Bobbin cores for sideless pre-wound sewing thread bobbins and methods of winding the same

Information

  • Patent Grant
  • 6315227
  • Patent Number
    6,315,227
  • Date Filed
    Tuesday, November 23, 1999
    24 years ago
  • Date Issued
    Tuesday, November 13, 2001
    22 years ago
Abstract
Cylindrical bobbin cores have at least one radially oriented slot formed in at least one end thereof. The slot is sized and configured to mate with a radially extending blade associated with the drive head of the winder so as to achieve positive rotational drive therebetween. In view of this interconnection between the core and the drive head, significantly less spring pressure needs to be exerted against the core by the tail stock of the winder.
Description




FIELD OF THE INVENTION




The present invention relates generally to bobbin cores, especially those for use as cores for sideless bobbins pre-wound with sewing thread.




BACKGROUND AND SUMMARY OF THE INVENTION




The conventional technique to drive bobbin cores during a thread-winding operation involves providing a “knifed” or “serrated” drive head associated with the winder which physically digs into the bobbin core. The serrated drive head spins at high speeds and is intended to prevent the core from slipping during the thread-winding operation. In this regard, even small amounts of core slippage during thread-winding causes the bobbin to be out-of-specification due to incorrect thread tensions.




There are several disadvantages associated with the use of conventional serrated drive heads. Specifically, over time the serrations on the drive head become dull due to wear and tear. As they dull, small amounts of slippage may occur which is evidenced by incorrect thread tensions resulting in out-of-specification bobbins. In addition, small amounts of debris or other material may become trapped in the serrations which again might lead to relative slippage between the drive head and the bobbin core. Needless to say, the ends of the cores become scarred due to the frictional engagement with the serrated drive head—a possibility that can lead to structural weakness in the bobbin core and/or a core which becomes out-of-round.




The amount of spring pressure required to hold the drive heads against the bobbin core to prevent slippage can also cause operator difficulty during doffing of the wound bobbins and replacement with fresh bobbin cores. That is, as the serrated drive head becomes worn, greater spring pressures are needed in order to overcome the tendency of the bobbin core to slip.




Recently, novel magnetic bobbin cores and sideless pre-wound bobbins employing the same are disclosed in copending U.S. patent application Ser. No. 09/447,740 filed concurrently herewith, the entire content of which is expressly incorporated hereinto by reference. In general, such bobbin cores include a cylindrical core with at least one end thereof being permanently magnetized. In preferred forms, the bobbin cores are formed from a thermoplastic or thermoset resin in which magnetized particles are dispersed. The problems noted above, can sometimes be exacerbated by the permanent magnetism exhibited by such bobbin cores.




It would therefore be highly desirable if bobbin cores, especially magnetized bobbin cores, could be provided which overcome these difficulties. It is toward providing solutions to such problems that the present invention is directed.




Broadly, the present invention is embodied in cylindrical bobbin cores which have at least one radially oriented slot formed in at least one end thereof. The slot is sized and configured to mate with a radially extending blade associated with the drive head of the winder so as to achieve positive rotational drive therebetween. In view of this interconnection between the core and the drive head, significantly less spring pressure needs to be exerted against the core by the tail stock of the winder.




These, and other, aspects and advantages of the present invention will become more clear after careful consideration is given to the following detailed description of the preferred exemplary embodiments thereof.











BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS




Reference will hereinafter be made to the accompanying drawings wherein like reference numerals throughout the various FIGURES denote like structural elements, and wherein,





FIG. 1

is a perspective view of a sideless pre-wound bobbin employing a notched bobbin core in accordance with the present invention;





FIG. 2

is perspective view of another embodiment of a notched bobbin core in accordance with the present invention;





FIG. 3

is schematic side elevational view, partly in section, of a bobbin winder system in accordance with the present invention;





FIG. 4

is an enlarged front end view as taken along line


4





4


in

FIG. 3

of the drive head employed in the winder system therein; and





FIG. 5

is an enlarged side elevational view as taken along line


5





5


in

FIG. 4

showing the mated relationship between the bobbin and the drive head during a bobbin winding process.











DETAILED DESCRIPTION OF THE INVENTION




Accompanying

FIG. 1

shows a sideless bobbin B which includes a core


10


around which a continuous length of thread


11


is wound. The core


10


is cylindrical and most preferably has a diameter which is substantially the same as its lengthwise dimension. The thread


11


is thus wound upon the bobbin


10


to form a cylindrical bobbin structure B whose diameter is about three times its lengthwise dimension.




As shown, the core


10


includes a radially oriented slot


12


formed in end face


10


-


1


. The slot


12


is oriented radially along a lengthwise bisecting plane of the core


10


. Most preferably, the core


10


also has a radially oriented slot


14


defined in its opposite end face


10


-


2


. In this regard, the slot


14


is oriented along the same lengthwise bisecting plane of the core


10


, but is 180° out of phase with the slot


12


.




Another embodiment of a bobbin core


20


is depicted in accompanying FIG.


2


. Most preferably, the bobbin core


20


is similarly sized as compared to the bobbin core


10


described above. However, according to this embodiment of the invention, the bobbin core


20


includes a pair of diametrically opposed slots


22


formed on end face


20


-


1


and a pair of diametrically opposed slots


24


formed on the opposite end face


202


. These pairs of slots


22


,


24


are oriented relative to respective lengthwise bisecting planes of the core


20


so as to be mutually orthogonally disposed relative to one another. That is, each of the slots


22


is disposed radially at an orientation that is substantially 90° relative to the slots


24


, and vice versa.




The bobbin cores


10


and


20


are most preferably magnetized as described more fully in the co-pending patent application Ser. No. 09/447,740 filed on Nov. 23, 1999 cited above. In this regard, the bobbin cores


10


and


20


are most preferably a flangeless, sideless bobbin having at least one end which is permanently magnetized. However, the cores may be non-magnetic, if desired.




