Body adherent patch with electronics for physiologic monitoring

Information

  • Patent Grant
  • 9451897
  • Patent Number
    9,451,897
  • Date Filed
    Thursday, December 2, 2010
    13 years ago
  • Date Issued
    Tuesday, September 27, 2016
    7 years ago
Abstract
In one configuration, an adherent device to adhere to a skin of a subject includes a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of the subject. The base layer has at least two openings extending therethrough, each of the at least two openings having a size. The adherent device also includes a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets. The adherent device also includes at least two gels, each gel having a size larger than the size of openings to retain the gel substantially within the pocket, and a circuit carrier supported with the stretchable base layer to measure at least one physiologic signal of the subject. Other configurations and methods are also claimed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to physiologic monitoring and/or therapy. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent device, the system methods and devices described herein may be applicable to many applications in which physiological monitoring and/or therapy is used for extended periods, for example wireless physiological monitoring for extended periods.


Patients are often treated for diseases and/or conditions associated with a compromised status of the patient, for example a compromised physiologic status. In some instances, a patient may report symptoms that require diagnosis to determine the underlying cause. For example, a patient may report fainting or dizziness that requires diagnosis, in which long term monitoring of the patient can provide useful information as to the physiologic status of the patient. In some instances a patient may have suffered a heart attack and require care and/or monitoring after release from the hospital. One example of a device to provide long term monitoring of a patient is the Holter monitor, or ambulatory electrocardiography device.


In addition to measuring heart signals with electrocardiograms, known physiologic measurements include impedance measurements. For example, transthoracic impedance measurements can be used to measure hydration and respiration. Although transthoracic measurements can be useful, such measurements may use electrodes that are positioned across the midline of the patient, and may be somewhat uncomfortable and/or cumbersome for the patient to wear. In at least some instances, the electrodes that are held against the skin of the patient may become detached and/or dehydrated, such that the electrodes must be replaced, thereby making long term monitoring more difficult.


Work in relation to embodiments of the present invention suggests that known methods and apparatus for long term monitoring of patients may be less than ideal. In at least some instances, devices that are worn by the patient may be somewhat uncomfortable. Although devices that adhere measurement electrodes and measurement circuitry to the skin with an adhesive can provide improved comfort, work in relation to embodiments of the present invention suggests that the adhesive of such devices can detach from the skin of the patient sooner than would be ideal. These limitations of current devices may lead to patients not wearing the devices as long as would be ideal and not complying with direction from the health care provider in at least some instances, such that data collected may be less than ideal.


Similar difficulties may arise in the monitoring of other subjects, such as persons in non-medical settings, or in the monitoring of animals such as veterinary, agricultural, or wild animal monitoring. Therefore, a need exists for improved subject monitoring. Ideally, such improved subject monitoring would avoid at least some of the short-comings of the present methods and devices. Ideally, such improved devices will allow an adherent device to be adhered to the skin of the subject with an adhesive so as to carry associated electronics comfortably with the skin of the subject for an extended period.


2. Description of the Background Art


The following U.S. Patents and Publications may describe relevant background art: U.S. Pat. Nos. 3,170,459; 3,805,769; 3,845,757; 3,972,329; 4,141,366; 4,522,211; 4,669,480; 4,838,273; 5,133,355; 5,150,708; 5,450,845; 5,511,533; 5,607,454; 6,141,575; 6,198,955; 6,327,487; 6,795,722; 7,395,106; 2004/0006279; 2004/0015058; 2006/0264730; 2007/0106132; 2007/0208262; 2007/0249946; 2007/0255184; 2008/0171929; 2007/0276273; and 2009/0182204.


BRIEF SUMMARY OF THE INVENTION

In many embodiments, an adherent device to adhere to a skin of a subject comprises a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of the subject. The base layer has at least two openings extending therethrough, each of the at least two openings having a size. The adherent device also comprises a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets, and at least two gels, each gel having a size larger than the size of the at least two openings to retain said gel substantially within said pocket. The adherent device further comprises a circuit carrier supported with the stretchable base layer to measure at least one physiologic signal of the subject. The subject may comprise a person, an athlete, a patient, or an animal such as a domesticated or a wild animal.


According to some embodiments, an adherent device to monitor a subject having a skin comprises a stretchable base layer having an upper side and a lower side and an adhesive coating disposed on the lower side to adhere the base layer to the skin of the subject. The base layer has at least two openings extending therethrough, each opening having a size. The adherent device further includes a flexible circuit support having at least two electrodes disposed thereon, each electrode positioned with a respective one of the at least two openings to couple to the skin of the subject. At least two gels are positioned with the at least two openings in the base layer, each gel having a size larger than the size of said each opening. The device also includes a stretchable covering layer positioned above the at least two gels and adhered to the base layer, such that each gel is constrained substantially within a corresponding pocket disposed between the base layer and the covering layer. The adherent device further includes a circuit carrier holding electronic components electrically connected to the at least one electrode with the flexible circuit support to measure at least one physiologic signal of the subject.


In some embodiments, each of the gels and each of the pockets is sized larger than a corresponding opening of the stretchable base layer to retain said gel in said pocket when the stretchable base layer is adhered to the skin of the subject. In some embodiments, the stretchable base layer comprises a thin, flexible, stretchable base layer to stretch with the skin of the subject and conform to folds of the skin of the subject. In some embodiments, the stretchable covering layer comprises a thin, flexible, stretchable covering layer to stretch with the skin of the subject and conform to folds of the skin of the subject. The adherent device may further include a thin, flexible, stretchable overlayer disposed above and adhered to the covering layer. The overlayer may be made of woven fabric.


In some embodiments, the adherent device further comprises a stiffening structure disposed over and coupled to a common perimeter of the base and covering layers and configured to stiffen the perimeter edges of the base and covering layers. The stiffening structure may be configured to be removable after the adherent device is adhered to the subject. In some embodiments, the adherent device further comprises a thin, flexible, stretchable overlayer disposed above and adhered to the covering layer, and the stiffening structure is disposed over and coupled to a common perimeter of the base and covering layers and the overlayer, and the stiffening structure is configured to stiffen the perimeter edges of the base and covering layers and the overlayer. The adherent device according to these embodiments may further include a soft, flexible cover disposed over the circuit carrier and coupled at a common perimeter to the base and covering layers. The cover may comprise a material configured to inhibit liquids from reaching the electronic components. A perimeter of the cover may be disposed under the stiffening structure. In some embodiments, the flexible circuit is configured to be stretchable.


In some embodiments, the flexible circuit is formed of a substantially non-stretchable material, and is geometrically configured to be stretchable. In some embodiments, the flexible circuit comprises a polyester base and traces formed of silver conductive ink. The flexible circuit may comprise a serpentine shape. The flexible circuit may be disposed between the base layer and the covering layer.


In some embodiments, the adherent device further comprises a compliant connection between the circuit carrier and the base layer. In some embodiments, the combination of the base layer and the covering layer is breathable. The combination of the base layer and the covering layer may have a moisture vapor transmission rate of at least 100 g/m2/day.


According to some embodiments, an adherent device comprises a thin, flexible, stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side. At least one electrode is affixed to the base layer and is capable of electrically coupling to the skin of a subject. A flexible circuit is connected to the at least one electrode, and a circuit carrier holding electronic components is electrically connected to the at least one electrode via the flexible circuit and configured to measure at least one physiologic signal of the subject. The adherent device further includes a stiffening structure disposed over and coupled to a perimeter of the base layer and configured to stiffen the perimeter edge of the base layer. In some embodiments, the stiffening structure is configured to be removable when the adherent device is adhered to the subject. The stiffening structure may be made from a vinyl sheet.


In some embodiments, the adherent device further comprises a thin, flexible, stretchable overlayer disposed above and adhered to the base layer, and the stiffening structure is disposed over and coupled to a common perimeter of the base layer and overlayer and is configured to stiffen the perimeter edge of the base layer and overlayer. According to some embodiments, the adherent device further includes a gel patch under each electrode, and each gel patch enhances electrical conductivity between its respective electrode and the skin of the subject. The flexible circuit is configured to be stretchable.


In some embodiments, the adherent device further comprises a soft, flexible cover disposed over the circuit carrier and coupled at a perimeter to the base layer. The cover may comprise a material configured to inhibit liquids from reaching the electronic components. The lower side of the base layer is configured to adhere to the skin of a subject.


In some embodiments, the adherent device further comprises a thin, flexible, stretchable underlayer adhered to the lower side of the base layer, the underlayer configured to adhere to the skin of the subject. The combination of the base layer and underlayer may be breathable. The combination of the base layer and underlayer may has a moisture vapor transmission rate of at least 100 g/m2/day.


In some embodiments, the adherent device further comprises a gel patch under each electrode, and each gel patch enhances electrical conductivity between its respective electrode and the skin of the subject, and a perimeter of each gel patch is sandwiched between the base layer and the underlayer. In some embodiments, the underlayer comprises at least one opening through which electrical contact is made between the at least one electrode and the skin of the subject. The adherent device many further include a compliant connection between the circuit carrier and the base layer.


According to some embodiments, an adherent device comprises a thin, flexible, stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side. At least one electrode is affixed to the base layer and capable of electrically coupling to the skin of a subject. A flexible circuit is connected to the at least one electrode, and is configured to stretch. The adherent device further includes a circuit carrier holding electronic components electrically connected to the at least one electrode via the flexible circuit and configured to measure at least one physiologic signal of the subject.


In some embodiments, the flexible circuit is formed of a substantially non-stretchable material, and is geometrically configured to be stretchable. In some embodiments, the flexible circuit comprises a polyester base and traces formed of silver conductive ink. The flexible circuit may comprise a serpentine shape. The flexible circuit may comprise a sawtooth shape.


In some embodiments, the adherent device further comprises gel patch under each electrode, and each gel patch enhances electrical conductivity between its respective electrode and the skin of the subject. In some embodiments, the base layer is configured to adhere to the skin of the subject, and the adherent device further comprises a thin, flexible, stretchable overlayer disposed above and adhered to the base layer. In some embodiments, the adherent device further comprises a thin, flexible, stretchable underlayer disposed below and adhered to the base layer, and the underlayer is configured to adhere to the skin of the subject. In some embodiments the adherent device further comprises a stiffening structure disposed over and coupled to a perimeter of the base layer and configured to stiffen the perimeter edge of the base layer. The adherent device may comprise a compliant connection between the circuit carrier and the base layer.


According to some embodiments, an adherent device to monitor a subject having a skin comprises a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of a subject. The base layer has at least two openings extending therethrough, each of the at least two openings having a size. A stretchable covering layer is positioned above and adhered to the base layer with an adhesive to define at least two pockets. The adherent device further comprises a flexible circuit support that includes a first portion and a second portion, the first portion of the support adhered between the stretchable base layer and the stretchable covering layer, the second portion extending from the first portion. At least two electrodes are disposed on the first portion of the flex circuit support. The adherent device further includes at least two gels, and each gel and each electrode are positioned within a corresponding pocket, each gel having a size larger than the size of the respective opening to retain said gel substantially within said pocket between the base layer and the covering layer. The adherent device further includes a circuit carrier supported with the stretchable base layer, the circuit carrier holding electronic components electrically connected to the at least two electrodes with the second portion of the flexible circuit support to relieve strain when the stretchable base layer stretches with the skin of the subject, the electronic components configured to measure at least one physiologic signal of the subject.


