The present application claims the benefits of priority to application GB 1107222.0, filed May 3, 2011, and to application GB 1118350.6, filed Oct. 25, 2011, both of which are incorporated by reference herein.
The present invention relates to a boat steering arrangement comprising a main steering system and a control-surface assembly attached to the stern of a boat (that is, any water-borne vessel). Control surfaces of a boat include rudders, hydroplanes and other hinged or movable devices, such as trim tabs, used for controlling the motion of the boat.
As is well known, adjustable trim tabs positioned at the stern of a boat are often used to get the boat to the plane mode as quickly as possible; the boat is then maintained at its most economical cruising speed by tab adjustment. Relative adjustment of port and starboard trim tabs also enables the elimination or reduction of listing or heeling.
More generally, control surfaces may be taken to include static elements such as fixed vertical fins which assist in boat control by, for example, minimizing unwanted lateral movement. Thus, as a means to improve directional stability for watercraft, it is common practice to use fixed underwater fins or ‘skegs’ at a point as near as possible to the back of the vessel. In general, skegs reduce “side slip” of the vessel when in forward motion. Shallow draft vessels are more prone to side slip than vessels of deeper draft design.
As used herein, the term “skeg” means a fixed or movable vertical control surface; typically, but without limitation, a skeg takes the form of a small vertical fin; in this context, the term “vertical” is used herein to include any inclination that is nearer the true vertical than the true horizontal.
In various situations, it is desirable to provide a boat with movable control surfaces for steering additional to the main steering surfaces. For example, certain types of boat, such as jet drive boats, while being highly manoeuvrable at speed, are difficult to steer at low speed. Also, boats that operate offshore may be required to possess an emergency steering system that is independent of the main steering system.
One way of providing additional steering functionality is to install auxiliary movable vertical control surfaces. However, such control surfaces are potentially vulnerable to damage, particularly where the boat concerned is intended for shallow water operation or for launch and recovery to/from a road trailer.
Embodiments of the invention will now be described, by way of non-limiting example, with reference to the accompanying diagrammatic drawings, in which:
The control-surface assembly 10 generally comprises a trim tab 11 rotatably mounting a steering control surface formed by skeg 21. The trim tab 11 is arranged to pivot about an axis lying substantially parallel to the plane of the trim tab, the axis being defined in the present embodiment by a hinge 12 that connects the trim tab to a fixing plate 13 intended to be secured to the transom 30 of a boat (for example, by bolts). The angle at which the plate 13 is secured to the boat is such that, for a normally floating boat, the axis about which the trim tab can pivot lies within ±30 degrees of the horizontal and typically near horizontal. The skeg 21 is mounted on the trim tab 11 such that it extends generally at right angles to the trim tab and lies below the latter when the control-surface assembly is fitted to a boat.
As already indicated, the control-surface assembly 10 is intended to form part of a control-surface subsystem for a boat, this subsystem comprising, in addition to the trim tab 11 and skeg 21:
Considering next the form of the control-surface assembly 10 in more detail, the trim tab 11 is a plate of any suitable material, dimensions and gauge to suit the size of boat to which it is to be fitted. The trim tab 11 is manufactured to include mounting brackets 16 and 25 for the trim-tab actuator 14 and skeg actuator 24 respectively.
In the present embodiment, the piston rod of the trim-tab actuator 14 is pivotally connected to the mounting bracket 16, and the cylinder of the actuator 14 is provided with an aperture lug 15 to facilitate pivotal connection to a mounting bracket 31 provided on transom 30 (see
The blade-like skeg 21 is manufactured from material ideally corrosion resistant to salt water (suitable materials include stainless steel, marine alloy, bronze and FRP) and is sized to give it the strength and effect appropriate to its purpose, described below. The skeg 21 is rigidly attached to a shaft 22 and an aperture of appropriate size to accommodate this shaft is provided in the trim tab 11 offset towards one or other side edge of the trim tab (that is, offset in a direction parallel to the axis of pivoting of the trim tab). The skeg 21 is thus offset towards one or other side edge of the trim tab 11. Depending on the direction of this offset, the control-surface assembly 10 takes on a ‘port’ or ‘starboard’ handedness and, generally, rather than a boat being fitted with just a single control-surface assembly, a boat will be fitted with one or more pairs of port and starboard control-surface assemblies 10 with the oppositely-handed assemblies of the or each pair being symmetrically disposed about the boat centreline.
Details of the mounting of the skeg 21 by the trim tab 11 are best seen in
An upper skeg attachment plate 35 is welded onto the lower end of the skeg shaft 22 and is machined with countersunk holes to accommodate machine bolts 37. A correspondingly apertured lower skeg attachment plate 36 is welded onto the upper edge of the skeg 21. Using bolts 37 and mating nuts the skeg 21 can thus be releasably connected to the shaft 22 enabling the skeg 21 to be replaced should it become damaged.
Upper and lower flanged and centrally-apertured shaft-mounting blocks 27, 28 are positioned on respective sides of the trim tab 11 with their central apertures aligned with the shaft aperture formed in the trim tab; the shaft-mounting blocks 27, 28 are secured together by bolts 29 that pass through the trim tab 11 and the flanges of the blocks.
