The present invention relates to insertion of cannula, such as needles or the like, into a bodily fluid space, and more particularly, to detection that the tip of the cannula has entered the bodily fluid space.
In many situations, it is necessary that a needle or other cannula be inserted into a patient's body space which carries bodily fluid such as blood vessel carrying blood or an epidural space carrying spinal fluid. For example, when introducing a catheter into a patient's blood vessel for IV infusions and the like, a catheter with the sharp tip of a small gauge needle cannula extending therefrom is used to pierce the skin and the blood vessel so as to carry the end of the catheter into the vein. Once in place, the needle is withdrawn, leaving the catheter in place for administration or withdrawal of fluids, such as by connection with the catheter hub. As the needle enters into the blood vessel, blood will be forced back through or along a surface of the cannula into a chamber at the proximal end of the needle hub and/or catheter hub. This so-called flashback may be seen by the medical practitioner to know that the cannula has entered the vein. In some circumstances, the blood will not flash back quickly enough to be seen before the cannula tip has gone beyond the blood vessel, such as by coming out the other side of the vessel. This is particularly a concern with small gauge or long cannulas, or where there is a solid cannula with a grind or groove, or perhaps where a blunting device consumes part of the interior space of an otherwise hollow cannula.
One proposal has been to provide an optical lens system which allows the user to “see” blood at the proximal end of the cannula when the blood appears at the distal, sharp tip of the cannula. Such an optical lens system may be complex to manufacture, may not work well under certain conditions, or may require use of other equipment such as a separate light source. Others have proposed complex pressure sensing or acoustic sensing systems to more promptly detect entry into the bodily fluid space. These various proposals may not provide the desired results or may present other drawbacks.
The present invention provides an improved bodily fluid space entry detection system and method in which entry of the cannula tip into the bodily fluid space is detected promptly and reliably and with the desired results. To this end, and in accordance with the principals of the present invention, entry of the cannula into a bodily fluid space is detected by energizing a visual and/or audible alert in response to the bodily fluid in the bodily fluid space establishing electrical conduction adjacent the cannula tip and/or along the cannula. In one aspect of the invention, a pair of electrical contacts are provided adjacent the cannula tip and/or along the cannula in non-conducting relationship such that upon entry into the bodily fluid space (such as a blood vessel or epidural space by way of example and not limitation), the bodily fluid normally present in the bodily fluid space (such as blood in the blood vessel or spinal fluid in the epidural space) establishes electrical conduction between the contacts. Detection of such conduction, such as by an alert circuit, causes an alert source to be energized to indicate to the medical practitioner that the cannula tip is in the bodily fluid space. The alert source may, for example, be an LED to provide a visual alert, and/or may be a buzzer to provide an audible alert.
The electrical contacts may be coupled to the alert circuit by first and second elongated conductors. One or both of the conductors may be insulated wires with respective portions, such as their respective distal ends, exposed to define the electrical contacts. Alternatively, one of the conductors may include the cannula itself, with the other conductor being an insulated wire or an insulated blunting member extending along the cannula with an exposed portion, such as the distal tip end. The cannula thus defines one of the electrical contacts with the exposed portion or tip of the insulated wire or blunting member defining the other electrical contact. The wire(s) may extend along the outer surface of the cannula, such as in a groove(s) in the outer surface thereof, or the insulated wire or insulated blunting member may extend through the cannula.
Advantageously, the pair of electrical contacts are adjacent the cannula tip. Where two wires are used, their exposed ends may be at or near the cannula tip. Where the cannula is one of the contacts, the area thereof adjacent the contact defined by the exposed portion of the wire or blunting member becomes the other contact. In that situation, where the wire extends to the cannula tip, the tip may be seen as the other contact.
In accordance with another aspect of the present invention, the alert circuit and alert source (such as the LED and/or buzzer) may be contained within the needle hub supporting the cannula, or may be contained in a housing attached to the needle hub, so as to be adjacent the proximal end of the cannula. Where a housing is used, the housing may be removably attached to the needle hub, so as to selectively connect to conductive elements communicating with the electrical contacts. A replaceable battery may also be included in the needle hub or housing.
In some circumstances, it may be desired to have multiple levels of alert. By way of example, while the cannula tip is being pushed into a blood vessel, for example, blood will continue to flow up into the needle cannula. However, if the needle tip progresses beyond the blood vessel, flow of blood into the cannula will be interrupted. In accordance with a yet further aspect of the present invention, multiple levels of alert are provided to indicate blood continuing to flow into the cannula, to thus imply that the needle tip is still within the blood vessel. To this end, and in accordance with this yet further aspect of the present invention, three or more electrical contacts are provided along a length of the cannula. As blood first enters into the cannula tip, a first conduction path is formed between the two contacts closest to the tip. That first conduction path is detected by the alert circuit and used to energize a first level of alert such as one of a plurality of lights, a particular intensity of light, or particular frequency or loudness of audible alert. As blood continues to enter up through the cannula, a second conduction path will form between two adjacent contacts further upstream from the cannula tip, which second conduction path can be detected by the alert circuit to energize a modified level of alert such as by energizing additional lights, changing the intensity of the light, or changing the frequency or loudness of the audible alert thus advising the user that blood is continuing to flow into the cannula. Should the needle tip pass completely through the blood vessel, flow of blood into the cannula will be interrupted before there would be additional changes in the alert signal, thus indicating that blood flow has discontinued.