According to some embodiments, a method of manufacturing an adherent device to adhere to a skin of a subject comprises providing a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of a subject. The base layer has at least two openings extending therethrough, each of the at least two openings having a size. The method further comprises providing a flexible circuit support having at least two electrodes and traces of electrically conductive material disposed thereon, providing at least two gels, and providing a stretchable covering layer. The method further comprises positioning the flexible circuit support and at least two gels between the stretchable base layer and the stretchable covering layer, and adhering the stretchable base layer to the stretchable covering layer to form at least two pockets, wherein each pocket has one of the at least two gels and one of the electrodes disposed therein. The method also includes coupling a circuit carrier to the at least two electrodes with the flexible circuit support.


According to some embodiments, a method of monitoring a patient having a skin comprises adhering a stretchable base layer affixed to a stretchable covering layer to the skin of the patient. The stretchable base layer and the stretchable covering layer define a plurality of pockets with gels and electrodes disposed therein and the electrodes are coupled to the skin with the gels disposed in the pockets. The method further comprises measuring signals from the electrodes to monitor the patient.


According to some embodiments, an adherent device to adhere to a skin of a subject comprises means for adhering to a skin of a subject, and a circuit carrier means coupled to the means for adhering to measure at least one physiologic signal of the subject.


Other embodiments are also described and claimed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a patient and a monitoring system comprising an adherent device, in accordance with embodiments of the present invention.



FIG. 2A shows a partial exploded perspective view of an adherent device as in FIG. 1, in accordance with embodiments of the invention.



FIG. 2B illustrates an exploded view of a support patch, according to embodiments of the invention.



FIG. 2C shows a bottom view of the support patch of FIG. 2B.



FIG. 3 shows a flexible circuit that is configured to be stretchable, in accordance with embodiments of the invention.



FIG. 4 illustrates a compliant connection between a circuit carrier and a base layer, in accordance with embodiments of the invention.



FIG. 5 illustrates an exploded view of an adherent device in accordance with additional embodiments of the invention.



FIG. 6 illustrates an exploded oblique view of an adherent device in accordance with additional embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention relate to subject monitoring and/or therapy. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent device, the system methods and device described herein may be applicable to any application in which physiological monitoring and/or therapy is used for extended periods, for example wireless physiological monitoring for extended periods.


Embodiments of the present invention can be particularly well suited for use with an adherent device that comprises a support, for example a patch that may comprise stretchable tape, such that the support can be configured to adhere to the subject and support the electronics and sensors on the subject. The support may also be porous and breathable so as to allow water vapor transmission, for example as described U.S. Pat. Pub. No. 2009/0076363, the full disclosure of which is incorporated herein by reference and suitable for combination in accordance with some embodiments of the present invention described herein. The adherent device may comprise a cover and electronic components disposed on a carrier coupled to the support so as to provide strain relief, such that the support can stretch and flex with the skin of the subject. The embodiments described herein can be particularly useful to inhibit motion of the electronics circuitry carrier when the support stretches and flexes, so as to decrease localized loading of the support that may contribute to peeling. When forces are localized near an edge of the adherent device, for example when the carrier moves against a cover, the localized forces may cause peeling near the edge, and the embodiments described herein can inhibit such localized forces with a compliant structure that inhibits motion of the carrier relative to the support and also allows the support to stretch.



FIG. 1 shows an example subject, patient P, and a monitoring system 10. Patient P comprises a midline M, a first side S1, for example a right side, and a second side S2, for example a left side. Monitoring system 10 comprises an adherent device 100. Adherent device 100 can be adhered to a patient P at many locations, for example thorax T or arm A of patient P. In many embodiments, the adherent device may adhere to one side of the patient, from which side data can be collected. Work in relation with embodiments of the present invention suggests that location on a side of the patient can provide comfort for the patient while the device is adhered to the patient.


Monitoring system 10 includes components to transmit data to a remote center 106. Remote center 106 can be located in a different building from a subject such as patient P, for example in the same town as the subject, and can be located as far from the subject as a separate continent from the subject, for example the subject located on a first continent and the remote center located on a second continent. Adherent device 100 can communicate wirelessly to an intermediate device 102, for example with a single wireless hop from the adherent device on the subject to the intermediate device. Intermediate device 102 can communicate with remote center 106 in many ways, for example with an internet connection and/or with a cellular connection. In many embodiments, monitoring system 10 comprises a distributed processing system with at least one processor comprising a tangible medium on device 100, at least one processor on intermediate device 102, and at least one processor 106P at remote center 106, each of which processors can be in electronic communication with the other processors. At least one processor 102P comprises a tangible medium 102T, and at least one processor 106P comprises a tangible medium 106T. Remote processor 106P may comprise a backend server located at the remote center. Remote center 106 can be in communication with a health care provider 108A with a communication system 107A, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Health care provider 108A, for example a family member, can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109A, for example by cell phone, email, landline. Remote center 106 can be in communication with a health care professional, for example a physician 108B, with a communication system 107B, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Physician 108B can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109B, for example by cell phone, email, landline. Remote center 106 can be in communication with an emergency responder 108C, for example a 911 operator and/or paramedic, with a communication system 107C, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Emergency responder 108C can travel to the patient as indicated by arrow 109C. Thus, in many embodiments, monitoring system 10 comprises a closed loop system in which patient care can be monitored and implemented from the remote center in response to signals from the adherent device.


In many embodiments, the adherent device may continuously monitor physiological parameters, communicate wirelessly with a remote center, and provide alerts when necessary. The system may comprise an adherent patch, which attaches to the subject's thorax and contains sensing electrodes, battery, memory, logic, and wireless communication capabilities. In some embodiments, the device can communicate with the remote center, via the intermediate device in the subject's home. In some embodiments, the remote center 106 receives the patient data and applies a patient evaluation and/or prediction algorithm. When a flag is raised, the center may communicate with the patient, hospital, nurse, and/or physician to allow for therapeutic intervention, for example to prevent decompensation.


In many embodiments, the adherent device may comprise a reusable electronics module with replaceable patches, and each of the replaceable patches may include a battery. The module may collect cumulative data for approximately 90 days and/or the entire adherent component (electronics+patch) may be disposable. In a completely disposable embodiment, a “baton” mechanism may be used for data transfer and retention, for example baton transfer may include baseline information. In some embodiments, the device may have a rechargeable module, and may use dual battery and/or electronics modules, wherein one module 101A can be recharged using a charging station 103 while the other module 101B is placed on the adherent patch with connectors. In some embodiments, the intermediate device 102 may comprise the charging module, data transfer, storage and/or transmission, such that one of the electronics modules can be placed in the intermediate device for charging and/or data transfer while the other electronics module is worn by the subject.


System 10 can perform the following functions: initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying. The adherent device may contain a subset of the following physiological sensors: bioimpedance, respiration, respiration rate variability, heart rate (ave, min, max), heart rhythm, heart rate variability (hereinafter “HRV”), heart rate turbulence (hereinafter “HRT”), heart sounds (e.g. S3), respiratory sounds, blood pressure, activity, posture, wake/sleep, orthopnea, temperature/heat flux, and weight. The activity sensor may comprise one or more of the following: ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture. Additional details about the use of an adherent patch to measure particular physiologic signals may be found in co-pending U.S. patent application Ser. No. 12/209,273 (publication 2009/0076363) and Ser. No. 12/209,288 (publication 2009/0076345), both filed on Sep. 12, 2008 and titled “Adherent Device with Multiple Physiologic Sensors”


The adherent device can wirelessly communicate with remote center 106. The communication may occur directly (via a cellular or Wi-Fi network), or indirectly through intermediate device 102. Intermediate device 102 may consist of multiple devices, which can communicate wired 104 or wirelessly to relay data to remote center 106.


In many embodiments, instructions are transmitted from remote site 106 to a processor supported with the adherent patch on the subject, and the processor supported with the subject can receive updated instructions for the subject treatment and/or monitoring, for example while worn by the subject.


In order for complete and reliable data to be gathered by system 10, and for optimal subject comfort, it is desirable that adherent device 100 remain securely attached to subject for a predetermined period of time, for example one week, or two weeks or more. If adherent device 100 becomes dislodged prematurely, such that one or more of the sensing electrodes no longer makes secure contact with the subject's skin, valuable medical or other data may be lost. For example, a dislodged adherent device 100 may also need to be replaced, causing discomfort for a patient, inconvenience for medical personnel, and unwanted expense.


Various adhesion failure mechanisms have been noted. Normal subject activity may result in adherent device 100 being stretched, bumped, jostled, or otherwise moved in a way that tends to stress the adhesive joint with the subject's skin. This may be especially true for an adherent device that is worn for a long period of time, during which the subject may wish to carry on normal activities, including exercise, bathing, and the like. The edges of the support patch may be especially prone to separation from the skin, and may form pathways for ingress of moisture, which can accelerate the deterioration of the adhesive bond between the adherent device and the skin. The difficulty of maintaining a secure bond to the subject's skin may be further exacerbated as it becomes desirable to add new features and capabilities to a device such as adherent device 100. For example, in order to extend the working life of adherent device 100 or to provide sophisticated features, it may be desirable to include a battery having considerable weight, and additional electronics or packaging as compared with previous designs. The combined weight of the battery and electronics may be as much as 60 grams or more, such that jostling of the unit may impart significant inertial loads on the bond with the subject's skin. In addition, the position of the adherent device may affect the durability of the adhesive bond with the subject's skin. For example, especially useful electrocardiogram readings may be obtained by a device placed between a patient's left clavicle and left nipple. However, this area is also prone to stretching, and may present a difficult site for long-term adhesion. Even if an alternative site is used, for example along the patient's rib line, enhanced adhesion durability is desirable.


In addition to the medical setting described above, embodiments of the present invention may also be used in non-medical settings, and on subjects other than human medical patients. For example, an adherent device according to embodiments of the invention may be used to monitor the heart rate or other data of an athlete during exercise. In another setting, an adherent device according to embodiments of the invention may be used to monitor an animal for agricultural research, veterinary medical testing or treatment, or other purposes. For the purposes of this disclosure, a subject is any human or animal to which an adherent device according to embodiments of the invention may be adhered, for any purpose. While certain example uses of adherent devices are described herein in relation to monitoring or treatment of a medical patient, the appended claims are not so limited. Whatever the setting or subject, embodiments of the present invention provide improved durability of the adhesive bond between the adherent device and the subject's skin, as compared with prior adherent devices.



FIG. 2A shows a partial exploded perspective view of adherent device 100 as in FIG. 1, in accordance with embodiments of the invention. Adherent device 100 comprises a support patch 201, which may further comprise a base layer 202 and a covering layer 203. Base layer 202 is stretchable, and has an upper side 204 and a lower side 205, and an adhesive coating on lower side 205 to adhere base layer 202 to the skin of a subject. Covering layer 203 is also stretchable, and is positioned above and adhered to base layer 202. FIG. 2B illustrates an exploded view of support patch 201, according to embodiments of the invention. As is best seen in FIG. 2B, a flexible circuit 206 includes at least two electrodes, for example electrodes 207A, 207B, 207C, and 207D that during use are in electrical contact with the skin of the subject. Flexible circuit 206 may also sometimes be called a flexible circuit support. Flexible circuit 206 electrically connects electrodes 207A, 207B, 207C, and 207D to a circuit carrier 208, which holds electronic components 209 configured to measure at least one physiologic signal of the subject. Electronic components 209 may include an antenna 210 so that adherent device 100 can communicate its readings for remote monitoring. Circuit carrier 208 may be mechanically connected to and supported by base layer 202 by any suitable means, including those discussed in more detail below.


