The present invention relates to a boat lift drive housing having therein a control box, an electric motor and a gear head, where the housing enhances operation of each of the control box, electric motor and gear head by shielding the key switch of the control box from the elements, by storing a tool for operation of the electric motor at a weather proof location, by permitting access to the gear head from the front and rear of the housing to eliminate opening of the housing during set up, and by tailoring the housing to fit each of the control box, electric motor and gear head.
A boat lift drive is a mechanism for lifting up and letting down a boat lift. A hand powered winch is a common boat lift drive. A hand operated winch can be replaced by an electric boat lift drive.
Whether powered by hand or by an electric motor, a boat lift drive is subject to the elements. It is rained and snowed upon. It collects ice. It stops the wind and the dirt in the wind.
Whether powered by hand or by an electric motor, a boat lift drive is likely set up on a dock next to a boat lift. Usually the boat lift drive remains outside in the elements for its entire product life. It may break down. It may be replaced by a newer model. It likely remains in a permanent position next to the boat lift throughout the four seasons, even during winter.
A feature of the present invention is the provision in a boat lift drive housing having therein a control box, an electric motor, and a gear head, of front and rear openings for the gear head such that the housing may remain closed during installation and such that, if desired, the boat lift drive housing can be easily deinstalled, with the housing remaining closed, such as during the winter months.
Another feature of the present invention is the provision in a boat lift drive housing having therein a control box, an electric motor, and a gear head, of an eyebrow over the key switch that turns the boat lift drive on and off, such that the key switch is shielded from rain, snow, ice, the sun, the wind, and dirt in the wind.
Another feature of the present invention is the provision in a boat lift drive housing having therein a control box, an electric motor, and a gear head, of a grip for a socket that can operate the boat lift drive in an emergency, where the grip is disposed at a location that minimally detracts from weather proof attributes of the boat lift drive housing.
Another feature of the present invention is the provision in a boat lift drive housing having therein a control box, an electric motor, and a gear head, of a housing tailored to the inner contents of the housing to firmly hold in place the control box, electric motor, and gear head and to minimize extra connections within the housing.
An advantage of the present invention is a longer product life. One feature contributing to this advantage is the provision of the front and rear openings that confront the gear head to permit installation without opening the housing, such that the front and rear housing portions need not be separated, such that a factory seal may be placed between the front and rear housing portions, such that the seal need not be broken, and such that a user does not tinker with the operating systems inside of the housing. Other features contributing to this advantage are the provisions of an eyebrow over the key switch, a first cover over the key switch, and a second cover over the first cover, such that collection of water, ice, snow, and dirt in the keyhole of the key switch is minimized. Another feature contributing to this advantage is the location on the bottom of the housing for a grip for a socket that operates the boat lift drive in an emergency, since the bottom of the housing is less likely to collect water, ice, dirt and snow.
Another advantage of the present invention is safety. Since the boat lift drive can be installed and deinstalled without opening the housing, chances are minimized that a user will open up the housing. Thus, chances are minimized that the user will come into contact with the electrical system and gear system of the boat lift drive.
Another advantage of the present invention is speed of installation and deinstallation. Since the housing does not need to be split apart, set up time and take down time is minimized.
Another advantage of the present invention is that chances are maximized that the boat lift drive will work almost every time that the key switch is operated. A first feature contributing to this advantage is the eyebrow that operates as a shield. A second feature contributing to this advantage is the first key switch cover. A third feature contributing to this advantage is the second cover that covers the key switch cover. A fourth feature contributing to this advantage is the factory seal and the gear head access openings in the front and rear of the housing, such that the operating systems in the housing are minimally exposed to user intervention and such that the factory seal remains intact to keep out rain, ice, snow and dirt.
As shown in
An electrical power cord 26 extends from outside the housing 16 through an opening 28 formed in bottom wall section 158 of housing 16, with the opening 28 shown in
A U-shaped channel piece 32 is bolted to control box 20. A metal strap 34 is engaged about U-shaped channel piece 32 and motor 22 to secure the control box 20, motor 22 and gear head 24 together as effectively one-piece.
