BOARD DESCRIBING OR SHOWING REALITY IN FOUR DIMENSIONS, A UNIVERSAL PLOTTER AND A SCIENTIFIC MEASUREMENT AND LEARNING TOOL

Abstract
The present invention relates to a metal-sheet board or blackboard with magnetic features having two or three movements, which plots and represents reality in four dimensions (horizontal, vertical, depth and time) and which describes reality objectively, in which a T-shaped ruler is moved on a rail along the horizontal or X axis by a digital stepper motor controlled by a driver and software on the computer (horizontal movement). Furthermore, a tool truck surrounding the T-shaped ruler moves along the entire length (vertical movement) or Y axis thereof, actuated by a digital stepper motor controlled by a driver, which is in turn controlled by software on the computer, with these two movements controlled by mathematical speed and acceleration functions. A felt-tip pen or marker is placed in the tool truck against the surface of the blackboard in order to plot all manner of FIGURES. Furthermore the tool truck includes a third motor providing movement perpendicular to the blackboard (depthways), together with the respective motor and driver thereof. Different scientific measurement tools and structures are mounted on the board or the tool truck and connected electronically to the different data input or output pins available on the blackboard by means of the driver and the related software on the computer, providing a real scientific measurement and laboratory instrument that interacts with the computer.
Description
BACKGROUND

The main problem is the improvement and modernization of learning in classrooms. Normally, the teacher uses conventional boards to develop his class—for example mathematics or physics—using only drawing skills and brackets, without any tool that has neither parameters nor real technological help, causing imprecision, therefore inefficiency in learning.


Nowadays, many schools project images from the computer using a searchlight in an electronic white board, being this action or interactivity always virtual, contributing to improvement and modernity of learning in classrooms, but having as a disadvantage lacking real and three-dimensional measurement tools.


Further, we know that nature has all the sciences and these are represented by graphics, that in turn will always be represented in the coordinate plane X, Y (width, height), and if a tool will also help in representing depth or axis Z, then this will be of great help in comprehension of nature and learning improvement.


BRIEF SUMMARY

The present invention relates to a metal-sheet board or blackboard with magnetic features having two or three movements, which plots and represents reality in four dimensions (horizontal, vertical, depth and time) and which describes reality objectively, in which a T-shaped ruler is moved on a rail along the horizontal or X axis by a digital stepper motor controlled by a driver and software on the computer (horizontal movement). Furthermore, a tool truck surrounding the T-shaped ruler moves along the entire length (vertical movement) or Y axis thereof, actuated by a digital stepper motor controlled by a driver, which is in turn controlled by software on the computer, with these two movements controlled by mathematical speed and acceleration functions. A felt-tip pen or marker is placed in the tool truck against the surface of the blackboard in order to plot all manner of FIGURES. Furthermore the tool truck includes a third motor providing movement perpendicular to the blackboard (depthways), together with the respective motor and driver thereof. Different scientific measurement tools and structures are mounted on the board or the tool truck and connected electronically to the different data input or output pins available on the blackboard by means of the driver and the related software on the computer, providing a real scientific measurement and laboratory instrument that interacts with the computer.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows an elevation view of an embodiment of the invention(s).





DETAILED DESCRIPTION

It is about the invention of a board or panel that represents reality in its four dimensions (horizontal, vertical, depth and time), universal plotter, learning and scientific measurement tool, that describes reality in an objective way, from a small to a big format facilitating learning of sciences through graphics, draws, labs or real representations with help of a measurement tool or multiple sensors connected electronically to the legs of input and/or output, at the disposal of computer software.


It will also be developed in multiple applications in engineering, architecture, design, simulation, arts, models, etc.


Examples of Use

Theory realistically represented in mathematical area.


Here we will explain how mathematics expressions, formulas or functions can be represented in reality, for example in the expression X+4=0, we can represent this incognita by horizontal displacement in a time interval or another process, then determine the unitary parameter and resolve it, understanding the expression in a better way.


Also and equally clearly, the linear function Y=mx+4 is taken to reality displacing the horizontal axis from the computer software a quantity of X units, and at the same time the Y displacement will be affected by the product of mX. If we start the engines at the same time we will see the slope generation and also observe that the positive parameter 4 does not affect the slope, but does it with its position. This formulas and variables are sent from our software interacting in a real way. This representation will contribute clearly to learning.


Theory realistically represented in the area of physics acceleration.