Adherent device 100 may further comprise a housing 211 that fits over electronic components 209, providing protection, insulation, and cushioning for electronic components 209. Housing 211 may further include features for holding a battery 212. Housing 211 may be made, for example of a soft silicone rubber. In other embodiments, housing 211 may comprise an encapsulant over electronic components 209 and circuit carrier 208. Housing 211 may provide protection of electronic components 209 from moisture.


Adherent device 100 may also comprise a cover 213 adhered to support patch 201. Cover 213 may comprise any known biocompatible cover, casing and/or housing materials, such as elastomers, for example silicone. The elastomer may be fenestrated to improve breathability. In some embodiments, cover 213 may comprise other breathable materials, for example a cloth including polyester, polyamide, nylon and/or elastane (Spandex™). The breathable fabric may be coated or otherwise configured to make it water resistant, waterproof, for example to aid in wicking moisture away from the patch, or to inhibit liquids from reaching electronic components 209.


While adherent device 100 is shown as generally oblong and having a length of about two to three times its width, this is not a requirement. One of skill in the art will recognize that other shapes are possible for an adherent device according to embodiments of the invention. For example, support patch 201 could be round, elliptical or oblong with a length only slightly larger than its width, square, rectangular, or some other shape. And while electrodes 207A, 207B, 207C, and 207D are illustrated as being arranged linearly, this is also not a requirement. One of skill in the art will recognize that electrodes 207A, 207B, 207C, and 207D could be arranged in any pattern suitable for the intended use of adherent device 100, including in a circular, oblong, square, rectangular, or other pattern.


Referring again to FIG. 2B, base layer 202 includes at least two openings, in this case four openings 215A, 215B, 215C, and 215D, each corresponding to one of electrodes 207A, 207B, 207C, and 207D. Each opening is of a certain size. Gels 214A, 214B, 214C, and 214D are placed at the openings, between base layer 202 and covering layer 203. Each of gels 214A, 214B, 214C, and 214D comprises a hydrogel patch of electrically conductive gel material that enhances electrical conductivity between its respective electrode and the skin of the subject. For example, the gels 214A, 214B, 214C, and 214D may be made of hydrogel adhesive 9880 available from the 3M Company of St. Paul, Minn., USA, or another suitable material.


Each of gels 214A, 214B, 214C, and 214D is larger than its respective opening 215A, 215B, 215C, or 215D, such that when covering layer 203 and base layer 202 are adhered together, a pocket is formed over each of openings 215A, 215B, 215C, and 215D, with one of gels 214A, 214B, 214C, and 214D retained in each respective pocket.


Preferably, base layer 202, covering layer 203, or both are thin, flexible, and stretchable to stretch with the skin of the subject and conform to folds of the skin of the subject. For example, either or both of these layers may be made of MED 5021 polyurethane film available from Avery Dennison Corporation of Pasadena, Calif., USA, or Tegaderm™ film available from the 3M Company of St. Paul, Minn., USA. Other suitable materials may be used.


In some embodiments, support patch 201 may further include an overlayer 216 disposed above and adhered to covering layer 203. Overlayer 216 is also preferably thin, flexible, and stretchable. For example, overlayer 216 may be made of a woven fabric.


Referring again to FIG. 2A, gels 214A, 214B, 214C, and 214D are preferably placed under covering layer 203 (and overlayer 216, if present). Flexible circuit 206 may also be positioned under covering layer 203, as indicated by the broken line depiction of part of flexible circuit 206 in FIG. 2B. Gels 214A, 214B, 214C, and 214D may thus be retained in pockets between base layer 202 and covering layer 203.


Adherent device 100 may further comprise a stiffening structure such as stiffening structure 217 shown in FIG. 2A. In this example embodiment, stiffening structure 217 is configured to adhere to the top of cover 213, at an outer area 218 of cover 213. As assembled, stiffening structure 217 is then coupled to a common perimeter of the base and covering layers, so that the perimeter edges of the base and covering layers are stiffened, for example to prevent curling or unintentional adhesion of the lower side 205 of base layer 202 to itself. Stiffening structure 217 may be made of a material that is stiffer than the materials used in base patch 201, but still compliant enough to allow base patch 201 to conform to the subject's skin as the patch is adhered to the skin. For example, stiffening structure 217 may be made from a vinyl sheet. Stiffening structure 217 may also be configured to be removable after adherent device 100 is adhered to the subject's skin. For example, stiffening structure 217 may include an adhesive configured to hold stiffening structure 217 in place during application of adherent device 100 to the subject, but to release easily without dislodging adherent device 100 from the subject's skin. In this way, stiffening structure 217 may aid in achieving a secure adhesion of adherent device 100 to the subject, but not interfere with the ability of support patch 201 to conform to wrinkles, folds, and other movements of the subject's skin while adherent device 100 is worn.



FIG. 2C shows a bottom view of support patch 201, with bottom lower side 205 of base layer 202 visible. Also visible are openings 215A, 215B, 215C, and 215D, exposing portions of gels 214A, 214B, 214C, and 214D. Other portions of gels 214A, 214B, 214C, and 214D are behind base layer 202, in pockets formed between base layer 202 and covering layer 203.


In some embodiments, flexible circuit 206 may be made of a flexible material such as polyimide, polyester, or another base material, having circuit traces formed in or on the base material. The circuit traces may be, for example, made of copper, a copper alloy, silver ink, or another conductive material. In one preferred embodiment, flexible circuit 206 comprises a polyester base and traces formed of silver conductive ink. In some embodiments, flexible circuit 206 may be configured to be stretchable, as well as flexible. Even if the material of the flexible circuit 206 is not inherently stretchable, the flexible circuit may be made effectively stretchable by properly configuring its geometric shape. For example, at least the portion of flexible circuit 206 in contact with support patch 201 may have a serpentine shape that allows support patch 201 to stretch and conform itself to the skin of the subject to which adherent device 100 is adhered, without being unduly constrained by flexible circuit 206. A flexible circuit 206A having this characteristic is shown in FIG. 3. Other configurations may be used as well. For example, flexible circuit 206A may have a sawtooth shape, or another shape that enables stretching of the flexible circuit 206A.


As was mentioned previously, circuit carrier 208 may have a compliant connection to base layer 202. One exemplary kind of compliant connection is illustrated in FIG. 4. In this connection, bridging loops 401A, 401B, 401C, and 401D connect from support patch 201 (which includes base layer 202) to circuit carrier 208. Loops 401A, 401B, 401C, and 401D may be made, for example, of a plastic reinforced paper, a plastic film, a fabric, metal, or any other suitable material. Preferably, loops 401A, 401B, 401C, and 401D permit relatively free rotation of circuit carrier 208 about the X and Y axes illustrated in FIG. 4, but constrain the rotation of circuit carrier 208 about the Z axis. Because each of loops 401A, 401B, 401C, and 401D connects to support patch 201 at an inner portion 402 rather than at an outer portion 403 of support patch 201, loads imparted to support patch 201 tend not to disturb the vulnerable perimeter of support patch 201, where detachment from the subject's skin is especially likely to start. More detail about compliant connections between circuit carrier 208 and base layer 202 may be found in copending provisional U.S. patent application 61/241,713, filed Sep. 11, 2009 and titled “Electronics Integration in Adherent Patch for Physiologic Monitoring”, the entire disclosure of which is hereby incorporated by reference for all purposes.


In some embodiments, base layer 202, covering layer 203, or their combination may be breathable. For example, the combination of base layer 202 and covering layer 203 may have a moisture vapor transmission rate of at least 100 g/m2/day.



FIG. 5 illustrates an exploded view of an adherent device 500 in accordance with additional embodiments of the invention. Adherent device 500 includes several components similar to those in adherent device 100, and similar components are given the same reference numbers in FIG. 5. Adherent device 500 may include different combinations of layers than adherent device 100.


Adherent device 500 comprises a support patch 501 that includes a base layer 502. Base layer 502 has an upper side 504 and a lower side 505. Lower side 505 includes an adhesive coating. At least one electrode, in this example four electrodes 207A, 207B, 207C, and 207D are affixed to base layer 502 and connected to flexible circuit 206. Besides being flexible, flexible circuit 206 may also be configured to be stretchable, for example due to its geometric configuration. In some embodiments, a portion of flexible circuit 206 may have a serpentine or sawtooth shape. Circuit carrier 208 holds electronic components 209, which may include an antenna 210. Electronic components 209 are electrically connected to electrodes 207A, 207B, 207C, and 207D and are configured to measure at least one physiologic signal of a subject to which adherent device 500 is adhered.


A stiffening structure 217 may be disposed over and coupled, directly or indirectly, to a perimeter area of base layer 502, to stiffen the perimeter edge of base layer 502. In some embodiments, a cover 213 is disposed over circuit carrier 208 and coupled at a perimeter 218 to base layer 502. In that case, stiffening structure 217 is disposed over and coupled to cover 213, and is therefore indirectly coupled to base layer 502. Cover 213 is preferably soft and flexible, and may be made of a material configured to inhibit liquids from reaching electronic components 209.


Similarly, in some embodiments, an overlayer 503 may be disposed above and adhered to base layer 502. Overlayer 503 is preferably thin, flexible, and stretchable, and may be made of a woven cloth or another suitable material. When overlayer 503 is present, stiffening structure 217 is also disposed over and coupled to the perimeter of overlayer 503, and stiffens at least the perimeter edges of the base layer and overlayer. All of the layers of a support patch such as support patch 501 or support patch 201 may be coextensive, having their edges aligned as was shown in FIG. 2C. Alternatively, one or more layers in a support patch may not be coextensive with the others. For example, overlayer 503 is slightly smaller than base layer 502, so that the edges of base layer 502 extend beyond the edges of overlayer 503. This arrangement may further reduce the stresses on the edge of base layer 502, thus promoting long adhesion to the subject to which adherent device 500 is adhered. This arrangement may be used in any of the embodiments described herein.


Adherent device 500 may comprise one or more gel patches 214A, 214B, 214C, and 214D, one gel disposed under each of electrodes 207A, 207B, 207C, and 207D. Gel patches 214A, 214B, 214C, and 214D enhance electrical conductivity between electrodes 207A, 207B, 207C, and 207D and the skin of a subject to which adherent device 500 is adhered.


In some embodiments, lower side 505 of base layer 502 is configured to adhere to the skin of a subject. In that configuration, gel patches 214A, 214B, 214C, and 214D are captured between base layer 502 and the subject's skin. Optionally, an underlayer 506 may be provided, adhered to lower side 505 of base layer 504, and configured to adhere to the skin of a subject. Preferably, underlayer 506 is also thin, flexible, and stretchable. For example, base layer 202, underlayer 506, or both may be made of MED 5021 polyurethane film available from Avery Dennison Corporation of Pasadena, Calif., USA, or Tegaderm™ film available from the 3M Company of St. Paul, Minn., USA. Other suitable materials may be used. Underlayer 506 may comprise openings 215A, 215B, 215C, and 215D, and may capture gels 214A, 214B, 214C, and 214D in pockets formed between base layer 502 and underlayer 506.