The skeg shaft 22 extends through the central apertures in the shaft mounting blocks 27, 28 and is held in place, with the upper face of the upper attachment plate 35 juxtaposed the lower face of the lower shaft-mounting block 28, by a tiller arm 23 that is clamped and woodruff keyed (woodruff key not shown) or similar onto the upper end of the shaft 22.
The opposed faces of the lower shaft-mounting block 28 and upper attachment plate 35 are machined smooth and provide a minimum clearance interface that serves to eliminate up/down movement and subsequent banging of the skeg.
The tiller arm 23 is pivotally connected to the rod of the skeg actuator 24 whereby operation of the latter is effective to rotate the skeg 21.
It will be seen from
As can be seen from
An example usage of an oppositely-handed pair of control-surface assemblies 10 in respect of a known form of water jet powered vessel will now be described.
The water jet powered vessel here used as an example vessel to which the control-surface assembly 10 can be usefully applied, is an oil spill recovery vessel, OSRV. The general form of OSRV 50 is shown in
A skimmer unit 53 is carried between twin hulls 81 & 82 of the catamaran bow section 51 of the OSRV 50. When the skimmer unit 53 is in a lowered position (shown in chain-dashed outline in
When oil is not being recovered, the skimmer unit 53 can be lifted clear of the water by a lifting mechanism 54 into a raised position (shown in dotted outline in
The OSRV propulsion system comprises a water jet drive unit 57 powered from a marine diesel engine 55 via a transmission including a reversible marine gearbox 56. As can be seen in
However, jet-drive vessels, such as OSRV 50, whether pleasure or commercial, are by nature less manoeuvrable than their shaft driven inboard engine counterparts This is because a jet drive unit is positioned approximately at water level on the transom of a vessel, and steered by use of a steering control surface formed by a deflector plate situated within the water jet tube of the jet drive unit and operative to deflect the high pressure water jet in the desired direction (movement of the deflector plate being controlled by an actuator in dependence on operation of a user-operable steering control such as a steering wheel or port/starboard toggle switch). In contrast, a steering system comprising a normal propeller and rudder combination has the advantage of the rudder being positioned directly aft of the propeller whereby the water flow from the propeller is deflected in the desired direction but at a greater depth than a surface mounted jet-drive unit. Such propeller installations with rudders, be they single or multiple, provide a more powerful medium for vessel steerage than a jet drive.
From an operational point of view, it will be appreciated that ideally the jet-powered OSRV 50 should be highly manoeuvrable at slow speed for skimming, while providing good high speed planing control.
To enable these criteria to be satisfied, the transom 88 of OSRV 50 is fitted with a pair of oppositely-handed control-surface assemblies 10 as illustrated in
The OSRV 50 thus has an overall steering arrangement comprising both the main steering system (formed by the jet deflector plate, its associated actuator and the steering control) and a skeg-based steering system provided by the control-surface subsystem (the control-surface assemblies and their associated actuators and control).
The following controls are provided on the control panel 91:
The slave control 95 thus enables the skegs 21 to be set to operate (through their respective operating arrangements, in this example the actuators 24) selectively either in coordination with, or independently of, the main steering system of the OSRV in steering the boat. Once the slave control 95 has been set in a selected state, coordinated or independent operation of the skegs and main steering system (as the case may be) continues until the set state of the slave control is changed.
As already noted, the
The trim tabs 11 and skegs 21 of the control-surface assemblies 10 fitted to the OSRV 50 are advantageously put to use as described below during operation use of the OSRV 50.
During high speed transit of the OSRV to an oil spill, the trim tabs 21 are set independently or in a coordinated manner in accordance with vessel load and the prevailing sea-state in order to maintain vessel trim for maximum safety, comfort and economy. During such high speed transit, the skegs 21 are set in a straight fore/aft direction to aid forward motion directional stability.
For low speed work such as oil skimming, steerage of the OSRV 50 is improved relative to jet drive steering alone, by coordinated steering operation of the skegs 21, possibly slaved to the steering control of the jet drive 57 to provide tighter and faster course changes. The skegs 21 may also be individually controlled for fine steering control.
Furthermore, as the skegs 21 can be operated independently of the main steering system of the OSRV (the jet drive steering system), the skegs 21 can be used (typically, in coordination) as an emergency steering system in the event of the failure of the vessel main steering system.
As a result of the skegs 21 being mounted on the trim tabs 11, the directional stabilizing effect of the skegs can be varied by lowering/raising the trim tabs 11. Of course, as already noted, the ability to raise the skegs 21 by operation of the trim tabs 11 enables the skegs to be put in a less vulnerable position for shallow water operation and for launch and recovery operations (from a road trailer, ship, dockside, or oil/gas platform). Furthermore, in locations which are dangerous, (for example, in the tropics where crocodiles, leeches etc may be present) or where debris is problematic and could become entrapped around the skegs 21 during commercial/pleasure operations, raising the trim tabs 11 enables the skegs to be raised for cleaning without the need for the vessel operator to enter the water.