A thread-winding system


30


in which the bobbin cores


10


and/or


20


may be used is shown in FIG.


3


. The discussion which follows will refer to core


10


as depicted in

FIG. 1

, but it will be understood that the discussion is equally applicable to core


20


depicted in FIG.


2


. In this regard, the core


10


is positioned between coaxially opposed drive head


32


and tail stock


34


. The tail stock


34


is biased by means of spring


34


-


2


toward the drive head


32


. Spring pressure is adjustable by means of the threaded shaft


36


which is threadably engaged with the slide block


34


-


1


of the tail stock


34


. Thus, turning movements applied to the knob


36


-


1


of the shaft


36


will cause the block


34


-


1


to reciprocally move within guides


38


thereby increasing or decreasing the spring pressure exerted against the core


10


.




The terminal end


32


-


1


of the drive head


32


is shown in greater detail in accompanying

FIGS. 4 and 5

. As seen therein, the terminal end


32


-


1


of the drive head


32


is generally conically shaped so as to be insertable within the interior space of the cylindrical core


10


. The terminal end


32


-


1


carries a rigid radially projecting blade


32


-


2


which is mated within the slot


12


of core


10


. Thus, this mated relationship between the terminal end


32


-


1


of the drive head


32


and the slot


12


of core


10


provides for positive drive of the latter by the former.




In use, the drive head


32


is rotated by means of a drive motor


40


(see FIG.


3


). During winding operation, therefore, the core


10


is frictionally engaged between the drive head


32


and tail stock


34


and is rotated by the drive head


32


by virtue of the positive mated drive relationship between the radially extending blade


32


-


2


and the slot


12


. Simultaneously during such rotation, the thread


11


is directed to the core


10


by a traversing arm


42


which reciprocates by traverse cam


44


. The traversing arm


42


reciprocally causes the thread


11


to traverse from one end of the core


10


to the other. After a period of time, therefore, a quantity of the thread


11


will be wound upon the core


10


.




When sufficient amount of the thread


11


has been built up on the core


10


to form the bobbin B, the winding operation is stopped to allow


10


automatic doffing of the bobbin B. At that time, a fresh bobbin is placed between the drive head


32


and tail stock


34


and the process repeated. It should be noted here that the operator does not need to align the slot


12


and blade


32


-


2


when a fresh core


10


is initially coaxially placed between the drive head


32


and tail stock


34


. Instead, the spring pressure exerted by the tail stock


34


is sufficient to maintain the core


10


positionally therebetween. On rotation of the drive head


32


, therefore, relative slippage occurs between the terminal end


32


-


1


of the drive head


32


and the adjacent end


10


-


1


of the core


10


until such time as the blade


32


-


2


is rotated into alignment with the slot


12


. At the moment of such alignment, then, the spring pressure will urge the blade


32


-


2


to be seated within the slot


12


so that thereafter, positive rotational drive may be transferred to the core


10


by the drive head


32


.




As can be appreciated, the mated relationship between the blade


32


-


2


and the slot


12


of the core


10


prevents relative slippage from occurring therebetween. Moreover, because of this positive drive arrangement, minimal spring tension needs to be applied against the core


10


by mans of the tail stock


34


. As such, if manual doffing of the bobbin B and replacement with a fresh core


10


is required, then it is an easier task for the operator.




While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.



Claims
  • 1. A pre-wound flangeless, sideless bobbin comprising a cylindrical bobbin core, and a continuous length thread wound about said core, wherein said core is permanently magnetized, and includes at least one radially oriented slot at one end thereof.
  • 2. The bobbin of claim 1, wherein said core includes another radially oriented slot at another end thereof.
  • 3. The bobbin of claim 2, wherein said one and another slots are disposed 180° relative to one another.
  • 4. The bobbin of claim 1, wherein said core includes a pair of radially oriented slots at said one end thereof.
  • 5. The bobbin of claim 4, wherein said pair of slots are diametrically opposed to one another.
  • 6. The bobbin of claim 4, wherein said core includes another pair of radially oriented slots which are diametrically opposed to one another at another end thereof, and wherein said another pair of said slots are oriented substantially orthogonally relative to said first-mentioned pair of said slots.
  • 7. A method of making a flangeless, sideless pre-wound bobbin by winding a continuous length of thread about a bobbin core comprising:(a) positioning a flangeless, sideless bobbin core which is permanently magnetized and includes at least one radially extending notch between a terminal end of a drive head and a spring-biased tail stock associated with a thread winder; (b) causing a radially oriented blade fixed to the terminal end of the drive head to be seated within the slot; and then (c) rotating the drive head to cause the blade seated within the slot to positively rotationally drive the core to wind a sufficient amount of the thread about the core, thereby forming the bobbin.
  • 8. The method of claim 7, wherein step (b) is practiced by initially misregistering the slot of the core and the blade of the drive head, and then initially rotating the drive head to cause slippage between the drive head and the core until the blade of the drive head and the slot of the core are registered with one another, whereupon the blade is seated within the slot.
  • 9. The method of claim 7 or 8, wherein step (a) is practiced by adjusting the spring force of the tail stock such that relative slippage occurs between the drive head and the core in the absence of the blade being seated within the slot.
US Referenced Citations (9)
Number Name Date Kind
36782 Hussey Oct 1862
659306 Kingsland Oct 1900
1967676 Marchev Jul 1934
2875961 Mori et al. Mar 1959
3074666 Hawley Jan 1963
3716202 Thomas Feb 1973
4008860 Tanaka Feb 1977
4489541 Boling Dec 1984
5653395 Iwade et al. Aug 1997