embodiments of the invention which consist not only in a very good level of acoustic insulation, but also any of an improvement in conformability, an ease of laying, and the ability to assemble in different patterns.
Number | Date | Country | Kind |
---|---|---|---|
201010203493.0 | Jun 2010 | CN | national |
PCT/CN2010/001304 | Aug 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN11/75085 | 6/1/2011 | WO | 00 | 8/31/2012 |