As in adherent device 100, adherent device 500 may include a compliant connection between circuit carrier 208 and base layer 502, for example a compliant connection as shown in FIG. 4 and described previously.



FIG. 6 illustrates an exploded oblique view of an adherent device 600 in accordance with additional embodiments of the present invention. In this embodiment, a support patch 601 may be configured to adhere to a subject's skin, and may be a support patch as in any of the embodiments described above. Support patch 601 may include a base layer, a covering layer, an overlayer, an underlayer, or any workable combination of these. Support patch 601 may include one or more electrodes (not visible in FIG. 6) electrically connected to a flexible circuit 206. A label 610 may be affixed to support patch 601. A circuit carrier 208 holds various electronic components 209, which may include a processor, memory, wireless communication circuitry, an antenna 210, and other electronic components. Adherent device 600 may also include a temperature or heat flux sensor 602. Bridging loops 603A, 603B, 603C (and a fourth bridging loop not visible in FIG. 3B) are affixed to support patch 201 and to circuit carrier 208, and form a compliant structure that compliantly restrains motion of circuit carrier 208 with respect to support patch 601 in some degrees of freedom more stiffly than in other degrees of freedom. A housing 604 and protector 605 may insulate, cushion, or otherwise protect circuit carrier 208. The adherent device may further comprise a battery 606 or other energy source, a battery cover 607, a cover 608, and a display 609.


While exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.

Claims
  • 1. An adherent device to adhere to a skin of a subject, comprising: a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of the subject, the base layer having at least two openings extending therethrough, each of the at least two openings having a size; a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets, wherein the stretchable covering layer is thin, flexible, and configured to stretch with the skin of the subject; at least two gels, wherein each gel is positioned within one of the corresponding pockets, each gel having a size larger than the size of the at least two openings to retain said gel substantially within said corresponding pocket; a flexible circuit that includes at least two electrodes in contact with the at least two gels, the flexible circuit including a first portion located on the upper side of the stretchable base layer and a second portion that extends away from the first portion and through an opening in the stretchable covering layer; a circuit carrier positioned above the stretchable covering layer and supported with the stretchable base layer to measure at least one physiologic signal of the subject, wherein the circuit carrier is connected to the at least two electrodes via the second portion extending through an opening in the stretchable covering layer; and a compliant connection that includes a plurality of bridging loops formed between the upper side of the stretchable base layer and the circuit carrier that permits at least some movement of the circuit carrier in a plane parallel to the stretchable base layer.
  • 2. An adherent device to monitor a subject having a skin, comprising: a stretchable base layer having an upper side and a lower side and an adhesive coating disposed on the lower side to adhere the base layer to the skin of the subject, the base layer having at least two openings extending therethrough, each opening having a size; a flexible circuit having at least two electrodes disposed thereon, each electrode positioned with a respective one of the at least two openings to couple to the skin of the subject the flexible circuit including a first portion located adjacent to the upper side of the stretchable base layer and a second portion that extends away from the stretchable base layer through an opening in a stretchable covering layer; at least two gels positioned with the at least two openings in the base layer, each gel having a size larger than the size of said each opening; the stretchable covering layer positioned above the at least two gels and adhered to the base layer, such that each gel is constrained substantially within a corresponding pocket disposed between the base layer and the covering layer, wherein the stretchable covering layer is thin, flexible, and configured to stretch with the skin of the subject; a circuit carrier positioned above the stretchable covering layer and holding electronic components electrically connected to the at least one electrode via the second portion of with the flexible circuit to measure at least one physiologic signal of the subject; and a compliant connection that includes a plurality of bridging loops formed between an upper side the stretchable base layer and the circuit carrier that permits at least some movement of the circuit carrier in a plane parallel to the stretchable base layer.
  • 3. The adherent device of claim 2 wherein each of the gels and each of the pockets is sized larger than a corresponding opening of the stretchable base layer to retain said gel in said pocket when the stretchable base layer is adhered to the skin of the subject.
  • 4. The adherent device of claim 2 wherein the stretchable base layer comprises a thin, flexible, stretchable base layer to stretch with the skin of the subject and conform to folds of the skin of the subject, and wherein the stretchable covering layer is configured to conform to folds of the skin of the subject.
  • 5. The adherent device of claim 2, further comprising a thin, flexible, stretchable overlayer disposed above and adhered to the covering layer.
  • 6. The adherent device of claim 2, wherein the first portion of the flexible circuit is formed of a substantially non-stretchable material, and has a serpentine, sawtooth, or other shape that geometrically configures the flexible circuit to be stretchable along a length of the adherent device.
  • 7. The adherent device of claim 2, wherein the first portion of the flexible circuit is disposed between the base layer and the covering layer.
  • 8. An adherent device, comprising: a thin, flexible, stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere to the skin of a subject;at least one electrode affixed to the base layer and capable of electrically coupling to the skin of the subject;a flexible circuit connected to the at least one electrode, wherein the flexible circuit includes a first portion located adjacent to the upper side of the stretchable base layer and a second portion that extends away from the first portion, wherein the second portion of the flexible circuit includes a loop shape to relieve strain when the stretchable base layer stretches with the skin of the subject;a circuit carrier holding electronic components electrically connected to the at least one electrode via the second portion of the flexible circuit and configured to measure at least one physiologic signal of the subject;a compliant connection that includes a plurality of loops formed between the upper side of the stretchable base layer and the circuit carrier that permits at least some movement of the circuit carrier in a plane parallel to the stretchable base layer, wherein the second portion of the flexible circuit extends around an outer circumference of one of the plurality of loops; anda stiffening structure disposed above and coupled to a perimeter of the base layer and configured to stiffen the perimeter edge of the base layer, wherein the stiffening structure is removable.
  • 9. The adherent device of claim 8, further comprising a thin, flexible, stretchable overlayer disposed above and adhered to the base layer, the stiffening structure disposed over and coupled to a common perimeter of the base layer and overlayer and configured to stiffen the perimeter edge of the base layer and overlayer.
  • 10. The adherent device of claim 8, further comprising a gel patch under each electrode, wherein each gel patch enhances electrical conductivity between its respective electrode and the skin of the subject.
  • 11. The adherent device of claim 8, wherein the flexible circuit is configured to be stretchable.
  • 12. An adherent device, comprising: a thin, flexible, stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side configured to adhere to a skin of a subject;at least one electrode affixed to the base layer and capable of electrically coupling to the skin of a subject;a flexible circuit having a first portion located on the upper side of the stretchable base layer that is connected to the at least one electrode and a second portion that extends away from the stretchable base layer, wherein the first portion of the flexible circuit is formed of a substantially non-stretchable material, and has a serpentine, sawtooth, or other shape that geometrically configures the flexible circuit to be stretchable along a length of the adherent device, and wherein the second portion includes a loop shape to relieve strain when the stretchable base layer stretches with the skin of the subject;a circuit carrier positioned above and coupled to the flexible circuit, the circuit carrier holding electronic components electrically connected to the at least one electrode via the second portion of the flexible circuit flexible circuit and configured to measure at least one physiologic signal of the subject; anda compliant connection formed between the stretchable base layer and the circuit carrier that permits at least some movement of the circuit carrier in a plane parallel to the stretchable base layer.
  • 13. The adherent device of claim 12, further comprising a gel patch under each electrode, wherein each gel patch enhances electrical conductivity between its respective electrode and the skin of the subject.
  • 14. The adherent device of claim 12, further comprising a thin, flexible, stretchable overlayer disposed above and adhered to the base layer.
  • 15. An adherent device to monitor a subject having a skin, comprising: a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of a subject, the base layer having at least two openings extending therethrough, each of the at least two openings having a size;a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets, wherein the stretchable covering layer is thin, flexible, and configured to stretch with the skin of the subject;a flexible circuit comprising a first portion and a second portion, the first portion of the flexible circuit adhered between the stretchable base layer and the stretchable covering layer, the second portion having a loop shape that extends away from the first portion through an opening in the stretchable covering layer, wherein the first portion of the flexible circuit is formed of a substantially non-stretchable material, and has a serpentine, sawtooth, or other shape that geometrically configures the flexible circuit to be stretchable along a length of the adherent device;at least two electrodes in contact with the first portion of the flexible circuit;at least two gels, wherein each gel and each electrode are positioned within a corresponding pocket, each gel having a size larger than the size of the respective opening to retain said gel substantially within said pocket between the base layer and the covering layer; anda circuit carrier positioned above the stretchable covering layer and supported with the stretchable base layer, the circuit carrier holding electronic components electrically connected to the at least two electrodes with the second portion of the flexible circuit to relieve strain when the stretchable base layer stretches with the skin of the subject, the electronic components configured to measure at least one physiologic signal of the subject.
  • 16. An adherent device to adhere to a skin of a subject, comprising: means for adhering to a skin of a subject, the means for adhering comprising a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of a subject, the base layer having at least two openings extending therethrough, each of the at least two openings having a size, and the means for adhering further comprising a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets, wherein the stretchable covering layer is thin, flexible, and configured to stretch with the skin of the subject;a flexible circuit coupled to the means for adhering, the flexible circuit carrying at least two electrodes disposed on the flexible circuit and positioned to couple to the subject's skin, wherein the flexible circuit further includes a first portion located adjacent to the upper side of the stretchable base layer and a second portion that extends away from the flexible circuit and through an opening in the stretchable covering layer; andmeans for enhancing electrical conductivity between the electrodes and the subject's skin,a circuit carrier positioned above the stretchable covering layer and coupled to the at least two electrodes via the second portion of the flexible circuit, the circuit carrier holding circuitry to measure at least one physiologic signal of the subject; anda compliant connection that includes a plurality of loops formed between the stretchable base layer and the circuit carrier that permits at least some movement of the circuit carrier in a plane parallel to the stretchable base layer.
  • 17. The adherent device of claim 1, wherein the base layer, the adhesive coating, and the covering layer are coextensive.
  • 18. The adherent device of claim 2, wherein the base layer, the adhesive coating, and the covering layer are coextensive.
  • 19. The adherent device of claim 2, wherein the circuit carrier and the electronic components are comprised in a reusable electronics module.
  • 20. The adherent device of claim 1, wherein the second portion of the flexible circuit includes a loop shape that extends around an outer circumference of one of the plurality of bridging loops.
  • 21. The adherent device of claim 20, wherein the plurality of bridging loops connect to an inner portion of the stretchable base layer to prevent loads from being transferred to a perimeter of the stretchable base layer.
Parent Case Info

This application claims priority from provisional U.S. Patent Application No. 61/286,075, titled “Body Adherent Patch with Electronics for Physiologic Monitoring” and filed Dec. 14, 2009, the entire disclosure of which is hereby incorporated by reference herein for all purposes.

