1. Field of the Invention
The invention relates to a board connector.
2. Description of the Related Art
Japanese Unexamined Patent Publication No. H09-283241 discloses a conventional board connector. This connector includes a housing to be mounted on a circuit board and an alignment plate mounted on the housing. The alignment plate has positioning holes that receive and position leading ends of terminal fittings pulled out from the housing. Two legs project from the bottom surface of the housing and engage the circuit board. Screws penetrate through the circuit board and engage the legs to fix the housing to the circuit board. The use of screws to fix the above-described housing on the circuit board requires a separate series of operational steps and creates a large operational burden.
Clips have been considered in place of screws to provide a one-touch operation for fixing a housing to a circuit board. The clips could be inserted into mounting holes of the circuit board and resiliently deformable locking claws formed on the clips could engage opening edges of the mounting holes of the circuit board. However, the locking claws may be deformed inadvertently in unlocking directions with the housing supported on the circuit board and locking strength tends to lack reliability.
The invention was developed in view of the above situation and an object thereof is to allow for improved operability when mounting a housing of a board connector on a circuit board and improved reliability in locking strength.
The invention relates to a board connector with a housing that is to be mounted on a circuit board. The housing has at least one projection to be inserted into a respective mounting hole of the circuit board. The connector also has at least one displacing member to be mounted displaceably relative to the housing. The displacing member is formed with at least one inserting portion and the projection is formed with an insertion space for receiving the inserting portion. The displacing member is displaced in the process of mounting the housing on the circuit board due to interference with the circuit board. The projection is inserted into the mounting hole of the circuit board and the inserting portion is inserted toward a back side of the insertion space. A leading end of the projection engages an opening edge of the mounting hole of the circuit board when the housing is mounted completely on the circuit board. Thus, the housing is fixed to the circuit board by a one-touch mounting operation. Additionally, the inserting portion is inserted farther toward the back of the insertion space and deforms the projection to widen the insertion space and to prevent a resilient deformation of the projection. Accordingly, the housing is fixed to the circuit board with improved locking reliability and enhanced locking strength.
Terminal fittings are pulled out to project from the housing. The displacing member preferably is an alignment plate with positioning holes for receiving and positioning the terminal fittings. Thus, the construction of the connector is simplified as compared with the case where a special displacing member is provided separately from the alignment plate. Projecting amounts of the terminal fittings from the positioning holes increase as the alignment plate is displaced in the mounting process of the housing. Thus, the terminal fittings are protected by the edges of the positioning holes before the displacement of the alignment plate and the projecting amounts of the terminal fittings from the positioning holes increase to ensure sufficient soldering margins of the terminal fittings to the circuit board after the displacement of the alignment plate.
A mounting direction of the housing on the circuit board is a thickness direction of the circuit board. The insertion space is open in the thickness direction of the circuit board at the leading end of the projection. Additionally, the inserting portion is displaced in the thickness direction of the circuit board in the insertion space. Thus, the mounting operation of the housing on the circuit board and the displacement of the inserting portion in the insertion space can be linked by a relatively simple construction.
The displacing member preferably is placed on a surface of the circuit board and the inserting portion preferably is inserted into the insertion space from the surface side of the circuit board in the mounting process of the housing. Thus, it is not necessary to bypass the inserting portion toward the underside of the circuit board when forming the inserting portion on the displacing member. Therefore the construction can be simplified further.
The insertion space preferably has a depth substantially corresponding to an entire projecting distance of the projecting portion and is formed to gradually reduce its width from an opening side toward a back side.
These and other, features and advantages of the invention will become more apparent upon reading of the following detailed description of preferred embodiments and accompanying drawings. It should be understood that even though embodiments are separately described, single features thereof may be combined to additional embodiments.
A board connector in accordance with an embodiment of the invention has a housing 10, terminal fittings 50 and an alignment plate 60. The housing 10 is mountable on a device such as a printed circuit board 90 and is connectable to an unillustrated mating housing. In the following description, an end to be connected with the mating housing is referred to as the front end concerning forward and backward directions and an end of the board 90 on which the housing 10 is to be mounted is referred to as an upper side concerning a vertical direction.