Motor 22 has a cylindrical housing 36. An upper end of the cylindrical housing 36 engages the gear head 24. Electrical cords 30 extend through a lower end of the cylindrical housing 36. A motor drive shaft 37 extends out the lower end of the cylindrical housing 36 for being engaged by a tool such as a drill bit shown in
Control box 20 includes a housing 38 that is generally parallelepiped or generally box-shaped or has six face portions. Each face portion extends at a right angle to four other face portions and is parallel to another face portion.
Gear head 24 has a first generally cylindrical portion 40 that houses a gear head drive shaft 24A that drives the winch drive shaft that drives the spool that winds the cable that lifts and lowers the boat lift 12. Gear head 24 has a second generally cylindrical portion 42 that houses a worm gear that is driven by the motor 22 and that in turn drives the gear head drive shaft 24A.
As shown in
It should be noted that control box 20 includes a front generally flat face 50 and that key switch 44 projects outwardly from the flat face 50, including the portion of the key switch 44 that forms the key hole 46, and including the keyhole cover 48. In other words, keyhole cover 48 includes a distal end portion 49 that is shaped in the form of a receptacle to receive therein outwardly projecting key hole 46. The proximal end portion of the keyhole cover 48 is hinged to a base of the key switch 44, with the base of the key switch being engaged to the control box housing 38. The distal end portion or receptacle 49 includes a frustoconical portion.
Control box 20 includes the electronics for controlling the key switch 44, i.e., for communicating with the motor 22, for turning the motor 22 on, for turning the motor 22 off, for turning the drive shaft 37 of the motor 22 one way, and for turning the drive shaft 37 of the motor 22 the other way. Control box 20 may also include the electronics for communicating with a wireless remote control, such that the boat lift 12 may be operated as one approaches the dock 19 in the boat 10.
Resilient bodies 52 of a gum, glue or adhesive adhere to cylindrical housing 36 and to control box housing 38 to isolate the motor 22 and control box 20 from the housing 16. The bodies 52 are fixed on the front and back of the motor 22 and on the front and back of the control box 20. If desired, the bodies 52 may also be fixed on the front and back of the gear head 24. One body 52 may engage cylindrical housing 36 and the inside of the housing 16. One body 52 may engage control box housing 38 and the inside of housing 16. One body 52 may engage gear head 24 and the inside of housing 16. Body 52 generally takes an irregular shape but may take the shape of a ball, sphere or disk.
As shown in
First or front housing portion 54 includes a lip 58 running the periphery of the front housing portion 54. The lip 58 is formed of two integral sections: a base section 60 that extends out from housing 16, and a distal section 62 that extends at an angle to base section 60 and that extends rearwardly of base section 60. Lip 58 captures and receives therein a lip 64 running the periphery of the rear housing portion 56. Lip 64 extends out at an angle from housing 16 and can be seen best in
Two structural features minimize moisture and dirt penetrating between the lips 58, 64 of housing portions 54, 56. The first structural feature is the L-shaped receptor formed by the intersection of the base section 60 of lip 58 and the distal section 62 of lip 58. This L-shaped receptor receives the outer edge of the lip 64 and tucks the lip 64 into the lip 58. The outer edge of lip 64 abuts the distal section 62 of lip 58. The second structural feature that minimizes moisture and dirty moisture seeping between the lips 58 and 64 is the seal 66 pinched between flat base section 60 and flat lip 64.
Each of the cutouts 70, 72 confronts an opening 74. Opening 74 is formed in bottom wall section 158 of rear housing portion 56. Opening 74 permits access to motor drive shaft 37 by a tool or drill bit 76 shown in
Each of openings 28 and 74 are formed totally within rear housing portion 56. That is, no portion of opening 28 or opening 74 is formed by front housing portion 54.
Front housing portion 54 includes a flat bottom wall section 80, a cylindrical wall section 82, a flat front section 84, a raised front section 86, an intermediate section 90, an eyebrow 98, a right sidewall section 110, a gear head section 112 having a flat section 114 and an annular section 116, a strip section 118, a left upper sidewall section 120, a right upper sidewall section 122, a right medial sidewall section 124, a recessed wall portion 126, a recessed wall portion 128, a left medial wall section 130, and an upper wall section 134.
