1. Field of the invention
This invention is related to watercraft boarding ladders, and in particular to a folding ladder assembly that can be hung off the side of inflatable boats or rubberized boats, for example a pontoon boat, dinghy, life raft, runabout, rescue, marine patrol, offshore work boat or comparable thin-hull watercraft, for use by divers and swimmers while boarding from open water.
2. Description of the related art
The ability to move onto a boat easily and safely is essential for obvious reasons. On the dock, a stable platform enables safe and convenient boarding alongside a boat. On open water, however, boarding is difficult and in most cases requires above average personal strength and on-board assistance as well. For this reason, most small watercraft are equipped with a boarding ladder of some kind, either permanently attached, or portable and stowed away for set-up and service as needed.
Conventional boarding ladders intended for permanent installation require a hard point load reaction structure and a substantial amount of available deck space for installation. Consequently, fixed boarding ladders are not well adapted for installation on small rubberized or inflatable boats that are subject to puncture damage. For example, a conventional pontoon boat, dinghy or a life raft has a rubberized hull that is sealed airtight and should not be pierced by fasteners. Likewise, some small runabouts or sailboats have a hull or deck made of a fiberglass material that is not capable of reacting high shear loads, thus making them vulnerable to fatigue failure and rupture.
Conventional boarding ladders of the portable kind are available in two categories: flexible (rope) ladders and rigid frame (hook) ladders. Rope ladders are easy to store and require no mounting hardware, but require exceptional physical strength to use successfully. They lack center or bottom stability and swing easily from side-to-side along the side of the hull, as well as to-and-fro beneath the hull. This makes rope ladders extraordinarily difficult to use even with on-board assistance, especially under open water conditions where the boat will be undergoing bobbing, rolling and pitching movement.
For these reasons, hook style ladders are generally preferred since they provide a stable climbing structure relative to the hull of the boat. However, the attachment of a conventional hook style boarding ladder requires a hard point reaction structure that can engage a penetrating fastener and withstand substantial shearing loads without rupture. The only hard point reaction structure available on some inflatable boats and fiberglass boats is the transom. In some smaller boats only a limited amount of space is available since the transom is almost completely occupied by an outboard motor.
Conventional boarding ladders are frequently mounted about midway along a gunnel or pontoon of small watercraft. The side mounting location may not always be available on smaller boats, since the outwardly projecting components of conventional boarding ladders may strike the dock and interfere with safe docking, or become entangled with dock rigging during docking maneuvers.
Fixed boarding ladders cannot be easily removed for storage, since they are permanently fastened to the deck and require tools for removal. Others provide only a short extension into the water, with the result that acquiring a foothold may be difficult. Other boarding ladders have included collapsible features which allow them to be reduced to compact size for storage and extended to full size for service. Those features include, for example, hinges, sliding extensions and flexible sides made of chain or rope.
Because of their construction and the desire to provide a compact assembly, conventional boarding ladders often do not provide a secure foothold below water and may not provide an adequate handhold above the water line. Using such ladders is a challenge to young persons as well as elderly, those carrying aquatic gear, such as SCUBA diving equipment or water skis, and even those persons who are in good physical condition but who may be exhausted after engaging in water sport activities, or when the ladder may be used in a man-over-board rescue emergency.
Other limitations of boarding ladders of conventional design have involved the manner in which they are attached to the boat. In particular, since compact size is generally desirable, some conventional ladders intended for marine use simply extend up to the nearest available mounting surface, for example the lower side of the gunwale. Moreover, no provision is made for quick removal and stowage when the boarding ladder is not needed.
Many conventional boarding ladders have design features that improve their usability on larger boats, especially those that are permanently fastened onto a hard deck or solid hull. However, such boarding ladders cannot be installed on inflatable, rubberized, or thin-hull vessels, which are vulnerable to piercing, puncture and rupture damage. Conventional fixed boarding ladders encroach on available deck space, and cannot be quickly or easily removed.
The boarding ladder assembly of this invention is portable and can be quickly installed in the operative boarding position onto a perimeter surface of an inflatable boat or a thin-hulled boat without piercing the hull. The ladder components of the assembly are constructed of lightweight metal tubing configured in a climbing ladder section and a base ladder section. The climbing ladder section and the base ladder section are coupled together in a pivotal union for folding and unfolding movement between open and closed positions. When the boarding ladder is installed in the operative boarding position, the climbing ladder section hangs downwardly from the base ladder section in stand-off relation to the side of the boat.