We suspend a mass via a thread and mounted on the tool holder car, then increase the speed of displacement in our horizontal or X axis. We observe that the mass does not accompany the displacement. Due to the inertia effect, this mass moves away from the vertical. Then if we decelerate displacement, we note that the mass moves away in the opposite direction. However when we impart a constant speed, now the mass does accompany the vertical without leaving its perpendicularity.


In engineering.


This board or panel develops to scale multiple processes and automations, since having different movements would help it interact with various measuring tools such as: weighing scales, scales, dynamometers, mechanical forms, etc. These measuring tools are aided by the magnetic characteristic and supported by various sensors connected to the legs of input or output of the data available in the controller, to or from the respective software on the computer that would facilitate the study of the engineering process raised.


In architecture.


It becomes a real drawing board or hybrid because it would build up on the tremendous advantages of printing graphics from the computer (movement in X, Y) and also would be a conventional drawing board that rotates about its horizontal axis, with brackets that now contain multiple sensors connected to the computer software, with depth Z axis movement. If magnetized objects can also be fixed to the board and this rotated about its horizontal, these factors together will make it possible the scale representation of the three-dimensionality and all interaction help with mechanisms, such as the lighting, would benefit the designer.


It is a metal plate board with different magnetic characteristics of small or very large formats of two and three movements, in which a T-shaped ruler driven by a digital engine (stepper motor) moves on a rail across all its horizontal or X axis, handled by a controller (driver) and from there to a software on the computer (horizontal motion). Likewise, a tool holder carriage moves wrapping the T-shaped ruler, making a path of its entire length or vertical axis driven by a digital engine (stepper motor) handled by a controller (driver) and this to a computer software (vertical movement).


With these two horizontal and vertical (X, Y) movements, driven by their respective engines instructed by mathematical functions of velocity and acceleration developed in our software we can displace across the surface of the board or panel with accuracy. In addition, putting in the tool holder carriage a chalk, marker, airbrush, ink jet or any type of tracer, which is driven against the board or panel by an electromagnetic mechanism controlled by the software, we can draw or print the entire universe of graphs in science, math and drawings on the same board, paper, cloth or canvas.


The third depth or Z axis with perpendicular motion to the board is also placed together with a third engine mounted in the tool holder carriage to its driver and software on the computer. The instrument becomes a renderer and maker of constructions, simulations, processes, automations and models in the three dimensional space.


This board can also rotate around its horizontal axis and due to its metallic magnetic characteristic would hold attach the objects and constructions.


In the tool holder car, even over the same board, different measurement tools are placed (scaler, scale, stopwatch, dynamometer, ammeter, etc.) or a multiplicity of sensors (mechanical, optical, motion, temperature, magnetic, electromagnetic, infrared, etc.), so it becomes a multiple-use lab tool. These sensors or measurement tools are connected electronically to the input or output pins of data to disposition of the controller (PIC), so it is possible to collect or send measurements or data to the respective software in the computer.


This board also has an electronic part formed by a power supply, which will have terminal blocks connected to the board to energize various components of the lab.


This board also has a screen or visualization display.


Mechanism and electronics.


It is a metal plate board or panel that in a magnetic form can attach multiple accessories, sensors and measuring instruments. It has different small and very large formats, with two movements: vertical and horizontal (two-dimensional), in which moves a tool holder car, and a third Z-axis movement of depth (three dimensional). Because of its construction, it rotates or spins on its horizontal, making the same performances.


The mechanism by which movements of the horizontal and vertical axis (X, Y) are actuated involves a cable that wraps the double lane pulley a turn and a half. The latter goes mounted in a digital engine and it is tied to its movement by a key joint. The cable goes to the other end and passes through a free pulley of one lane, then in the return, ties the T-shaped ruler, goes out and returns to the drive pulley, which generates that the cable (when it is tense) is fixed to the pulley and tied to the movement of the engine. However, the cable will mount with itself in the double lane pulley following its trajectory. Then from out of the pulley we put two entrainment pins, which make the cable change its trajectory without mounting. This system is equal for axis X and Y and optional for the Z axis. Further, in one end of the cable exists a tension indicator of the cable in the form of a spring that provides the necessary adjustment.


The direction of displacement of axis X (horizontal) is on a rail (stainless steel tube) by which the T-shaped ruler displaces and where it is fixed to pairs of pulleys of a concave channel that describe the same shape of the rail, and look like a “sandwich”.


The direction of displacement of the tool holder carriage in the Y axis (vertical) wraps the rectangular section of the T-shaped ruler through four pulleys, which make it slide across all its length.