In the description below, the “z” direction is a direction that runs forwardly and rearwardly, the “x” direction is a lateral direction that runs right and left, and the “y” direction is a longitudinal direction that runs vertically or upwardly and downwardly.
Flat section or bottom 80 confronts the flat lower end of the motor 22 and the lower end of the control box 20. Flat bottom wall section 80 extends obliquely outwardly from flat section or floor 88, as shown in
Left sidewall section 82 confronts the motor cylindrical housing 36. Left sidewall section 82 is cylindrical and leads into flat front section 84 in the x direction. Left sidewall section 82 leads into the lip base section 60 in the z direction. Left sidewall section 82 extends in the y direction from recessed wall portion 126 and flat bottom section 80 to medial left wall section 130 and left upper sidewall section 120.
Flat front section 84 confronts a portion of the cylindrical motor 22. Flat front section 84 is disposed between the cylindrical left sidewall section 82 and the raised front section 86 in the x direction. Flat front section 84 is disposed between the flat bottom wall section 80 and the left medial wall section 130 and strip 118 in the y direction. The height of flat front section 84 is about the same as the height of cylindrical left sidewall section 82. The flat front section 84 is generally rectangular in shape.
Raised front section 86 confronts the control box 20. Raised front section 86 extends laterally in the x direction between flat front section 84 and right sidewall section 110. Raised front section 86 extends longitudinally in the y direction from bottom wall section 80 and recessed section 128 to the right medial section 124. A base or floor 88 of raised front section 86 extends in a vertical x, y plane that is disposed forwardly of a vertical x, y plane in which flat front section 84 lies. The height of the raised front section 86 is slightly less than the height of flat front section 84 and the height of the cylindrical left sidewall section 82.
Raised front section 86 includes a stick on graphics sheet 92 having a generally rectangular border 94 and an opening 96. Opening 96 surrounds the key switch 44 and further surrounds an eyebrow 98 that offers protection to key switch 44. Eyebrow 98 is a part of the raised front section 86 and thus is a section of the front housing portion 54. Eyebrow 98 is integral and one-piece with the housing 16. Eyebrow 98 is molded integrally with front portion 54 of the housing 16.
Eyebrow 98 offers protection from the water, rain, ice, snow, the sun, dirt, mud and wayward swinging of paddles and fishing poles. From a front perspective, eyebrow 98 is U-shaped. Eyebrow 98 includes two feet 100. From each of the feet 100, eyebrow 98 extends upwardly and frontwardly to a ceiling section 102. The front edge 104 of ceiling section 102 meets a vertical plane that is set forwardly of the front face of the keyhole cover 48 when the keyhole cover 48 is closed, as shown in
Raised front section 86 includes an opening 108 through which key switch 44, including key hole 46 and key hole cover 48, extends. Opening 108 confronts key switch 44, including key hole 46 and key hole cover 48. Eyebrow 98 covers opening 108 and is cantilevered over opening 108. A bottom edge of the opening 108 is generally at the elevation of the feet 100. An upper edge of the opening 108 confronts the ceiling 102. Side edges of opening 108 are between the tapering edges 106. Side edges of the opening 108 taper downwardly and inwardly toward each other.
Ceiling or roof 102 extends in the x and z directions. Triangular sides 132 of the eyebrow 98 run in the y and z directions. Junctions or corners between the roof 102 and the triangular sides 132 are rounded.
Eyebrow 98 includes a depth. Key switch 44 extends forwardly out of the opening 108. The depth of the eyebrow 98 at the ceiling 102 is greater than a distance that the key switch 44, including the key hole cover 48, extends forwardly out of the opening 108.
Intermediate section 90 is coplanar with flat front section 84. Intermediate section 90 is extends in the y direction between raised flat section 86 and bottom wall section 80. Intermediate section 90 extends in the x direction between flat front section 84 and recessed portion 128.
Right sidewall section 110 confronts the right side of the control box 20. Right sidewall section 110 runs obliquely outwardly from flat section or floor 88 to lip base section 60, as shown in
Opening 108 includes a top and a bottom. The top of opening 108 confronts the ceiling 102 of eyebrow 98. The bottom of opening 108 confronts the feet 100 of eyebrow 98. The ceiling 102 of eyebrow 98 is disposed at an elevation greater than the top of the opening 108. Sides 132 of eyebrow 98 depend from ceiling 102. Each of the sides 132 includes a bottom or a foot 100. The bottom or foot 100 of the sides 132 confronts the bottom of opening 108. Sides 132 taper forwardly and upwardly from the bottom or feet 100 to the front edge 104 of the ceiling 102.