The boarding ladder is secured to the side of a boat in the operative, stand-off boarding position by one or more base retainer brackets and one or more latch retainer brackets. According to one embodiment, each base retainer bracket has a curved hook portion and a pocket for receiving and retaining a tubing segment of the base ladder section. According to another embodiment, each base retainer bracket includes a hard-point mounting plate and a pocket for engaging a coupling pin carried on a lateral crossbar segment. Each latch retainer bracket includes a pair of resilient arm portions that grip and retain a climbing ladder side rail tubing segment.
The base retainer brackets and the latching brackets have body portions made of durable, molded rubber material that are permanently attached to the side of the boat by an adhesive deposit. A lateral cross bar tubing segment of the base ladder section is positively retained and secured against downward displacement and inboard/outboard rotation relative to the boat sidewall by engagement within the pockets of the base retainer brackets. The boarding ladder is supported and secured against lateral displacement and in stand-off relation to the boat sidewall by snap-fit engagement of the climbing ladder side rail tubing segments with the latch retainer brackets.
The boarding ladder can be quickly released from engagement with the latch retainer brackets in response to manual inboard closing rotation of the ladder assembly. The boarding ladder may be removed from engagement with the base retainer brackets in response to a straight manual pull of the base ladder section in the inboard direction and out of engagement with the coupling pockets.
The top cross bar, hinge bar and side rail tubing segments of the climbing ladder section serve as above-water hand-holds. The upper base retainer brackets and lower latch retainer brackets maintain a stand-off spacing of the ladder sections relative to the boat, thereby providing hand-hold space and foot support space, as well as preventing rubbing contact of the boarding ladder sections against the side of the boat.
In the description which follows, like parts are marked throughout the specification and drawing with the same reference numerals, respectively. The drawing figures are not necessarily drawn to scale.
The boarding ladder assembly 10 of the present invention is attached to the pontoon 12 of an inflatable or rubberized boat 14 in an operative boarding position as shown in
Referring to
The base ladder section 24 and the climbing ladder section 26 are coupled together for opening and closing, pivotal movement relative to each other by coupling hinges 28, 30, shown in
This manual folding and unfolding arrangement allows the ladder sections 24, 26 to be closed together for storage, and then quickly set-up and installed for service in the operative boarding position. Optionally, the base ladder section 24 may be coupled to the climbing ladder section 26 by conventional double-knuckle hinges.
The base ladder section 24 is formed by a pair of tubular side rails 36, 38 that extend in parallel alignment from a tubular cross bar 34. The lower end portions of the side rails are attached, for example by welding, onto the cam-lock hinges 28, 30 (shown in
The climbing ladder section 26 is formed by a pair of tubular side rails 40, 42 that extend in parallel from a tubular cross bar 44. The lower end portions of the side rails are permanently attached to the cam-lock hinges 28, 30. The side rails 40, 44 are also joined in parallel alignment by a series of conventional steps 46, 48, 50 and 52. The steps are spaced apart along a 10-inch to 12-inch vertical rise between steps in a conventional staircase manner.
Each latch bracket 20, 22 is provided with an elongated latch pocket 54 and a pair of resilient latch arms 56, 58. The tubular side rails 40, 42 of the climbing ladder section 26 are releasably retained in the latch pockets by the gripping engagement of the resilient latch arms. The latch arms 56, 58 oppose lateral shifting and swinging movement of the climbing ladder section 26 relative to the pontoon 12. According to this arrangement, the base ladder section 24 hangs from and is stabilized by the base retainer brackets 16, 18. The climbing ladder section 26 hangs from the cam-lock hinges 28, 30 and is stabilized by the gripping engagement of the latch brackets 20, 22. The side rails 40, 42 are further stabilized by a welded union with the cross bar 44 on the upper end of the climbing ladder section 26.