US Referenced Citations (706)
Number Name Date Kind
834261 Chambers Oct 1906 A
2087124 Smith et al. Jul 1937 A
2184511 Bagno et al. Dec 1939 A
3170459 Phipps et al. Feb 1965 A
3232291 Parker Feb 1966 A
3370459 Cescati Feb 1968 A
3517999 Weaver Jun 1970 A
3620216 Szymanski Nov 1971 A
3677260 Funfstuck et al. Jul 1972 A
3805769 Sessions Apr 1974 A
3845757 Weyer Nov 1974 A
3874368 Asrican Apr 1975 A
3882853 Gofman et al. May 1975 A
3942517 Bowles et al. Mar 1976 A
3972329 Kaufman Aug 1976 A
4008712 Nyboer Feb 1977 A
4024312 Korpman May 1977 A
4077406 Sandhage et al. Mar 1978 A
4102331 Grayzel et al. Jul 1978 A
4121573 Crovella et al. Oct 1978 A
4141366 Cross, Jr. et al. Feb 1979 A
RE30101 Kubicek et al. Sep 1979 E
4185621 Morrow Jan 1980 A
4216462 McGrath et al. Aug 1980 A
4300575 Wilson Nov 1981 A
4308872 Watson et al. Jan 1982 A
4358678 Lawrence Nov 1982 A
4409983 Albert Oct 1983 A
4450527 Sramek May 1984 A
4451254 Dinius et al. May 1984 A
4478223 Allor Oct 1984 A
4498479 Martio et al. Feb 1985 A
4522211 Bare et al. Jun 1985 A
4661103 Harman Apr 1987 A
4664129 Helzel et al. May 1987 A
4669480 Hoffman Jun 1987 A
4673387 Phillips et al. Jun 1987 A
4674511 Cartmell Jun 1987 A
4681118 Asai et al. Jul 1987 A
4692685 Blaze Sep 1987 A
4699146 Sieverding Oct 1987 A
4721110 Lampadius Jan 1988 A
4730611 Lamb Mar 1988 A
4781200 Baker Nov 1988 A
4793362 Tedner Dec 1988 A
4838273 Cartmell Jun 1989 A
4838279 Fore Jun 1989 A
4850370 Dower Jul 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4895163 Libke et al. Jan 1990 A
4911175 Shizgal Mar 1990 A
4945916 Kretschmer et al. Aug 1990 A
4955381 Way et al. Sep 1990 A
4966158 Honma et al. Oct 1990 A
4981139 Pfohl Jan 1991 A
4988335 Prindle et al. Jan 1991 A
4989612 Fore Feb 1991 A
5001632 Hall-Tipping Mar 1991 A
5012810 Strand et al. May 1991 A
5025791 Niwa Jun 1991 A
5027824 Dougherty et al. Jul 1991 A
5050612 Matsumura Sep 1991 A
5063937 Ezenwa et al. Nov 1991 A
5080099 Way et al. Jan 1992 A
5083563 Collins Jan 1992 A
5086781 Bookspan Feb 1992 A
5113869 Nappholz et al. May 1992 A
5125412 Thornton Jun 1992 A
5133355 Strand et al. Jul 1992 A
5140985 Schroeder et al. Aug 1992 A
5150708 Brooks Sep 1992 A
5168874 Segalowitz Dec 1992 A
5226417 Swedlow et al. Jul 1993 A
5241300 Buschmann Aug 1993 A
5257627 Rapoport Nov 1993 A
5271411 Ripley et al. Dec 1993 A
5273532 Niezink et al. Dec 1993 A
5282840 Hudrlik Feb 1994 A
5291013 Nafarrate et al. Mar 1994 A
5297556 Shankar Mar 1994 A
5301677 Hsung Apr 1994 A
5319363 Welch et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5335664 Nagashima Aug 1994 A
5343869 Pross et al. Sep 1994 A
5353793 Bornn Oct 1994 A
5362069 Hall-Tipping Nov 1994 A
5375604 Kelly et al. Dec 1994 A
5406945 Riazzi et al. Apr 1995 A
5411530 Akhtar May 1995 A
5437285 Verrier et al. Aug 1995 A
5443073 Wang et al. Aug 1995 A
5449000 Libke et al. Sep 1995 A
5450845 Axelgaard Sep 1995 A
5454377 Dzwonczyk et al. Oct 1995 A
5464012 Falcone Nov 1995 A
5469859 Tsoglin et al. Nov 1995 A
5482036 Diab et al. Jan 1996 A
5503157 Sramek Apr 1996 A
5511548 Riazzi et al. Apr 1996 A
5511553 Segalowitz Apr 1996 A
5518001 Snell May 1996 A
5523742 Simkins et al. Jun 1996 A
5529072 Sramek Jun 1996 A
5544661 Davis et al. Aug 1996 A
5558638 Evers et al. Sep 1996 A
5560368 Berger Oct 1996 A
5564429 Bornn et al. Oct 1996 A
5564434 Halperin et al. Oct 1996 A
5566671 Lyons Oct 1996 A
5575284 Athan et al. Nov 1996 A
5607454 Cameron et al. Mar 1997 A
5632272 Diab et al. May 1997 A
5634468 Platt et al. Jun 1997 A
5642734 Ruben et al. Jul 1997 A
5673704 Marchlinski et al. Oct 1997 A
5678562 Sellers Oct 1997 A
5687717 Halpern et al. Nov 1997 A
5718234 Warden et al. Feb 1998 A
5724025 Tavori Mar 1998 A
5738107 Martinsen et al. Apr 1998 A
5748103 Flach et al. May 1998 A
5767791 Stoop et al. Jun 1998 A
5769793 Pincus et al. Jun 1998 A
5772508 Sugita et al. Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5778882 Raymond et al. Jul 1998 A
5788643 Feldman Aug 1998 A
5803915 Kremenchugsky et al. Sep 1998 A
5807272 Kun Sep 1998 A
5814079 Kieval et al. Sep 1998 A
5817035 Sullivan Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5836990 Li Nov 1998 A
5855614 Stevens et al. Jan 1999 A
5860860 Clayman Jan 1999 A
5862802 Bird Jan 1999 A
5862803 Besson et al. Jan 1999 A
5865733 Malinouskas et al. Feb 1999 A
5876353 Riff Mar 1999 A
5904708 Goedeke May 1999 A
5935079 Swanson et al. Aug 1999 A
5941831 Turcott Aug 1999 A
5944659 Flach et al. Aug 1999 A
5949636 Johnson et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5964703 Goodman et al. Oct 1999 A
5970986 Bolz et al. Oct 1999 A
5984102 Tay Nov 1999 A
5987352 Klein et al. Nov 1999 A
6007532 Netherly Dec 1999 A
6027523 Schmieding Feb 2000 A
6045513 Stone et al. Apr 2000 A
6047203 Sackner et al. Apr 2000 A
6047259 Campbell et al. Apr 2000 A
6049730 Kristbjarnarson Apr 2000 A
6050267 Nardella et al. Apr 2000 A
6050951 Friedman et al. Apr 2000 A
6052615 Feild et al. Apr 2000 A
6080106 Lloyd et al. Jun 2000 A
6081735 Diab et al. Jun 2000 A
6095991 Krausman et al. Aug 2000 A
6102856 Groff et al. Aug 2000 A
6104949 Pitts Crick et al. Aug 2000 A
6112224 Peifer et al. Aug 2000 A
6117077 Del Mar et al. Sep 2000 A
6125297 Siconolfi Sep 2000 A
6129744 Boute Oct 2000 A
6141575 Price Oct 2000 A
6144878 Schroeppel et al. Nov 2000 A
6164284 Schulman et al. Dec 2000 A
6181963 Chin et al. Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6190313 Hinkle Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198394 Jacobsen et al. Mar 2001 B1
6198955 Axelgaard et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212427 Hoover Apr 2001 B1
6213942 Flach et al. Apr 2001 B1
6225901 Kail, IV May 2001 B1
6245021 Stampfer Jun 2001 B1
6259939 Rogel Jul 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6287252 Lugo Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6290646 Cosentino et al. Sep 2001 B1
6295466 Ishikawa et al. Sep 2001 B1
6305943 Pougatchev et al. Oct 2001 B1
6306088 Krausman et al. Oct 2001 B1
6308094 Shusterman et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6327487 Stratbucker Dec 2001 B1
6336903 Bardy Jan 2002 B1
6339722 Heethaar et al. Jan 2002 B1
6343140 Brooks Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358208 Lang et al. Mar 2002 B1
6385473 Haines et al. May 2002 B1
6398727 Bui et al. Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6411853 Millot et al. Jun 2002 B1
6416471 Kumar et al. Jul 2002 B1
6442422 Duckert Aug 2002 B1
6450820 Palsson et al. Sep 2002 B1
6450953 Place et al. Sep 2002 B1
6453186 Lovejoy et al. Sep 2002 B1
6454707 Casscells, III et al. Sep 2002 B1
6454708 Ferguson et al. Sep 2002 B1
6459930 Takehara et al. Oct 2002 B1
6463328 John Oct 2002 B1
6473640 Erlebacher Oct 2002 B1
6480733 Turcott Nov 2002 B1
6480734 Zhang et al. Nov 2002 B1
6485461 Mason et al. Nov 2002 B1
6490478 Zhang et al. Dec 2002 B1
6491647 Bridger et al. Dec 2002 B1
6494829 New, Jr. et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6520967 Cauthen Feb 2003 B1
6527711 Stivoric et al. Mar 2003 B1
6527729 Turcott Mar 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6546285 Owen et al. Apr 2003 B1
6551251 Zuckerwar et al. Apr 2003 B2
6551252 Sackner et al. Apr 2003 B2
6569160 Goldin et al. May 2003 B1
6572557 Tchou et al. Jun 2003 B2
6572636 Hagen et al. Jun 2003 B1
6577139 Cooper Jun 2003 B2
6577893 Besson et al. Jun 2003 B1
6577897 Shurubura et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6580942 Willshire Jun 2003 B1
6584343 Ransbury et al. Jun 2003 B1
6587715 Singer Jul 2003 B2
6589170 Flach et al. Jul 2003 B1
6595927 Pitts-Crick et al. Jul 2003 B2
6595929 Stivoric et al. Jul 2003 B2
6600949 Turcott Jul 2003 B1
6602201 Hepp et al. Aug 2003 B1
6605038 Teller et al. Aug 2003 B1
6611705 Hopman et al. Aug 2003 B2
6611783 Kelly et al. Aug 2003 B2
6616606 Petersen et al. Sep 2003 B1
6622042 Thacker Sep 2003 B1
6636754 Baura et al. Oct 2003 B1
6641542 Cho et al. Nov 2003 B2
6643541 Mok et al. Nov 2003 B2
6645153 Kroll et al. Nov 2003 B2
6649829 Garber et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6658300 Govari et al. Dec 2003 B2
6659947 Carter et al. Dec 2003 B1
6659949 Lang et al. Dec 2003 B1
6687540 Marcovecchio Feb 2004 B2
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699200 Cao et al. Mar 2004 B2
6701271 Willner et al. Mar 2004 B2
6714813 Ishigooka et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721594 Conley et al. Apr 2004 B2
6728572 Hsu et al. Apr 2004 B2
6748269 Thompson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6751498 Greenberg et al. Jun 2004 B1
6760617 Ward et al. Jul 2004 B2
6773396 Flach et al. Aug 2004 B2
6775566 Nissila Aug 2004 B2
6790178 Mault et al. Sep 2004 B1
6795722 Sheraton et al. Sep 2004 B2
6814706 Barton et al. Nov 2004 B2
6816744 Garfield et al. Nov 2004 B2
6821249 Casscells, III et al. Nov 2004 B2
6824515 Suorsa et al. Nov 2004 B2
6827690 Bardy Dec 2004 B2
6829503 Alt Dec 2004 B2
6858006 MacCarter et al. Feb 2005 B2
6871211 Labounty et al. Mar 2005 B2
6878121 Krausman et al. Apr 2005 B2
6879850 Kimball Apr 2005 B2
6881191 Oakley et al. Apr 2005 B2
6887201 Bardy May 2005 B2
6890096 Tokita et al. May 2005 B2
6893396 Schulze et al. May 2005 B2
6894204 Dunshee May 2005 B2
6906530 Geisel Jun 2005 B2
6912414 Tong Jun 2005 B2
6936006 Sabra Aug 2005 B2
6940403 Kail, IV Sep 2005 B2
6942622 Turcott Sep 2005 B1
6952695 Trinks et al. Oct 2005 B1
6970742 Mann et al. Nov 2005 B2
6972683 Lestienne et al. Dec 2005 B2
6978177 Chen et al. Dec 2005 B1
6980851 Zhu et al. Dec 2005 B2
6980852 Jersey-Willuhn et al. Dec 2005 B2
6985078 Suzuki et al. Jan 2006 B2