Gear head section 112 confronts the gear head 24. Gear head section 112 includes a flat section 114 that is generally U-shaped and that lies in a vertical or x,y plane that is disposed rearwardly of the x,y vertical plane in which flat front section 84 lies. U-shaped flat section 114 partially surrounds a partially annular section 116 that projects forwardly of the U-shaped section 114. Partially annular section 116 is tied to flat front section 84 by a strip 118 that is coplanar with flat front section 84. Annular section 116 projects forwardly in the z direction of each of U-shaped section 114 and strip 118. U-shaped section 114 leads into right medial sidewall section 124 on one side and leads into left medial wall section 130 on the other side.
Left upper sidewall section 120 extends at a right angle from lip base section 60 to U-shaped section 116. Left upper sidewall section 120 extends at an oblique angle from cylindrical wall section 82 to upper wall section 134.
Right upper sidewall section 122 extends at a right angle from lip base section 60 to U-shaped section 116. Right upper sidewall section 122 extends at an oblique angle from right sidewall section 110 to upper wall section 134.
Left and right upper wall sections 120, 122 of front housing portion 54 taper toward each other such that sections 120, 122 taper inwardly and upwardly. Left and right upper wall sections 164, 168 of rear housing portion 56 taper toward each other such that section 164, 168 taper inwardly and upwardly.
Upper wall section 134 extends at a right angle in the z direction from lip base section 80 to U-shaped section 116. Upper wall section 134 extends in the x direction from left upper wall section 120 to right upper wall section 122.
Right medial sidewall section 124 confronts control box 20. A main portion of right medial section 124 extends obliquely from lip base section 60 to raised front section 86 and runs obliquely relative to flat section 88 of raised front section 86, as shown in
Right medial sidewall section 124 is L-shaped, with an x direction portion running from strip 118 to right sidewall section 110 and a y direction portion running from raised front section 86 to lip base section 80.
Recessed wall portion or first dimple 126 extends between cylindrical sidewall section 82 and bottom flat section 80. Recessed wall portion 128 extends between bottom flat section 80 and right sidewall section 110. Dimples 126, 128 provide a greater space on lip base section 60 for a pin connector hole 68 and a corresponding pin connector or screw.
Second or rear housing portion 56 includes a receiver 136 for receiving and confronting the cylindrical motor 22. Receiver 136 includes a first cylindrical section 138 having an axis extending in the y direction, a second cylindrical section 140 having an axis extending in the y direction, a flat section 142 in an x,y plane, a third cylindrical section 144 having an axis extending in the y direction, and a flat section 146 in an x,y plane and extending between the first cylindrical section 138 and the third cylindrical section 144.
Rear housing portion 56 further includes a flat section 148 for confronting the control box 22, a flat section 150 for confronting the gear head 24, a lowered flat section 152, a left sidewall 154, a right sidewall 156, a bottom sidewall 158, a medial sidewall 160, a step 162, a right oblique sidewall 164, an upper sidewall 166, a left oblique sidewall 168, a transition section 170, a left corner recessed portion 172, and a right corner recessed portion 174.
Receiver 136 projects rearwardly from flat sections 148 and 150. Receiver 136 is disposed opposite of cylindrical section 82. Receiver 136 is also disposed opposite of flat section 84. Receiver 136, left sidewall 154, cylindrical section 82, bottom wall section 80, and flat section 84 form a retainer or pocket for cylindrical motor 22.
An upper portion of the cylindrical section 138 extends from the left sidewall 154 in the z direction and then extends into the flat section 146 in the x direction. A lower portion of the cylindrical section 138 extends from the left sidewall 154 in the z direction and then extends into the flat section 142 in the x direction.
Second cylindrical section 140 is disposed in the x direction between flat section 142 and a lower portion of the third cylindrical section 144. The axis of the second cylindrical section 140 extends in the y direction. Second cylindrical section 140 is disposed in the y direction between flat section 146 and transition section 170.