According to an important feature of the invention, the boarding ladder can be manually released and quickly removed from the support brackets. This is made possible by the open hook, snap-fit construction of the base retainer brackets 16, 18, shown in
Referring again to
Referring again to
Although the boarding ladder 10 may be made of a variety of materials, in the preferred embodiment the material used to fabricate the side rails and cross bars is metal tubing, preferably a non-corrosive metal, such as 14-gage stainless steel tubing, or composite, high strength tubing. Optionally, the ladder components can be constructed of solid aluminum rods, stainless steel rods and composite, high strength engineered materials. The retainer pockets 16B, 18B formed in the hook brackets are dimensioned to provide positive, snap fit engagement with the upper cross bar 34. Likewise, the retainer pockets formed in the latch brackets 20, 22 are dimensioned to provide positive, snap fit engagement with the tubular side rail sections 40, 42. The steps 46, 48, 50 and 52 are made of formed stainless steel and are encased within a plastic cover. Non-slip treads are formed on the top surface of each cover.
The base retainer brackets 15, 18 and the latch brackets 20, 22 are made of a resilient polymer material and are bonded to the pontoon 12 by adhesive deposits 68. The brackets are resilient and somewhat yieldable in order to reduce the concentration of load forces applied to the pontoon during boarding and unloading. The brackets 16, 18 and 20, 22 have resilient shock absorbing body portions 16B, 18B and 20B, 22B that dissipate the energy of high intensity loading forces. The resilient body portions and gripping arm portions further decouple the loading forces and thereby reduce the concentration of loading forces that are applied to the pontoon.
Referring now to
The resilient body portions 16B, 20B of each base retainer bracket transition from a relatively small coupling member, either the hook (the upper brackets 16, 18) or the U-shaped latches (lower brackets 20, 22), into a large bonding surface area provided by the flange portions 70, 72. The bonding surface area is rectangular in profile and spreads the load forces substantially uniformly over the bonding surface of the pontoon 12. Otherwise, those forces would be concentrated at high intensity attachment points if the ladder side rails were permitted to engage directly onto the pontoon sidewall, for example with a piercing fastener.
The shock absorbing portions of the resilient retainer brackets 16, 18 and latch brackets 20, 22 reduce the per unit loading of the applied boarding load forces, and spread those load forces uniformly across widely separated and relatively large surface areas of the pontoon 12. Moreover, the body portions of the base retainer brackets and latch brackets are flexible and yieldable. This permits manual insertion and detachment of the ladder side rails and the tubing cross bar into and out of engagement with the support brackets during setup and removal of the boarding ladder. Otherwise, if a rigid construction were to be used instead, the brackets would not yield or deflect, and the entire energy of the applied load forces would be focused and concentrated at point loading locations on the pontoon. Such concentrated forces could exceed the shear strength of the adhesive bond 68 and cause separation of the brackets 16, 18 and 20, 22 from the pontoon, or cause fatigue failure and rupture of the pontoon sidewall at the attachment points.
The strongest and most reliable bond is achieved when the polymer material used for fabricating the hook and latch brackets 16, 18 and 20, 22 is coordinated with the polymer material used to make the pontoon hull. Conventional rubber inflatable boats have pontoons that are made of Hypalon® chlorosulfonated polyethylene, polyurethane or polyvinyl chloride (PVC) polymer materials. The hook and latch brackets are fabricated of polyvinyl chloride in a conventional injection molding process when they are to be attached to pontoons made of polyvinyl chloride, and they are fabricated of ethylene propylene diene monomer elastomer (EPDM) when they are to be attached to a pontoon constructed of Hypalon® chlorosulfonated polyethylene or polyurethane materials. The preferred bonding adhesive 68 is Poly Marine 2990 adhesive for bonding the brackets onto pontoons made of Hypalon® chlorosulfonated polyethylene; Poly Marine 3026 PVC fabric adhesive is preferred for bonding the brackets onto pontoons made of polyvinylchloride (PVC).
A boarding ladder assembly 110 according to an alternative embodiment is shown in
A boarding ladder 200 according to yet another embodiment is shown in
Referring again to
The hard-point retainer plate 226 is fastened onto the base member 228 by screw fasteners 236. A coupling pocket 238 is formed between the base portion and the retainer plate. The anchor pin 222 and lock head 224 are received in the coupling pocket 238 in the fully inserted, engaged position, as shown in
Referring now to
As shown in
The invention has been shown and described with reference to preferred and alternative embodiments in which examples have been given to explain what I believe is the best way to make and use my boarding ladder invention. The materials, components and dimensional values specified in the detailed description are exemplary of those that may be used in the successful practice of my invention.