The housing 10 is made e.g. of synthetic resin and has a flat shape that is long and narrow in a width direction. The housing 10 includes a terminal mounting portion 11 substantially in the form of a back plate, through which the terminal fittings 50 are to be mounted. A rectangular tubular receptacle 12 projects forward from the peripheral edge of the terminal mounting portion 11, as shown in
Each terminal fitting 50 is made of an electrically conductive material, such as metal, and is substantially pin-shaped as a whole. Each terminal fitting includes a mating terminal connecting portion 51 that projects through the terminal mounting portion 11 and into the receptacle 12. A board connecting portion 52 is pulled out from the rear surface of the terminal mounting portion 11 and is exposed outside the housing 10. The mating terminal connecting portion 51 is connected electrically conductively to a mating terminal fitting of the mating housing in the receptacle 12 as the housing 10 is connected to the mating housing. The board connecting portion 52 has a first section 53 pulled out substantially horizontally from the rear surface of the housing 10 and a second section 54 bent substantially at a right angle at the rear end of the first section 53 to extend substantially vertically down. A leading end of the second section 54 is inserted into a connection hole 91 that penetrates the board 90 and connected thereto e.g. soldered.
Two side walls 13 project from opposite widthwise sides of the terminal mounting portion 11. The board connecting portions 52 of the respective terminal fittings 50 are protected by the side walls 13 at the opposite lateral sides. Each side wall 13 has a substantially right triangular cross section with has two oblique surfaces 14, the spacing of which is widened toward a lower side. The both oblique surfaces 14 are formed also on the opposite widthwise side surfaces of the terminal mounting portion 11.
A partial locking portion 15 and a full locking portion 16 are formed one above the other in the vertical direction on of the facing inner surfaces of the side walls 13. The partial locking portions 15 and the full locking portions 16 are formed as recesses in the inner surfaces of the side walls 13, with the full locking portions 16 arranged at an upper side and the partial locking portions 15 arranged at a lower side. Two projections 17 project down from the bottom surface (surface facing the top surface of the board 90) of the both side walls 13.
Each projection 17 has a substantially cylindrical shape and a flange 18 bulges radially out at a leading end portion thereof. The board 90 has mounting holes 92 at positions corresponding to the projections 17, and the projections 17 are inserted into the mounting holes 92. As shown in
The alignment plate 60 is made e.g. of synthetic resin, and is long and narrow in the width direction. The alignment plate 60 is arranged at a rear side of a bottom part of the housing 10 and is vertically displaceable relative to the housing 10 between the partial locking position and a full locking position as the housing 10 is mounted on the board 90.
The alignment plate 60 includes a substantially rectangular plate main body 61 that is long and narrow in the width direction. Locks 62 project up from opposite widthwise ends of the plate main body 61 and two inserting portions 63 project outward in the width direction from the opposite widthwise ends of the plate main body 61, as shown in
The plate main body 61 has positioning holes 64 at positions substantially corresponding to the respective terminal fittings 50. The leading ends of the vertical sections 54 of the respective terminal fittings 50 are inserted through the corresponding positioning holes 64 while being positioned. Downward projecting amounts of the leading end portions of the terminal fittings 50 from the positioning holes 64 are small at the partial locking position to keep the leading end portions of the terminal fittings 50 in a protected state. Downward projecting amounts of the leading end portions of the terminal fittings 50 from the positioning holes 64 are increased at the full locking position to ensure sufficient soldering margins to the board 90.
Each lock 62 has a resilient piece 65 and a pointed locking claw 66 that projects out in the width direction from the upper end of the resilient piece 65. The resilient piece 65 is resiliently deformable substantially in the width direction with a base part connected to the plate main body 61 as a support.
The locking claws 66 can fit into the partial locking portions 15 to hold the alignment plate 60 at the partial locking position and can fit into the full locking portions 16 to hold the alignment plate 60 at the full locking position. The locking claws 66 slide in contact with projecting walls 27 between the partial locking portions 15 and the full locking portions 16 to deform the resilient pieces 65, as shown in
The inserting portions 63 are substantially rectangular bars with beveled or rounded outer edges and are arranged substantially horizontally and continuous with the plate main body 61. The inserting portions 63 normally are kept inserted in the slits 19 of the projections 17 and move toward the back sides of the slits 19 as the alignment plate 60 is moved from the partial locking position to the full locking position. Specifically, the inserting portions 63 are arranged at openings of the slit grooves 19 at the leading ends of the projections 17 at the partial locking position while being arranged at the back ends of the slits 19 at the base end sides of the projections 17 at the full locking position. The thickness (dimension in forward and backward directions) of the inserting portions 63 is substantially equal to the width of the openings of the slits 19 and larger than the width of the back ends of the slits 19.