Flat section 148 confronts the rear side of the control box 20. Flat section 148 is generally rectangular. Flat section 148 extends in the x direction between the third cylindrical section 144 and the right sidewall section 156. Flat section 148 extends in the y direction between the lowered (or forwardly placed) flat section 152 and the step 162. Flat section 148 is opposite of raised front section 86 and runs parallel to flat section 88 of raised section 86. Right sidewall section 156 of rear portion 56 extends obliquely outwardly from flat section 148, as shown in
Flat section 150 confronts the rear of the gear head 24. Flat section 150 is coplanar with flat section 148. Sidewall sections 164, 166, 168 lead in the z direction to flat section 150. Flat section 150 borders upper portions of cylindrical section 138, flat section 146 and cylindrical section 144. Flat section 150 further extends into flat section 148. Flat section 150, sidewall section 164, sidewall section 166, sidewall section 168, sidewall section 120, sidewall section 122, upper sidewall section 134, and flat section 114 form a retainer or pocket for gear head 24.
Lowered (or forwardly placed) flat section 152 is forwardly of flat section 148 to more distinctly form the pocket or retainer sections of rear housing portion 56 for the control box 20 and the motor 22. Forwardly placed flat section 152 is set in an x,y plane that is forwardly of the flat section 148, which is also set in an x,y plane. Motor receiver 136 projects rearwardly of the flat section 148 and of the flat section 152. Forwardly placed flat section 152 extends in the y direction between flat section 148 and bottom sidewall section 158. Forwardly placed flat section 152 extends in the y direction between cylindrical section 144 and right sidewall 156 and recessed section 174. Forwardly placed flat section 152 is opposite of a lower section of raised section 86 and intermediate section 90. Bottom wall section 158 of rear housing portion 56 extends obliquely relative to flat section 148, as shown in
A tear drop shaped metal bracket 176 is anchored to the gear head 24. Bracket 176 aids in the engagement of drive assembly 14 as a whole to winch box 224 of winch frame 18. Flat section 150 is pinched between the gear head 24 and the tear drop shaped bracket 176. Bracket 176 is rotatably engaged to gear head 24 via pin connectors 178 cooperating with concentric circular slots 180. A gear head drive shaft 24A extending in the z direction through gear head 24 is one connection to the winch box 224 of the winch frame 18. Gear head drive shaft 24A of the gear head 24 engages the exterior of the drive shaft of the winch box 224. A safety bolt 218, shown in
Housing 16 with drive assembly 14 therein is likely set outside in a position fixed to the winch box 224 of the winch frame 18 for its entire lifetime as a working product. Thus, housing 16 is subject to the elements such as the sun, rain, wind, dirt, ice and snow. Housing 16 best keeps its contents dry and clean if sealed at the factory. Housing 16 provides access to the gear head 24 at two locations: first, through the flat section 150 in the rear housing portion 56 and, second, through the annular section 116 of the front housing portion 54.
As to the rear housing portion location providing access to the gear head 24, it should be noted that metal bracket 176 includes an inner circular edge 184. This inner circular edge 184 is flush with a circular edge of a rear opening formed in flat section 150. It should be noted that gear head 24 includes a gear head drive shaft receiver 186 that receives and drives the gear head drive shaft 24A that in turn is engaged to the exterior of the winch shaft of the winch box 224 of the winch frame 18. This rear housing location, namely the rear opening formed in flat section 150 having the edge that is flush with circular edge 184 of metal bracket 176, provides access to the gear head 24, and this access is available without opening up the housing 16. This rear opening that is flush with circular edge 184 is coaxial with front opening 188. This rear opening that is flush with circular edge 184 confronts gear head 24 and is coaxial with gear head drive shaft receiver 186 and the gear head drive shaft 24A.
As to the front housing portion location, as shown in
Front opening 188 is closed and sealed with removable lock cap plug 190. Plug 190 includes a head 192 and a shaft 194. Head 192 is of a greater diameter than the diameter of opening 188 and seals the front opening 188 when shaft 194 is snapped onto the edge of the annular section 116 that forms the front opening 188. Shaft 194 is of a lesser diameter than the diameter of front opening 188. To facilitate the snapping action to and from the front opening 188, shaft 194 includes a resilient ring 195 running about the shaft 194 and spaced from the inner flat annular face of the head 192. Ring 195 includes an outside diameter that is slightly greater than the diameter of opening 188 such that plug 190 is pushed with a snapping action into front opening 188, with the ring 195 being compressed when pushed into and drawn out of the front opening 188 to provide the snap fit to the plug 190. The exterior surface of the head 192 is spherical.