6987965 Ng et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6993378 Wiederhold et al. Jan 2006 B2
6997879 Turcott Feb 2006 B1
7003346 Singer Feb 2006 B2
7018338 Vetter et al. Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7027862 Dahl et al. Apr 2006 B2
7041062 Friedrichs et al. May 2006 B2
7044911 Drinan et al. May 2006 B2
7047067 Gray et al. May 2006 B2
7050846 Sweeney et al. May 2006 B2
7054679 Hirsh May 2006 B2
7059767 Tokita et al. Jun 2006 B2
7088242 Aupperle et al. Aug 2006 B2
7113826 Henry et al. Sep 2006 B2
7118531 Krill Oct 2006 B2
7127370 Kelly, Jr. et al. Oct 2006 B2
7129836 Lawson et al. Oct 2006 B2
7130396 Rogers et al. Oct 2006 B2
7130679 Parsonnet et al. Oct 2006 B2
7133716 Kraemer et al. Nov 2006 B2
7136697 Singer Nov 2006 B2
7136703 Cappa et al. Nov 2006 B1
7142907 Xue et al. Nov 2006 B2
7149574 Yun et al. Dec 2006 B2
7149773 Haller et al. Dec 2006 B2
7153262 Stivoric et al. Dec 2006 B2
7156807 Carter et al. Jan 2007 B2
7156808 Quy Jan 2007 B2
7160252 Cho et al. Jan 2007 B2
7160253 Nissila Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7167743 Heruth et al. Jan 2007 B2
7184821 Belalcazar et al. Feb 2007 B2
7191000 Zhu et al. Mar 2007 B2
7194306 Turcott Mar 2007 B1
7206630 Tarler Apr 2007 B1
7212849 Zhang et al. May 2007 B2
7215984 Diab et al. May 2007 B2
7215991 Besson et al. May 2007 B2
7238159 Banet et al. Jul 2007 B2
7248916 Bardy Jul 2007 B2
7251524 Hepp et al. Jul 2007 B1
7257438 Kinast Aug 2007 B2
7261690 Teller et al. Aug 2007 B2
7277741 Debreczeny et al. Oct 2007 B2
7284904 Tokita et al. Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7294105 Islam Nov 2007 B1
7295879 Denker et al. Nov 2007 B2
7297119 Westbrook et al. Nov 2007 B2
7319386 Collins, Jr. et al. Jan 2008 B2
7336187 Hubbard, Jr. et al. Feb 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7382247 Welch et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395106 Ryu et al. Jul 2008 B2
7423526 Despotis Sep 2008 B2
7423537 Bonnet et al. Sep 2008 B2
7443302 Reeder et al. Oct 2008 B2
7450024 Wildman et al. Nov 2008 B2
7468032 Stahmann et al. Dec 2008 B2
8249686 Libbus et al. Aug 2012 B2
8285356 Bly et al. Oct 2012 B2
20010047127 New, Jr. et al. Nov 2001 A1
20020004640 Conn et al. Jan 2002 A1
20020019588 Marro et al. Feb 2002 A1
20020022786 Takehara et al. Feb 2002 A1
20020028989 Pelletier et al. Mar 2002 A1
20020032581 Reitberg Mar 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020088465 Hill Jul 2002 A1
20020099277 Harry et al. Jul 2002 A1
20020116009 Fraser et al. Aug 2002 A1
20020123672 Christophersom et al. Sep 2002 A1
20020123674 Plicchi et al. Sep 2002 A1
20020138017 Bui et al. Sep 2002 A1
20020167389 Uchikoba et al. Nov 2002 A1
20020180605 Ozguz et al. Dec 2002 A1
20020182485 Anderson et al. Dec 2002 A1
20030023184 Pitts-Crick et al. Jan 2003 A1
20030028221 Zhu et al. Feb 2003 A1
20030028327 Brunner et al. Feb 2003 A1
20030051144 Williams Mar 2003 A1
20030055460 Owen et al. Mar 2003 A1
20030069510 Semler Apr 2003 A1
20030083581 Taha et al. May 2003 A1
20030085717 Cooper May 2003 A1
20030087244 McCarthy May 2003 A1
20030092975 Casscells, III et al. May 2003 A1
20030093125 Zhu et al. May 2003 A1
20030093298 Hernandez et al. May 2003 A1
20030100367 Cooke May 2003 A1
20030135127 Sackner et al. Jul 2003 A1
20030143544 McCarthy Jul 2003 A1
20030149349 Jensen Aug 2003 A1
20030187370 Kodama Oct 2003 A1
20030191503 Zhu et al. Oct 2003 A1
20030212319 Magill Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030233129 Matos Dec 2003 A1
20040006279 Arad (Abboud) Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040015058 Besson et al. Jan 2004 A1
20040019292 Drinan et al. Jan 2004 A1
20040044293 Burton Mar 2004 A1
20040049132 Barron et al. Mar 2004 A1
20040073094 Baker Apr 2004 A1
20040073126 Rowlandson Apr 2004 A1
20040077954 Oakley et al. Apr 2004 A1
20040100376 Lye et al. May 2004 A1
20040102683 Khanuja et al. May 2004 A1
20040106951 Edman et al. Jun 2004 A1
20040127790 Lang et al. Jul 2004 A1
20040133079 Mazar et al. Jul 2004 A1
20040133081 Teller et al. Jul 2004 A1
20040134496 Cho et al. Jul 2004 A1
20040143170 DuRousseau Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040152956 Korman Aug 2004 A1
20040158132 Zaleski Aug 2004 A1
20040167389 Brabrand Aug 2004 A1
20040172080 Stadler et al. Sep 2004 A1
20040199056 Husemann et al. Oct 2004 A1
20040215240 Lovett et al. Oct 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040225199 Evanyk et al. Nov 2004 A1
20040225203 Jemison et al. Nov 2004 A1
20040243018 Organ et al. Dec 2004 A1
20040267142 Paul Dec 2004 A1
20050004506 Gyory Jan 2005 A1
20050015094 Keller Jan 2005 A1
20050015095 Keller Jan 2005 A1
20050020935 Helzel et al. Jan 2005 A1
20050027175 Yang Feb 2005 A1
20050027204 Kligfield et al. Feb 2005 A1
20050027207 Westbrook et al. Feb 2005 A1
20050027918 Govindarajulu et al. Feb 2005 A1
20050043675 Pastore et al. Feb 2005 A1
20050054944 Nakada et al. Mar 2005 A1
20050065445 Arzbaecher et al. Mar 2005 A1
20050065571 Imran Mar 2005 A1
20050070768 Zhu et al. Mar 2005 A1
20050070778 Lackey et al. Mar 2005 A1
20050080346 Gianchandani et al. Apr 2005 A1
20050080460 Wang et al. Apr 2005 A1
20050080463 Stahmann et al. Apr 2005 A1
20050085734 Tehrani Apr 2005 A1
20050091338 de la Huerga Apr 2005 A1
20050096513 Ozguz et al. May 2005 A1
20050113703 Farringdon et al. May 2005 A1
20050124878 Sharony Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050124908 Belalcazar et al. Jun 2005 A1
20050131288 Turner et al. Jun 2005 A1
20050137464 Bomba Jun 2005 A1
20050137626 Pastore et al. Jun 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20050158539 Murphy et al. Jul 2005 A1
20050177038 Kolpin et al. Aug 2005 A1
20050187482 O'Brien et al. Aug 2005 A1
20050187796 Rosenfeld et al. Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050197654 Edman et al. Sep 2005 A1
20050203433 Singer Sep 2005 A1
20050203435 Nakada Sep 2005 A1
20050203637 Edman et al. Sep 2005 A1
20050206518 Welch et al. Sep 2005 A1
20050215914 Bornzin et al. Sep 2005 A1
20050215918 Frantz et al. Sep 2005 A1
20050228234 Yang Oct 2005 A1
20050228244 Banet Oct 2005 A1
20050239493 Batkin et al. Oct 2005 A1
20050240087 Keenan et al. Oct 2005 A1
20050251004 Istvan et al. Nov 2005 A1
20050251044 Hoctor et al. Nov 2005 A1
20050256418 Mietus et al. Nov 2005 A1
20050261598 Banet et al. Nov 2005 A1
20050261743 Kroll Nov 2005 A1
20050267376 Marossero et al. Dec 2005 A1
20050267377 Marossero et al. Dec 2005 A1
20050267381 Benditt et al. Dec 2005 A1
20050273023 Bystrom et al. Dec 2005 A1
20050277841 Shennib Dec 2005 A1
20050277842 Silva Dec 2005 A1
20050277992 Koh et al. Dec 2005 A1
20050280531 Fadem et al. Dec 2005 A1
20050283197 Daum et al. Dec 2005 A1
20050288601 Wood et al. Dec 2005 A1
20060004300 Kennedy Jan 2006 A1
20060004377 Keller Jan 2006 A1
20060009697 Banet et al. Jan 2006 A1
20060009701 Nissila et al. Jan 2006 A1
20060010090 Brockway et al. Jan 2006 A1
20060020218 Freeman et al. Jan 2006 A1
20060025661 Sweeney et al. Feb 2006 A1
20060030781 Shennib Feb 2006 A1
20060030782 Shennib Feb 2006 A1
20060031102 Teller et al. Feb 2006 A1
20060041280 Stahmann et al. Feb 2006 A1
20060047215 Newman et al. Mar 2006 A1
20060052678 Drinan et al. Mar 2006 A1
20060058543 Walter et al. Mar 2006 A1
20060058593 Drinan et al. Mar 2006 A1
20060064030 Cosentino et al. Mar 2006 A1
20060064040 Berger et al. Mar 2006 A1
20060064142 Chavan et al. Mar 2006 A1
20060066449 Johnson Mar 2006 A1
20060074283 Henderson et al. Apr 2006 A1
20060074462 Verhoef Apr 2006 A1
20060075257 Martis et al. Apr 2006 A1
20060084881 Korzinov et al. Apr 2006 A1
20060085049 Cory et al. Apr 2006 A1
20060089679 Zhu et al. Apr 2006 A1
20060094948 Gough et al. May 2006 A1
20060102476 Niwa et al. May 2006 A1
20060116592 Zhou et al. Jun 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060142654 Rytky Jun 2006 A1
20060142820 Von Arx et al. Jun 2006 A1
20060149168 Czarnek Jul 2006 A1
20060155183 Kroecker et al. Jul 2006 A1
20060155200 Ng Jul 2006 A1
20060157893 Patel Jul 2006 A1
20060161073 Singer Jul 2006 A1
20060161205 Mitrani et al. Jul 2006 A1
20060161459 Rosenfeld et al. Jul 2006 A9
20060167374 Takehara et al. Jul 2006 A1
20060173257 Nagai et al. Aug 2006 A1
20060173269 Glossop Aug 2006 A1
20060195020 Martin et al. Aug 2006 A1
20060195039 Drew et al. Aug 2006 A1
20060195097 Evans et al. Aug 2006 A1
20060195144 Giftakis et al. Aug 2006 A1
20060202816 Crump et al. Sep 2006 A1
20060212097 Varadan et al. Sep 2006 A1
20060224051 Teller et al. Oct 2006 A1
20060224072 Shennib Oct 2006 A1
20060224079 Washchuk Oct 2006 A1
20060235281 Tuccillo Oct 2006 A1
20060235316 Ungless et al. Oct 2006 A1
20060235489 Drew et al. Oct 2006 A1
20060241641 Albans et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241722 Thacker et al. Oct 2006 A1
20060247545 St. Martin Nov 2006 A1
20060252999 Devaul et al. Nov 2006 A1
20060253005 Drinan et al. Nov 2006 A1
20060253044 Zhang et al. Nov 2006 A1
20060258952 Stahmann et al. Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060264767 Shennib Nov 2006 A1
20060264776 Stahmann et al. Nov 2006 A1
20060271116 Stahmann et al. Nov 2006 A1
20060276714 Holt et al. Dec 2006 A1
20060281981 Jang et al. Dec 2006 A1
20060281996 Kuo et al. Dec 2006 A1
20060293571 Bao et al. Dec 2006 A1
20060293609 Stahmann et al. Dec 2006 A1
20070010721 Chen et al. Jan 2007 A1
20070010750 Ueno et al. Jan 2007 A1
20070015973 Nanikashvili Jan 2007 A1
20070015976 Miesel et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070021678 Beck et al. Jan 2007 A1
20070021790 Kieval et al. Jan 2007 A1
20070021792 Kieval et al. Jan 2007 A1
