The present invention relates in general to boat anchor monitoring systems. More specifically, the present invention relates to a system that aids in preventing boats from getting underway while anchors are deployed.
When a boater has a need to hold a boat in a fixed position when not in close proximity to a boat dock, the boater will typically employ an anchor. The stay in the fixed position may be short, to work a fishing spot or allow a family to swim, or it may be for an extended period of time, such as an overnight stay.
There are many types of anchors, affixed to the boat with some combination of rope and chain. From this point forward, this rope and chain combination will simply be referred to as an “anchor chain.” The size of the boat, bottom structure, and depth of the water all play a part in the choice of anchor type, rope-chain mix, and anchor chain length.
While the anchor deployment provides for the safety of the boat and those on board by not allowing the boat to drift into harm's way, it can also add a safety risk. It is possible for the boat captain to forget the anchor is deployed, either due to forgetfulness or distraction. If the boat is underway while the anchor is deployed, a life-threatening and/or property-threatening situation can occur. A best-case scenario is for the anchor to drag until the drag is noticed and the situation is remedied. The next scenario in order of severity is an anchor chain or anchor chain connection point failure. This will cause property damage and/or loss, but spare human injury or loss of life. The worse-case scenario is for the rope component of the anchor chain to stretch until the point where the anchor breaks free and slingshots into or over the boat. If a person is in the path of the anchor, bodily damage or even death can occur due to the speed and weight of the projectile.
Accordingly, there is a need for a system that alerts the boat operator that one or more anchors are still deployed before starting the ignition and getting underway.
Various “anchor alarm” systems have been realized throughout the years; however, these “anchor alarm” systems are targeted at anchor slippage awareness. This awareness is necessary to prevent the boat from drifting into harm's way while anchored. While critical to the safety of the boat and passengers during periods of anchor, these “anchor alarm” applications do not help prevent a boat operator from starting the ignition and getting underway while an anchor is still deployed. Indeed, for these existing “anchor alarm” systems, the boat operator may not be made aware of the danger until it is too late, as the boat is already underway before any warning is issued.
It is the object of this invention to provide a boat anchor monitoring system that alerts the boat operator that an anchor is deployed in real time and prior to starting the ignition.
In a preferred embodiment, the boat anchor monitoring system includes a status indicator and anchor module that are both operable to communicate with a base module. The anchor module is coupled to a boat anchor and comprises a transmitter operable to transmit a signal on a set schedule. The signal includes a data payload having an identifier value corresponding to the anchor module. The base module is located on the boat and includes a receiver and a processor. The receiver is operable to receive the signal from the transmitter and the processor is operable to determine the strength of the signal and compare the strength of the signal to a predetermined value. If the strength of the signal exceeds, or is equal to, the predetermined value, the processor determines the anchor is not deployed and directs the status indicator to display the anchor in the “not deployed” position. If the strength of the signal is less than the predetermined value, the processor determines the anchor is deployed and directs the status indicator to display the anchor in the “deployed” position. As an option, the predetermined value can be set to the minimum value required for the signal to be detected by the receiver.
In yet another embodiment, the boat anchor monitoring system may further include a timer that is operable to communicate with the base module. The timer is preprogrammed with a threshold time value and is automatically reset by the processor when the strength of the received signal exceeds, or is equal to, the predetermined value. The processor then directs the status indicator to display the anchor in the not deployed position. If no signal is received by the base module that exceeds, or is equal to the predetermined value, and the timer reaches its threshold time value, the processor directs the status indicator to display the anchor in the deployed position.
In yet another embodiment, the boat anchor monitoring system may further include a sensor positioned on the anchor module. The sensor is operable to communicate with the transmitter of the anchor module. The sensor is configured to be activated when the anchor is submerged in water. For this embodiment, the data payload of the signal sent from the transmitter includes a water contact state indication that is set to active when the sensor is activated and inactive when the sensor is not activated. When the base module receives the signal with the water contact state indication set to active, the processor directs the status indicator to display the anchor in the deployed position.
In another embodiment, the base module of the boat anchoring system is further operable to communicate with an ignition system for the boat. For this embodiment, the processor of the base module is operable to determine if the ignition system is activated. If the processor determines the anchor is deployed and the ignition system is activated, the base module will either prevent activation of the ignition system, or alternatively, activate a second indicator alerting the boat operator of the danger of starting the engine while an anchor is deployed.
For any of the embodiments, a plurality of anchor modules coupled to separate anchors may be included. Each anchor module would have its own identifier value, and if the base module determines any one of the plurality of anchors is deployed, the processor of the base module is operable to direct the status indicator to display the anchor in the deployed position, or in the event the base module is communicatively coupled to the ignition system, either prevent activation of the ignition system or activate a second indicator.