In the
A second helm pump 112 is provided for effecting proportional control of the skeg actuators 24 from the wheel 101 through hydraulic lines 115, 116. The helm pump 112 is coupled to the wheel 101 through toothed pulleys 121, 122 secured to the rotor shafts of the helm pumps 102, 112 respectively, and a toothed belt 123 that is engaged around both toothed pulleys 121, 122. The lines 115, 116 are bridged by a normally-open (N/O) bypass valve 117 whereby hydraulic control of the actuators 24 is normally disabled and the skegs 21 disengaged from control by the wheel 101; on closure of the valve 117, the lines 115, 116 are no longer short circuited and the skegs are proportionately controlled by the steering wheel 101. The valve 117 is, for example, arranged for local manual operation though remote operation, for example, through wire, electrical or hydraulic means, can additionally/alternatively be provided.
The helm pumps 102, 112 may be power assisted or manual.
During normal operation, the valve 107 is closed and the valve 117 open as a result of which the main steering system (jet drive deflector plate) is engaged whereas the skegs 21 are disengaged from control by the wheel 101 thereby disabling the steering system provided by the skegs. However, should it be desired to provide additional steering control, the valve 117 can be closed thereby enabling control of the skegs by the wheel 101, this control being in coordination with the control of the jet-drive deflector plate due to the coupling of the shafts of the helm pumps. It will, of course, be appreciated that for the skegs to provide steering control of the vessel, the trim tabs need to be in their lowered position. In the event of a problem with the jet drive steering, control of the deflector plate by the wheel 101 can be disengaged by opening the valve 107; assuming the valve 117 is closed and the trim tabs are down, steering is now effected through control of the skegs by the wheel 101 alone.
If both valves 107 and 117 are open, then both main steering system and the skeg steering system are disabled. This can be used as a security measure for the vessel, particularly if the operating mechanisms for the valves are concealed.
It should be noted that generally it is desirable for the jet-drive deflector plate to be set to lie straight fore and aft before disabling the main steering system by switching the valve 107 from its closed to its opened position. Similarly, it is desirable for the skegs 21 to be set to lie straight fore and aft before disabling the skeg steering system by switching the valve 117 from its closed to its opened position. However, even if this is not done, the jet-drive deflector plate/skegs should self align with the water flow therepast due to water flow pressure on the jet-drive deflector plate/skegs and the fact that hydraulic fluid is free to circulate through the valve 107/117 between the lines of the corresponding hydraulic circuit.
It will be appreciated that, although as described the
Although the use and operation of the control-surface assembly 10 has been described above in relation the fitting of an oppositely-handed pair of assemblies 10 to a water jet powered vessel, it will be appreciated that the number of control-surface assemblies fitted to a vessel can range from one to any number as desired. Furthermore, the type of vessel to which a control-surface assembly or assemblies 10 can be fitted and controlled as described above, is not limited to water jet powered vessels and generally any type of vessel (including propeller driven vessels with rudder-based main steering systems) can be provided with one or more control-surface assemblies 10 an their associate control arrangements.
Many variants are possible to the above described form of control-surface assembly 10. For example, the skeg 21 can be centrally mounted in the trim tab 11 rather than being offset towards one side edge and the details of how the skeg is rotatably mounted by the trim tab can be varied, as will be apparent to a person skilled in the art. Furthermore, it is possible to provide multiple skegs 21 rotatably mounted on the trim tab for coordinated operation by the skeg actuator 24.
The placement and form of the trim-tab actuators 14 and skeg actuators 24 can be varied from that described; for example, rotary actuators can be used rather than linear actuators and the actuators can be electrically powered rather than hydraulic. As already indicated, rather than operating the trim tab 11 and skeg 21 using actuators that are part of the control-surface assembly 10, trim-tab and skeg operating arrangements can be provided that are mounted inboard of the boat to which the assembly 10 is fitted, the trim tab 11 and skeg 21 being, for example, connected to such operating arrangements by wire or other form of connection.
The shapes of the trim tab 11 and skeg 21 can be varied from that shown and the axis of pivoting of the trim tab 11 may be offset out of the plane of the trim tab.
The control-surface assembly can be made independently of a boat and later fitted to a boat; alternatively, the control-surface assembly can be built in situ on a boat (including, for example, by fitting a skeg to existing trim tab).
Number | Date | Country | Kind |
---|---|---|---|
1107222.0 | May 2011 | GB | national |
1118350.6 | Oct 2011 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2099492 | Luders | Nov 1937 | A |
4595372 | Herbert | Jun 1986 | A |
4597742 | Finkl | Jul 1986 | A |
4600395 | Pichl | Jul 1986 | A |
4615290 | Hall | Oct 1986 | A |
4832642 | Thompson | May 1989 | A |
5326294 | Schoell | Jul 1994 | A |
5470262 | Bustillo, Sr. | Nov 1995 | A |
6805068 | Tossavainen | Oct 2004 | B1 |
7018252 | Simard et al. | Mar 2006 | B2 |
20120137947 | Harada et al. | Jun 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120282827 A1 | Nov 2012 | US |