20070021794 Kieval et al. Jan 2007 A1
20070021796 Kieval et al. Jan 2007 A1
20070021797 Kieval et al. Jan 2007 A1
20070021798 Kieval et al. Jan 2007 A1
20070021799 Kieval et al. Jan 2007 A1
20070027388 Chou Feb 2007 A1
20070027497 Parnis Feb 2007 A1
20070038038 Stivoric et al. Feb 2007 A1
20070038078 Osadchy Feb 2007 A1
20070038255 Kieval et al. Feb 2007 A1
20070038262 Kieval et al. Feb 2007 A1
20070043301 Martinsen et al. Feb 2007 A1
20070043303 Osypka et al. Feb 2007 A1
20070048224 Howell et al. Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070060802 Ghevondian et al. Mar 2007 A1
20070073132 Vosch Mar 2007 A1
20070073168 Zhang et al. Mar 2007 A1
20070073181 Pu et al. Mar 2007 A1
20070073361 Goren et al. Mar 2007 A1
20070082189 Gillette Apr 2007 A1
20070083092 Rippo et al. Apr 2007 A1
20070092862 Gerber Apr 2007 A1
20070104840 Singer May 2007 A1
20070106132 Elhag et al. May 2007 A1
20070106137 Baker, Jr. et al. May 2007 A1
20070106167 Kinast May 2007 A1
20070118039 Bodecker et al. May 2007 A1
20070123756 Kitajima et al. May 2007 A1
20070123903 Raymond et al. May 2007 A1
20070123904 Stad et al. May 2007 A1
20070129622 Bourget et al. Jun 2007 A1
20070129643 Kwok et al. Jun 2007 A1
20070129769 Bourget et al. Jun 2007 A1
20070142715 Banet et al. Jun 2007 A1
20070142732 Brockway et al. Jun 2007 A1
20070149282 Lu et al. Jun 2007 A1
20070150008 Jones et al. Jun 2007 A1
20070150009 Kveen et al. Jun 2007 A1
20070150029 Bourget et al. Jun 2007 A1
20070162089 Mosesov Jul 2007 A1
20070167753 Van Wyk et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070167849 Zhang et al. Jul 2007 A1
20070167850 Russell et al. Jul 2007 A1
20070172424 Roser Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070191723 Prystowsky et al. Aug 2007 A1
20070207858 Breving Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070208235 Besson et al. Sep 2007 A1
20070208262 Kovacs Sep 2007 A1
20070232867 Hansmann Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070250121 Miesel et al. Oct 2007 A1
20070255120 Rosnov Nov 2007 A1
20070255153 Kumar et al. Nov 2007 A1
20070255184 Shennib Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070260133 Meyer Nov 2007 A1
20070260155 Rapoport et al. Nov 2007 A1
20070260289 Giftakis et al. Nov 2007 A1
20070270678 Fadem et al. Nov 2007 A1
20070273504 Tran Nov 2007 A1
20070276273 Watson, Jr Nov 2007 A1
20070282173 Wang et al. Dec 2007 A1
20070299325 Farrell et al. Dec 2007 A1
20080004499 Davis Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080024293 Stylos Jan 2008 A1
20080024294 Mazar Jan 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080058614 Banet et al. Mar 2008 A1
20080059239 Gerst et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080114220 Banet et al. May 2008 A1
20080139934 McMorrow et al. Jun 2008 A1
20080139953 Baker et al. Jun 2008 A1
20080146892 LeBoeuf et al. Jun 2008 A1
20080167538 Teller et al. Jul 2008 A1
20080171918 Teller et al. Jul 2008 A1
20080171922 Teller et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080183052 Teller et al. Jul 2008 A1
20080200774 Luo Aug 2008 A1
20080214903 Orbach Sep 2008 A1
20080221399 Zhou et al. Sep 2008 A1
20080221402 Despotis Sep 2008 A1
20080224852 Dicks et al. Sep 2008 A1
20080228084 Bedard et al. Sep 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080287752 Stroetz et al. Nov 2008 A1
20080287769 Kurzweil Nov 2008 A1
20080294019 Tran Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080318681 Rofougaran et al. Dec 2008 A1
20080319279 Ramsay et al. Dec 2008 A1
20090005016 Eng et al. Jan 2009 A1
20090018410 Coene et al. Jan 2009 A1
20090018456 Hung Jan 2009 A1
20090054737 Magar et al. Feb 2009 A1
20090062670 Sterling et al. Mar 2009 A1
20090073991 Landrum et al. Mar 2009 A1
20090076336 Mazar et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076341 James et al. Mar 2009 A1
20090076342 Amurthur et al. Mar 2009 A1
20090076343 James et al. Mar 2009 A1
20090076344 Libbus et al. Mar 2009 A1
20090076345 Manicka et al. Mar 2009 A1
20090076346 James et al. Mar 2009 A1
20090076348 Manicka et al. Mar 2009 A1
20090076349 Libbus et al. Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090076363 Bly et al. Mar 2009 A1
20090076364 Libbus et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090076401 Mazar et al. Mar 2009 A1
20090076405 Amurthur et al. Mar 2009 A1
20090076410 Libbus et al. Mar 2009 A1
20090076559 Libbus et al. Mar 2009 A1
20090132018 DiUbaldi et al. May 2009 A1
20090182204 Semler et al. Jul 2009 A1
20090234410 Libbus et al. Sep 2009 A1
20090264792 Mazar Oct 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20100056881 Libbus et al. Mar 2010 A1
20100081913 Cross et al. Apr 2010 A1
20100191310 Bly et al. Jul 2010 A1
20110245711 Katra et al. Oct 2011 A1
20110270049 Katra et al. Nov 2011 A1
20120310070 Kumar et al. Dec 2012 A1
Foreign Referenced Citations (10)
Number Date Country
WO 0079255 Dec 2000 WO
WO 02092101 Nov 2002 WO
WO 03082080 Oct 2003 WO
WO 2005051164 Jun 2005 WO
WO 2005104930 Nov 2005 WO
WO 2006008745 Jan 2006 WO
WO 2006102476 Sep 2006 WO
WO 2006111878 Nov 2006 WO
WO 2007041783 Apr 2007 WO
WO 2007106455 Sep 2007 WO
Non-Patent Literature Citations (155)
Entry
“Acute Decompensated Heart Failure” —Wikipedia Entry, downloaded from: <http://en.wikipedia.org/wiki/Acute—decompensated—heart—failure>, entry page created in 2008, 6 pages total.
3M Corporation, “3M Surgical Tapes—Choose the Correct Tape” quicksheet (2004).
Abraham, “New approaches to monitoring heart failure before symptoms appear,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :33-41.
AD5934: 250 kSPS 12-Bit Impedance Converter Network Analyzer, Analog Devices, Rev. A. Retrieved from the Internet: <<http://www.analog.com/static/imported-files/data—sheets/AD5934.pdf>>, 40 pages. Copyright 2005-2008.
Adams, Jr. “Guiding heart failure care by invasive hemodynamic measurements: possible or useful?”, Journal of Cardiac Failure 2002; 8(2):71-73.
Adamson et al., “Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device ,” Circulation. 2004;110:2389-2394.
Adamson et al., “Ongoing right ventricular hemodynamics in heart failure,” J Am Coll Cardiol, 2003; 41:565-57.
Adamson, “Integrating device monitoring into the infrastructure and workflow of routine practice,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:42-6.
Adhere [presentation], “Insights from the Adhere Registry: Data from over 100,000 patient cases,” 2005, 70 pages total.
Advamed White Sheet, “Health Information Technology: Improving Patient Safety and Quality of Care,” Jun. 2005, 23 pages.
Aghababian, “Acutely decompensated heart failure: opportunities to improve care and outcomes in the emergency department,” Rev Cardiovasc Med. 2002;3 Suppl 4:S3-9.
Albert, “Bioimpedance to prevent heart failure hospitalization,” Curr Heart Fail Rep. Sep. 2006;3(3):136-42.
American Heart Association, “Heart Disease and Stroke Statistics—2006 Update,” 2006, 43 pages.
American Heart Association, “Heart Disease and Stroke Statistics—2007 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 2007; 115;e69-e171.
Belalcazar et al., “Monitoring lung edema using the pacemaker pulse and skin electrodes,” Physiol. Meas. 2005; 26:S153-S163.
Bennet, “Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients,” PACE Jun. 2005; 28:573-584.
Bourge, “Case studies in advanced monitoring with the chronicle device,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:S56-61.
Braunschweig, “Continous haemodynamic monitoring during withdrawal of diuretics in patients with congestive heart failure,” European Heart Journal 2002 23(1):59-69.
Braunschweig, “Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor ,” Nephrol Dial Transplant 2006; 21:176-183.
Brennan, “Measuring a Grounded Impedance Profile Using the AD5933,” Analog Devices, 2006; retrieved from the Internet <<http://http://www.analog.com/static/imported-files/application—notes/427095282381510189AN847—0.pdf>>, 12 pages total.
Buono et al., “The effect of ambient air temperature on whole-body bioelectrical impedance,” Physiol. Meas. 2004;25:119-123.
Burkhoff et al., “Heart failure with a normal ejection fraction: Is it really a disorder of diastolic function?” Circulation 2003; 107:656-658.
Burr et al., “Heart rate variability and 24-hour minimum heart rate,” Biological Research for Nursing, 2006; 7(4):256-267.
Cardionet, “CardioNet Mobile Cardiac Outpatient Telemetry: Addendum to Patient Education Guide”, CardioNet, Inc., 2007, 2 pages.
Cardionet, “Patient Education Guide”, CardioNet, Inc., 2007, 7 pages.
Charach et al., “Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema,” Crit Care Med Jun. 2001;29(6):1137-1144.
Charlson et al., “Can disease management target patients most likely to generate high costs? The Impact of Comorbidity,” Journal of General Internal Medicine, Apr. 2007, 22(4):464-469.
Chaudhry et al., “Telemonitoring for patients with chronic heart failure: a systematic review,” J Card Fail. Feb. 2007; 13(1): 56-62.
Chung et al., “White coat hypertension: Not so benign after all?,” Journal of Human Hypertension (2003) 17, 807-809.
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” European Heart Journal 2003 24(5):442-463.
Cooley, “The Parameters of Transthoracic Electical Conduction,” Annals of the New York Academy of Sciences, 1970; 170(2):702-713.
Cowie et al., “Hospitalization of patients with heart failure. A population-based study,” European Heart Journal 2002 23(11):877-885.
Dimri, Chapter 1: Fractals in geophysics and seimology: an introduction, Fractal Behaviour of the Earth System, Springer Berlin Heidelberg 2005, pp. 1-22. [Summary and 1st page Only].