The housing 10 is to be mounted on the electrical device such as the board 90 with the alignment plate 60 held at the partial locking position on the housing 10. At this time, the receptacle 12 is arranged to project laterally outwardly of the end portion of the board 90 (see
Lowering the housing 10 has several effects. First, the alignment plate 60 moves toward the full locking position. Second, the leading ends of the projections 17 move through into the mounting holes 92. Third, the inserting portions 63 move up deeper in the slits 19 of the projections 17. Fourth, the leading ends of the terminal fittings 50 gradually project farther out from the underside of the board 90 (see
As described above, the alignment plate 60 is displaced relative to the housing 10 due to interference with the board 90, the inserting portions 63 are inserted toward the back sides of the slits 19 and/or the projections 17 are inserted into the mounting holes 92 of the board 90 in the process of mounting the housing 10 on the board 90. On the other hand, when the mounting of the housing 10 on the board 90 is completed, the leading ends of the projections 17 are engaged with the opening edges of the mounting holes 92 of the board 90 with the deformed amounts of the projections 17 increased by the inserting portions 63 inserted farther toward the backs of the slits 19. Thus, the housing 10 is fixed to the board 90 easily by a one-touch operation, thereby increasing operational efficiency. When the mounting of the housing 10 on the board 90 is completed, the inserting portions 63 are located in the slits 19 of the projections 17 to prevent deformation of the projections 17 and to improve reliability in locking strength.
The entire construction can be simplified as compared with the case where a special displacing member is prepared separately from the alignment plate 60. In addition, the projecting amounts of the terminal fittings 50 from the positioning holes 64 increases as the alignment plate 60 is displaced in the mounting process of the housing 10. Thus, the terminal fittings 50 are protected by the hole edges of the positioning holes 64 before the displacement of the alignment plate 60 and the projecting amounts thereof from the positioning holes 64 increase to ensure sufficient connection soldering margins of the terminal fittings 50 to the board 90 after the displacement of the alignment plate 60.
Further, a mounting direction of the housing 10 to the board 90 is oriented in a thickness direction of the board 90, the slits 19 are open in the thickness direction of the board 90 at the leading ends of the projections 17 and the inserting portions 63 are displaced in the thickness direction of the board 90 in the slits 19. Thus, the mounting operation of the housing 10 to the board 90 and the displacements of the inserting portions 63 in the slit grooves 19 can be linked by a relatively simple construction.
Furthermore, the alignment plate 60 is to be placed on the top surface of the board 90 and the inserting portions 63 are inserted into the slits 19 of the projections 17 from the top side of the board 90 in the mounting process of the housing 10. Thus, it is not necessary to bypass the inserting portions 63 toward the underside of the board 90 upon forming the inserting portions 63 on the alignment plate 60 to simplify the construction.
The invention is not limited to the above described and illustrated embodiment. For example, the following embodiments are also included in the technical scope of the present invention as defined by the claims.
Instead of the alignment plate, a special displacing member including inserting portions to be inserted into the slits (insertion spaces) of the projections may be mounted on the housing.
The slits (insertion spaces) may be formed to be open in a plate surface direction of the circuit board at the leading end portions of the projecting portions, the displacing member may be displaced in the plate surface direction of the circuit board as it interferes with the circuit board, and the inserting portions may be inserted toward the back sides of the slits (insertion spaces) from a lateral side.
The displacing member (alignment plate) may be displaced due to interference with another member mounted on the circuit board without directly interfering with the circuit board.
The inserting portions may not be inserted in the slit grooves (insertion grooves) when the displacing member (alignment plate) is at the partial locking position.
Number | Date | Country | Kind |
---|---|---|---|
2010-110942 | May 2010 | JP | national |