The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like parts are given like reference numerals and, wherein:
The images in the drawings are simplified for illustrative purposes and are not depicted to scale. Within the descriptions of the figures, similar elements are provided similar names and reference numerals as those of the previous figure(s). The specific numerals assigned to the elements are provided solely to aid in the description and are not meant to imply any limitations (structural or functional) on the invention.
The appended drawings illustrate exemplary configurations of the invention and, as such, should not be considered as limiting the scope of the invention. It is contemplated that features of one configuration may be beneficially incorporated in other configurations without further recitation.
For a further understanding of the nature and function of the embodiments, reference should be made to the following detailed description.
The boat anchor monitoring system comprises an anchor module 310, a base module 110, and at least one status indicator 160 (as shown in
Turning to
Turning to
Turning to
In operation, the processor 350 within the anchor module 310 commands the anchor unit transmitter 320 to broadcast a signal 610 on a schedule. For example, a broadcast schedule could be 1 Hz. The signal 610 contains a data payload 910 that includes an identifier value 930 corresponding to the anchor module 310. The frequency of the signal 610 may be any of the many unlicensed frequencies available in the ISM bands, including for example, 433 MHz, 915 MHz, 2.4 GHz, and 5.8 GHz. The higher the frequency, the more the energy will be attenuated by the water. This attenuation value will be further increased due to a higher water salinity content (i.e., brackish or sea water).
Many modern transmitters 320 include the functionality of the processor 350 within the same component. For example, a transmitter 320 can be configured during production to automatically broadcast programmed data on a schedule. The programmed data can also include transmitter data modification during operation that is dependent on external stimuli to the transmitter; for example, sensor 360 data.
The processor 170 within the base module 110 is operable to receive the signal 610 transmitted by the anchor module 310 utilizing the receiver 120. Upon receipt of the signal 610, the processor 170 is configured to parse the data payload 910 and extract the identifier value 930 as well as determine the strength of the signal 610 utilizing RF signal strength measurement component 125. The identifier value 930 is a unique identifier that allows the base module 110 to know which anchor module 310 originated the signal 610 containing the data payload 910 that has been received and verify it is an anchor module 310 associated with the base module 110. If the signal strength is above or equal to a predetermined value programmed into the base module 110, the status indicator 160 is set to “Not Deployed” 210. If the signal strength is below the predetermined value programmed into the base module 110, the status indicator 160 is set to “Deployed” 220.
In yet another embodiment, as an additional safety measure, the base module 110 may include a timer 150 that is operable to communicate with the processor 170. If the timer 150 reaches a pre-programmed threshold time value, typically a multiple of the unit of time of the anchor module 310 signal schedule, and the processor 170 has not received a signal 610 utilizing the receiver 120 above or equal to the predetermined value programmed into the base module 110, the processor 170 commands the status indicator 160 to be set to “Deployed” 220. When the processor 170 receives a signal 610 above or equal to the predetermined value programmed into the base module 110, the timer 150 is reset and the processor 170 commands the status indicator 160 to be set to “Not Deployed” 210. In an exemplary embodiment, the preprogrammed threshold time value for the timer 150 is three times the preset schedule for the signal 610. Accordingly, if the signal 610 broadcasts on a 1Hz schedule, the timer 150, upon reaching three seconds, will indicate loss of signal 610 and the processor 170 will direct the status indicator 160 to indicate a “Deployed” status 220. When the signal 610 is received by the base module 110 and the signal strength threshold exceeds or is equal to the predetermined value, the timer 150 is automatically reset and the processor 170 will direct the status indicator 160 to indicate a “Not Deployed” status 210. The signal strength threshold may be set at the minimum receive level of the receiver 120. This would cause any successful reception of the signal 610 to reset the timer 150 and cause a “Not Deployed” indication 210.
In an alternate embodiment, the anchor module 310 includes a sensor 360 configured to communicate with the processor 350 and operable to detect when the anchor 420 containing the sensor 360 is submerged in water. The sensor 360 is configured to be activated upon submersion in water. For example, the sensor 360 can be activated by water contact or may be pressure activated. An example sensor 360 can be two electrodes exposed to the environment and a few passive electronic components. Upon submersion in water, the processor 350 will detect that the sensor 360 has been activated and will modify the data payload 910 of the signal 610 by setting the wet/dry indicator 920 to “wet” (or active). In operation for this embodiment, when the signal 610 is detected by the receiver 120, the data payload 910 is parsed by the processor 170, allowing the base module 110 to determine the identifier value 930, the wet/dry indicator 920, and the signal strength. If the wet/dry indicator 920 indicates “wet,” the processor directs the status indicator 160 be set to “Deployed” 220.