When setting up the drive assembly 14 for the first time, the housing portions 54, 56 do not need to be taken apart, but can remain factory sealed to each other. This is so because plug 190 can be removed to allow aluminum lock cap 216 and safety bolt 218 to be inserted through opening 188, where aluminum lock cap 216 is engaged to the gear head drive shaft 24A and where the safety bolt 218 is inserted through the gear head drive shaft 24A and into the winch box drive shaft, as shown in
Flat bottom wall section 80 includes a bottom housing opening therein and an elastomeric grip or trap or quick connect holder 196 engaged over and confronting the bottom housing opening with pin connectors fastened to bottom wall section 158. Grip 196 is generally formed in the shape of a disk and includes a grip opening that communicates with the bottom housing opening in section 80. Grip 196 holds tool 76 therein. Tool 76 includes a shaft 200 and a socket 202. A drill such as a cordless drill engages the shaft 200, and socket 202 engages motor shaft end 37 so as to drive the motor 22, which in turn drives the gear head 24, which in turn drives the gear head drive shaft receiver 186 and the gear head drive shaft 24A therein, which in turn rotates the winch drive shaft and spool for lifting or letting down the boat lift 12.
Grip or trap 196 includes a set of resiliently flexible teeth 204. Each of the teeth 204 is integral and one-piece with the resilient grip 196. Each of the teeth 204 has a relatively wide base or proximal end and a relatively narrow distal end. Each of the teeth 204 has a pair of sides that taper inwardly toward each other from the relatively wide base to the relatively narrow distal end. The base of the teeth 204 define or confront a perimeter or circle or circular opening having a diameter greater than the diameter of the socket 202. Grip 196 defines a circle of teeth 204. The distal ends of the teeth 204 confront each other and define an opening having a diameter less than the diameter of the socket 202. The distal ends of the teeth 204 confront each other when the tool 76 is not engaged in the grip 196.
When the socket 202 is pushed into the grip 196, the teeth 204 resiliently flex inwardly, i.e., bend backwardly and inwardly and upwardly into the housing 16, as shown in
Gear head 24 includes the gear head drive shaft 24A. The gear head drive shaft 24A is engaged by the gear head drive shaft receiver 186 of the gear head 24. The gear head drive shaft 24A is installed in the gear head 24 through the rear access opening formed in the rear housing portion 56. The proximal end of the gear head drive shaft 24A engages the outside of the drive shaft of the winch box 224 and turns the drive shaft of the winch box 224 that is shown in
The Gargaro, III et al. U.S. Pat. No. 7,784,767 B2 issued Aug. 31, 2010 and entitled Boat Lift Drive is hereby incorporated by reference in its entirety.
Thus since the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalents of the claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
1593398 | Eubanks | Jul 1926 | A |
4107967 | Grabb | Aug 1978 | A |
4454801 | Spann | Jun 1984 | A |
4825673 | Drake | May 1989 | A |
4884424 | Meyer | Dec 1989 | A |
4885953 | Sweetland et al. | Dec 1989 | A |
5555752 | Fitzpatrick | Sep 1996 | A |
5711468 | Shoemaker | Jan 1998 | A |
20040256415 | Anjanappa et al. | Dec 2004 | A1 |
20080295553 | Tsuchikiri et al. | Dec 2008 | A1 |
20100301691 | Cors et al. | Dec 2010 | A1 |
Entry |
---|
Turnkey Direct Drive System. Datasheet [online]. Shore Commander, Mar. 23,2010 [retrieved Mar. 28, 2013]. Retrieved from the internet: <URL: http://shorecommander.com/>. |
Shore Commander, Shore Commander, catalog brochure, Shore Commander, Nicollet, Minnesota, United States of America. |
Number | Date | Country | |
---|---|---|---|
20120070230 A1 | Mar 2012 | US |