The tool holder carriage and the board have various options to be anchored or fixed, such as: threaded holes, screws, visualization display, terminal blocks of energy, input and output data pins, sensors, measurement instruments, mechanisms and tools are fixed on them, for the various activities to develop. Also in the tool holder carriage are fixed the drawing or tracers mechanisms and the motor driving the Z axis or depth axis. Because of its construction all this board or panel turn on its horizontal axis repositioning but doing the same performance.


The board has electronic modules to do its job.


The first module with the supply to the entire system is a dedicated power source for feeding the engine drivers (drivers) and also powers the interface module.


The second module is the interface between the PC and the hardware. This has two PICs which are in charge of receiving the orders from the PC and sending them to the execution mechanisms.


The third and fourth modules are drivers (controllers) which handle the displacement of the coordinate axis through the engines. They also control the number of inputs and output of the available data that will connect those different processes.


Optionally, the board can connect to a screen or display that shows the job done in the PC.


DESCRIPTION OF FIG. 1

Surface of the board or metal plate panel that can have different sizes (1)

  • T-shaped ruler that displaces across all the horizontal length (2)
  • Steel tube rail on which the T-shaped ruler displaces (3)
  • Double lane pulley mounted on the respective digital engines with velocity and acceleration movements handled by controllers instructed by mathematical functions from the computer software (4)
  • Free movement pulley that limits the displacement in the horizontal (5)
  • Cable that drags the movement mechanisms or system displacements (6)
  • Tool holder carriage that displaces in the vertical across the length of the T-shaped ruler and that has mechanisms of fixation of the different accessories or tools which will be mounted on it (7)
  • Stroke and drawing tools for various tracers (8)
  • Z axis or depth axis mounted in the tool holder carriage with its respective digital engine and displacement mechanism (9)
  • Wheels and pulleys that embrace the rail on which the T-shaped ruler displaces (10)
  • Panel rotation pivot for positioning in horizontal shape (11)
  • Pins that address the cable trajectory in the double lane pulley (12)

Claims
  • 1. A board having movements in a horizontal axis, a vertical axis and a depth axis that draws, makes measurements, and interacts with a computer, for providing three-dimensional constructions, comprising: a first means for movement across the entire length of the horizontal axis configured for moving a T-shaped ruler;a second means for movement, adjacent the T-shaped ruler, configured for moving a tool holder carriage across the entire length of the vertical axis; andwherein the first means for movement and the second means for movement are respectively actuated by a first digital engine and a second digital engine both instructed by mathematical functions of velocity and acceleration and, respectively, handled by at least one driver wherein the at least one driver is controlled by a software from the computer for travelling over an entire surface of the board for describing slopes and parabolas.
  • 2. A board according to claim 1, comprising a tool holder carriage that displaces across the entire panel surface, having mechanisms of subjection of various instruments or tools.
  • 3. A board according to claim 2, comprising any type of tracer in the tool holder carriage, that is actuated against the board through a electromagnetic mechanism controlled from the software and with the respective horizontal and vertical movements, could make all kind of graphics, draws or paintings on the board, paper, canvas or another surface.
  • 4. A board according to claim 3, comprising a third means for movement across the entire length of the depth axis actuated by a third engine mounted in the tool holder carriage handled by the at least one driver from the software on the computer.
  • 5. A board according to claim 2 comprising, measurements tools, visualization screen, power terminal blocks, mechanisms, and sensors in the surface or in the tool holder carriage which are connected to the input and/or output data legs to disposition of the respective controllers that interact with the software from and to the computer.
  • 6. A board according to claim 5 comprising, a metallic plate for rotating the panel over its horizontal axis, getting different positions and maintaining the constructions and magnetized mechanisms attached to it.
  • 7. A board according to claim 1, characterized by displacing a T-shaped ruler across the horizontal on a rail (steel tube) where there are two pairs of pulleys fixed embracing it.
  • 8. A board according to claim 1, characterized by starting the movements of the horizontal axis and the vertical axis across a cable that wraps a turn and a half a double lane pulley, that is mounted on a digital engine and tied to its movements through a key joint, the cable goes to the other end and passes through the free pulley, a one lane pulley, then returns and ties the T-shaped ruler and goes out and returns again to the dragging pulley, this mechanisms also works for the Z axis o depth axis.
  • 9. A board according to claim 9, distinguished by putting onto the rail the cable that wraps in a turn and a half the double lane pulley, placing from outside of the pulley two entrainment pins that make it follow the desire trajectory for the cable not to mount.
Priority Claims (1)
Number Date Country Kind
204-1010/DIN Apr 2010 PE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2010/001314 5/26/2010 WO 00 10/4/2012