The addition of a sensor 360 or timer 150 in accordance with the embodiments above can be added to any embodiment described herein to provide added levels of safety. The addition of these safety measures ensures that a loss of sufficient signal 610 or direct indication of water submersion will cause the base module 110 to indicate a “Deployed” 220 status on the status indicator 160.
Turning to
In an alternative embodiment, the boat anchor monitoring system has the ability to prevent the ignition system from starting if the anchor is in the “Deployed” 220 state. For this embodiment, as shown in
Alternatively, the boat anchor monitoring system may further include a global positioning system (GPS) (not shown) and a second indicator 1150. The second indicator 1150 is operable to communicate with the base module 110 and the base module 110 is further operable to communicate with the GPS. GPS coordinates are provided to the processor 170 of the base module 110, which determines if the boat has moved a given distance. If the processor 170 determines the boat has moved a specified distance and the anchor is deployed, the processor will activate the second indicator 1150. Optionally, a motion detector (not shown) may be incorporated into the boat anchoring system in addition to, or in lieu of, the GPS. The base module 110 is operable to communicate with the motion detector and the motion detector is configured to record and transmit data regarding the movement of the boat to the base module 110. If the processor 170 determines the boat has moved a distance and the anchor is deployed, the processor 170 will activate the second indicator 1150.
Turning to
Turning to
Turning to
For any of the embodiments, multiple anchor modules 310 may be deployed provided each anchor module 310 is configured with its own identifier value 930. When multiple anchor modules 310 are used, the processor 170 within the base module 110 is configured with the identifier values 930 of each of the associated anchor modules 310. The base module 110 may be configured to include a status indicator 160 for each of the anchor modules 310. For this embodiment, each of the anchor modules 310 and the base module 110 comprise the same elements as the aforementioned embodiments and are operable to communicate with each other in the same manner.
The processor 170 within the base module 110 configures the receiver 120 within the base module 110 to detect the individual signals 610 being transmitted by all associated anchor modules 310. Each signal 610 contains a data payload 910 comprising the identifier value 930. For embodiments that contain a sensor 360 operable to detect when the anchor 420 containing the sensor 360 is submerged in water, the data payload 910 includes a wet/dry indicator 920. When a signal 610 is detected by the receiver 120 and the processor 170 determines that the received signal strength of the signal 610 is above or equal to a predetermined value, the data payload 910 is parsed by the processor 170. The identifier value 930 is extracted and the identifier value 930 is logged. If the identifier value 930 matches the identifier value 930 that has been configured into the anchor module 310 and base module 110, the status indicator 160 associated with the specific anchor module 310 is set to “Not Deployed” 210, and for embodiments that include a timer 150, the timer 150 associated with the specific anchor module 310 is reset. If the timer 150 reaches a pre-programmed threshold time value, typically a multiple of the anchor module signal schedule, and the processor 170 has not received a signal 610 above or equal to the predetermined value, the processor 170 commands the status indicator 160 to be set to “Deployed” 220. For embodiments that include a water sensor 360, if the wet/dry indicator 920 indicates “wet,” the processor directs the status indicator 160 be set to “Deployed” 220.
Alternatively, for embodiments that include only one status indicator 160, if the timer 150 associated with any of the associated anchor modules 310 reaches a pre-programmed value, or the sensor 920 of any of the associated anchor modules 310 determines that the anchor is submerged, the status indicator 160 will be set to “Deployed” 220, indicating that at least one of the anchors is deployed. Likewise, the base module 110 is operable to communicate with the ignition system 1120 and prevent the ignition system 1120 from starting or alert the operator via a second indicator 1150 if it is determined that any of the associated anchor modules 310 are deployed, as described in the prior embodiments.
For the purposes of promoting an understanding of the principles of the invention, reference has been made to the embodiments illustrated in the drawings, and specific language has been used to describe these embodiments. However, this specific language intends no limitation of the scope of the invention, and the invention should be construed to encompass all embodiments that would normally occur to one of ordinary skill in the art. The implementations shown and described herein are illustrative examples of the invention and are not intended to otherwise limit the scope of the invention in any way. For the sake of brevity, conventional aspects of the method (and components of the individual operating components of the method) may not be described in detail. Furthermore, the connecting lines, or connectors shown in the various figures presented are intended to represent exemplary functional relationships and/or physical or logical couplings between the various elements. It should be noted that many alternative or additional functional relationships, physical connections or logical connections might be present in a practical device. Moreover, no item or component is essential to the practice of the invention unless the element is specifically described as “essential” or “critical”. Numerous modifications and adaptations will be readily apparent to those skilled in this art without departing from the spirit and scope of the present invention.
This application claims priority to U.S. Provisional Patent Application No. 63/135,705, filed Jan. 10, 2021. The entire contents of the above application are hereby incorporated by reference as though fully set forth herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/65429 | 12/29/2021 | WO |