This invention generally relates to the art of electrical connectors and, particularly, to an electrical connector assembly for effecting a connection between two circuit boards.
A variety of electrical connectors have been used to make electrical connections between the circuits on different printed circuit boards. These printed circuit boards must be joined together with connectors in a manner to effectively and reliable interconnect the circuits on one circuit board to the circuits on another circuit board. This is done by a pair of mating connectors which are surface mount connectors and may include a male or plug connector mateable with a female or receptacle connector to form a board-to-board electrical connector assembly.
As stated above, both connectors of the electrical connector assembly are surface mount connectors. Both connectors typically have a low profile and have some form of mechanism to lock the connectors together. Locking mechanisms which have been used heretofore range from simple frictional forces between the terminals of the mating connectors to positive latching detents or recesses on the dielectric housings of the connectors. Frictional forces between the terminals have not been consistently adequate to hold the connectors together and, in some instances, the frictional forces have been so great that mating the connectors have required very high forces. Latching detents between the terminals can work well, but the latching devices must be located very accurately at preselected distances which requires manufacturing tolerances which are not practical to maintain with such connectors. If these tolerances are not maintained, too much “play” or movement exists between the boards. Latching detents between the connector housings have not worked well because movement of the plastic surfaces over one another creates abrasion which increases the insertion and withdrawal forces and which permanently wears the parts. The present invention is directed to solving these problems by providing a system which holds the connectors together and, in fact, does so with minimal mating forces.
An object, therefore, of the invention is to provide a new and improved board-to-board electrical connector assembly for effecting a connection between two circuit boards.
In the exemplary embodiment of the invention, the connector assembly includes a first connector having a dielectric housing for mounting on a first circuit connector. A plurality of first terminals are mounted on the dielectric housing. Each terminal includes a tail portion for connection to an appropriate circuit trace on the first circuit connector, and a convex contact portion defining a continuous arcuate contact surface. A second connector has a dielectric housing for mounting on a second circuit board. A plurality of second terminals are mounted on the dielectric housing of the second connector and each second terminal includes a tail portion for connection to an appropriate circuit trace on the second circuit board. Each second terminal includes a contact projection for sliding over the continuous arcuate contact surface of a first terminal upon mating of the connectors.
With the above construction and interengagement of the terminals of the connector assembly, initial engagement of the contact projection of each second terminal with the convex contact portion of a first terminal is at minimal engaging forces which increase as the contact projection slides over the convex contact portion and then decreases to allow the connectors to mate and the circuit boards to come together with minimal mating forces at a mated condition of the connectors.
According to one aspect of the invention, the contact projection of each second terminal is at the distal end of a flexible contact arm which comprises one leg of a U-shaped contact section of the second terminal. The dielectric housing of the first connector includes a plug portion mateable in the U-shaped contact section of the second terminals. The convex contact portions of the first terminals are at one side of the plug portion for engagement with the contact projections of the second terminals of the second connector.
As disclosed herein, the U-shaped contact section of each second terminal is connected to a mounting section for mounting the second terminal in the dielectric housing of the second connector. The tail portion of each second terminal projects from the mounting section thereof. According to another aspect of the invention, the first terminals are generally U-shaped, with each first terminal having one leg of the U-shape defining the convex contact portion and the other leg of the U-shape defining a mounting portion for mounting the first terminal in the dielectric housing of the first connector. The tail portion of the first terminal is at a distal end of the mounting portion thereof. The housing of the first connector has an open space between the convex contact portion and the mounting portion of each first terminal so that the convex contact portion is free to flex upon engagement with the second terminal of the second connector.
Other objects, features and advantages of the invention will be apparent from the following detailed description taken in connection with the accompanying drawings.
The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with its objects and the advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures and in which:
Referring to the drawings in greater detail, the invention is embodied in an electrical connector assembly, generally designated 10 in
Referring first to
The convex contact portion 24c of each plug terminal 24 defines a continuous arcuate contact surface, generally designated 28 in FIG. 1. Each continuous arcuate contact surface 28 includes an initial surface portion 28a as seen in
Referring to
A plurality of second or receptacle terminals, generally designated 40, are mounted on each side rib 36 of housing 30 of receptacle connector 14. Each receptacle terminal 40 includes a generally U-shaped contact section, generally designated 42, and a mounting section, generally designated 44. The mounting section includes a tail portion 44a for connection to an appropriate circuit trace on a second circuit board (not shown). The bottom of tail portion 44a is generally flush with a bottom surface 36a of each side rib 36 and a bottom surface 34a of center rib 34. Therefore, receptacle connector 14 is designed for surface mounting on the second circuit board. Mounting section 44 on each receptacle terminal 40 includes a toothed mounting leg 44b for insertion into a respective mounting hole 46 in each side rib 36 of housing 30.
The generally U-shaped contact section 42 of each receptacle terminal 40 includes a first leg 42a spaced from a second leg 42b to define an open space therebetween which is coincident with one of the receptacles 38 which run the length of the receptacle connector. Leg 42a of the U-shaped contact section 42 forms a flexible contact arm which has an inwardly directed contact projection 50 on the distal end of the flexible contact arm.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Name | Date | Kind |
---|---|---|---|
5181855 | Mosquera et al. | Jan 1993 | A |
5224866 | Nakamura et al. | Jul 1993 | A |
5310357 | Olson | May 1994 | A |
5395250 | Englert, Jr. et al. | Mar 1995 | A |
5639248 | Yagi | Jun 1997 | A |
5727956 | Mitra et al. | Mar 1998 | A |
5971809 | Ho | Oct 1999 | A |
5975916 | Okura | Nov 1999 | A |
6338630 | Dong | Jan 2002 | B1 |
6540561 | Masumoto | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
0 795 929 | Sep 1997 | EP |
1 096 609 | May 2001 | EP |
11-74024 | Jul 1989 | JP |
07-036370 | Jul 1995 | JP |
09-259979 | Oct 1997 | JP |
10-162913 | Jun 1998 | JP |
2000-260509 | Sep 2000 | JP |
2001-126789 | May 2001 | JP |
2003-163054 | Jun 2003 | JP |
2003-217711 | Jul 2003 | JP |
2004-273277 | Sep 2004 | JP |
03065513 | Aug 2003 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10661686 | Sep 2003 | US |
Child | 11592314 | US |