The three or more electrical contacts may be provided the cannula and respective portions of a wire, by the cannula and two separate wires, or by multiple wires.
By virtue of the foregoing, there is thus provided an improved bodily fluid space entry detection system of method in which entry of the cannula tip into the bodily fluid space is detected promptly and reliably and with the desired results. These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
With reference to
In order to determine entry into the blood vessel 28, it is advantageous to obtain a prompt indication that the needle tip 26 is in the blood vessel 28 and before the needle is pushed so far into the patient's arm 18 that it actually progresses beyond or through the patient's blood vessel 28. To this end, catheter introducer 5 is assembled as a bodily fluid space entry detection system 10 by inclusion of alert circuit 30, which may be provided within a translucent proximal housing portion 31 of needle hub 24, and is coupled via electrical insulated wires or conductors 32, 34 to communicate with electrical contacts 36, 38 (
With further reference to
Alternatively, and as seen in
Cannula 20 is shown as being hollow but may also be solid, particularly where conventional blood flashback is not expected or required. However, where cannula 20 is hollow, blood 40 may still flow therethrough, and alongside the wire of conductor 32 (and 34 if it is present in the form of a wire extending through cannula 20) into the needle hub 24 and housing 31 thereof adjacent alert circuit 30 to thus provide conventional flashback as well.
With reference to
Wire 32 extends through cylinder 62 to and is coupled to tip portion 60 (such as via post 64) to define contact 38 at wall 68 and/or post 64. Cylinder 62 is part of conductor 34 such that distal end wall 70 defines the other contact 36. A groove 74 in tip portion 60 allows blood represented by arrow 40 to pass into gap 66 to create electrical conduction path 40′ between contacts 36 and 38 which are otherwise in non-conducting relationship.
With reference to
In use, the sharp tip 26 is caused to pierce the patient's skin 18 and to be directed towards and advantageously into a bodily fluid space such as blood vessel 28. Before the needle tip 26 enters the blood vessel, electrical contacts 36 and 38 are in non-conducting relationship such that alert source 42 is not caused to be energized. However, upon entry into the blood vessel 28, blood 40 will appear across electrical contacts 36 and 38 to thus provide a conduction path 40′ (which may even be an electric short or of a low impedance). As a consequence, transistor Q1 will be activated thereby energizing alert source 42 to indicate to the user (not shown) that detection has been made of blood vessel entry. The user may discontinue insertion of the needle 20, may, if necessary, finish placing catheter tube 12, and may thereafter disconnect needle hub 24 from catheter hub 14 thereby withdrawing needle cannula 20 and exposing catheter hub 14 for subsequent use. Alternatively, the user may wait for a brief period to monitor for actual blood flashback into needle hub 24 before removal of the needle cannula 20.
In accordance with a further aspect of the present invention, alert circuit 30 and its associated alert source 42, and optionally battery B1, may be contained within a housing 100 which may be removably attached to needle hub 24 as shown in
In accordance with a yet further aspect of the present invention, in some circumstances, it may be desired to have multiple levels of alert. By way of example, while the cannula tip is being pushed into the blood vessel, for example, blood will continue to flow up into the needle cannula. However, if the needle tip progresses beyond the blood vessel, flow of blood into the cannula will be interrupted. In accordance with a yet further aspect of the present invention, multiple levels of alert are provided to indicate blood continuing to flow into the cannula, and thus that the needle tip is still within the blood vessel. To this end, further electrical contacts beyond the pair of electrical contacts 36, 38 may be provided for detection of blood flow further up into the cannula.
By way of example, and with reference to
Another example of multiple level alert is shown in
By virtue of the foregoing, there is thus provided an improved bodily fluid space entry detection system and method in which entry of the cannula tip into the bodily fluid space is detected promptly and reliably and with the desired results.
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. For example, the embodiments are described here in the context of a blood vessel carrying blood, the invention may be applied to other bodily fluid spaces such as an epidural space carrying spinal fluid or other bodily fluid spaces to be accessed by a cannula or catheter. Moreover, while shown as part of a catheter introducer device 5, the bodily fluid space entry detection system may be deployed for a needle cannula 20 without a catheter, such as in the case of hypodermic or other needles. Further, while contacts 36 and 38 are generally shown as being adjacent the needle tip 26, it will be appreciated that “adjacent” in this context may also include “at” or “in” the needle tip 26. And although in some embodiments the cannula provides one of the contacts, and an insulated wire or blunting member provides the other, various other arrangements are possible. For example, a conductive, non-insulated blunt could be used. In that arrangement, one of the contacts and conductor therefor would be provided by an insulated wire extending through or along an outer surface of the blunting member, with the blunting member or the combination of the blunting member and the cannula defining the other of the contacts and part of the associated conductor. The invention in its broader aspects is, therefore, not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general inventive concept.