El-Dawlatly et al., “Impedance cardiography: noninvasive assessment of hemodynamics and thoracic fluid content during bariatric surgery,” Obesity Surgery, May 2005, 15(5):655-658.
EM Microelectronic—Marin SA, “Plastic Flexible LCD,” [product brochure]; retrieved from the Internet: <<http://www.emmicroelectronic.com/Line.asp?IdLine=48>>, copyright 2009, 2 pages total.
Erdmann, “Editorials: The value of diuretics in chronic heart failure demonstrated by an implanted haemodynamic monitor,” European Heart Journal 2002 23(1):7-9.
FDA—Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Section 11: Chronicle IHM Summary of Safety and Effectiveness, 2007; retrieved from the Internet: <http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—04.pdf>, 77 pages total.
FDA—Medtronic Inc., Chronicle 9520B Implantable Hemodynamic Monitor Reference Manual, 2007, 112 pages.
FDA Executive Summary Memorandum, prepared for Mar. 1, 2007 meeting of the Circulatory Systems Devices Advisory Panel, P050032 Medtronic, Inc. Chronicle Implantable Hemodynamic Monitor (IHM) System, 23 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4284b1—02.pdf>>.
FDA Executive Summary, Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Sponsor Executive Summary; vol. 1, section 4: Executive Summary. 2007, 12 pages total. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—03.pdf>>.
FDA, Draft questions for Chronicle Advisory Panel Meeting, 2007, 3 pages total. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/questions/2007-4284q1—draft.pdf>>.
FDA, References for Mar. 1 Circulatory System Devices Panel, 2007, 1 page total. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284bib1—01.pdf>>.
Fonarow et al., “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis,” JAMA. Feb. 2, 2005;293(5):572-580.
Fonarow, “How well are chronic heart failure patients being managed?”, Rev Cardiovasc Med. 2006;7 Suppl 1:S3-11.
Fonarow, “Maximizing Heart Failure Care: Opportunities to Improve Patient Outcomes” [Powerpoint Presentation], A CME National Faculty Program, downloaded from the Internet <<http://www.medreviews.com/media/MaxHFCore.ppt>>, 130 pages total.
Fonarow, “Proactive monitoring and management of the chronic heart failure patient,” Rev Cardiovasc Med. 2006; 7 Suppl 1:S1-2.
Fonarow, “The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure,” Rev Cardiovasc Med. 2003;4 Suppl 7:S21-S30.
Ganion et al., “Intrathoracic impedance to monitor heart failure status: a comparison of two methods in a chronic heart failure dog model,” Congest Heart Fail. Jul.-Aug. 2005;11(4):177-81, 211.
Gass et al., “Critical pathways in the management of acute decompensated heart failure: A CME-Accredited Accredited monograph,” Mount Sinai School of Medicine, 2004, 32 pages total.
Gheorghiade et al., “Congestion is an important diagnostic and therapeutic target in heart failure,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :12-24.
Gilliam, III et al., “Changes in heart rate variability, quality of life, and activity in cardiac resynchronization therapy patients: results of the HF-HRV registry,” Pacing and Clinical Electrophysiology, Jan. 18, 2007; 30(1): 56-64.
Gilliam, III et al., “Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients.,” J Electrocardiol. Oct. 2007;40(4):336-42.
Gniadecka, “Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency high-frequency ultrasound examination of intradermal echogenicity,” J Am Acad oDermatol, Jul. 1996; 35(1):37-41.
Goldberg et al., “Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: The Weight Monitoring in Heart Failure (WHARF) Trial,” American Heart Journal, Oct. 2003; 416(4):705-712.
Grap et al., “Actigraphy in the Critically III: Correlation With Activity, Agitation, and Sedation,” American Journal of Critical Care. 2005;14: 52-60.
Gudivaka et al., “Single- and multifrequency models for bioelectrical impedance analysis of body water compartments,” J Appl Physiol, 1999;87(3):1087-1096.
Guyton et al., Unit V: The Body Fluids and Kidneys, Chapter 25: The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema, Guyton & Hall Textbook of Medical Physiology 11th Edition, Saunders 2005; pp. 291-306.
Hadase et al., “Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart Failure,” Circ J 2004; 68(4):343-347.
Hallstrom et al., “Structural relationships between measures based on heart beat intervals: potential for improved risk assessment,” IEEE Biomedical Engineering 2004, 51(8):1414-1420.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Executive Summary: HFSA 2006 Comprehensive Heart Failure Practice Guideline, Journal of Cardiac Failure 2006;12(1):10-e38.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 12: Evaluation and Management of Patients With Acute Decompensated Heart Failure, Journal of Cardiac Failure 2006;12(1):e86-e103.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 2: Conceptualization and Working Definition of Heart Failure, Journal of Cardiac Failure 2006;12(1):e10-e11.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 3: Prevention of Ventricular Remodeling Cardiac Dysfunction, and Heart Failure Overview, Journal of Cardiac Failure 2006;12(1):e12-e15.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 4: Evaluation of Patients for Ventricular Dysfunction and Heart Failure, Journal of Cardiac Failure 2006;12(1):e16-e25.
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 8: Disease Management in Heart Failure Education and Counseling, Journal of Cardiac Failure 2006;12(1):e58-e68.
HRV Enterprises, LLC, “Heart Rate Variability Seminars,” downloaded from the Internet: <<http://hrventerprise.com/>> on Apr. 24, 2008, 3 pages total.
HRV Enterprises, LLC, “LoggerPro HRV Biosignal Analysis,” downloaded from the Internet: <<http://hrventerprise.com/products.html on Apr. 24, 2008, 3 pages total.
Hunt et al., “ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society,” Circulation. 2005;112:e154-e235.
Hunt et al., ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure), Circulation. 2001;104:2996-3007.
Imhoff et al., “Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients,” Critical Care Medicine 2000; 28(8):2812-2818.
Jaeger et al., “Evidence for Increased Intrathoracic Fluid Volume in Man at High Altitude,” J Appl Physiol 1979; 47(6): 670-676.
Jaio et al., “Variance fractal dimension analysis of seismic refraction signals,” WESCANEX 97: Communications, Power and Computing. IEEE Conference Proceedings., May 22-23, 1997, pp. 163-167 [Abstract Only].
Jerant et al., “Reducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention,” Medical Care 2001, 39(11):1234-1245.
Kasper et al., “A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission,” J Am Coll Cardiol, 2002; 39:471-480.
Kaukinen, “Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography,” Journal of Cardiothoracic and Vascular Anesthesia 2003; 17(2):199-203.
Kawaguchi et al., “Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations,” Circulation. 2003;107:714-720.
Kawasaki et al., “Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction,” Circ J. Jul. 2003;67(7):601-604.
Kearney et al., “Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure,” J Am Coll Cardiol, 2002; 40(10):1801-1808.
Kitzman et al., “Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure,” JAMA Nov. 2002; 288(17):2144-2150.
Kööbi et al., “Non-invasive measurement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods,” Intensive Care Medicine 1997; 23(11):1132-1137.
Koyama et al., “Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure,” Circ J 2002; 66(10):902-907.
Krumholz et al., “Predictors of readmission among elderly survivors of admission with heart failure,” American Heart Journal 2000; 139 (1):72-77.
Kyle et al., “Bioelectrical Impedance Analysis—part I: review of principles and methods,” Clin Nutr. Oct. 2004;23(5):1226-1243.
Kyle et al., “Bioelectrical Impedance Analysis—part II: utilization in clinical practice,” Clin Nutr. Oct. 2004; 23(5):1430-1453.
Lee et al., “Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model,” JAMA 2003;290(19):2581-2587.
Leier “The Physical Examination in Heart Failure—Part I,” Congest Heart Fail. Jan.-Feb. 2007;13(1):41-47.
LifeShirt® Model 200 Directions for Use, “Introduction”, VivoMetrics, Inc. 9 page total.
Liu et al., “Fractal analysis with applications to seismological pattern recognition of underground nuclear explosions,” Singal Processing, Sep. 2000, 80(9):1849-1861. [Abstract Only].
Lozano-Nieto, “Impedance ratio in bioelectrical impedance measurements for body fluid shift determination,” Proceedings of the IEEE 24th Annual Northeast Bioengineering Conference, Apr. 9-10, 1998, pp. 24-25.
Lucreziotti et al., “Five-minute recording of heart rate variability in severe chronic heart failure : Correlates with right ventricular function and prognostic implications,” American Heart Journal 2000; 139(6):1088-1095.
Lüthje et al., “Detection of heart failure decompensation using intrathoracic impedance monitoring by a triple-chamber implantable defibrillator,” Heart Rhythm Sep. 2005;2(9):997-999.
Magalski et al., “Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-Month Follow-up Study of Patients With Chronic Heart Failure,” J Card Fail 2002, 8(2):63-70.
Mahlberg et al., “Actigraphy in agitated patients with dementia: Monitoring treatment outcomes,” Zeitschrift für Gerontologie and Geriatrie, Jun. 2007; 40(3)178-184. [Abstract Only].
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Appl Physiol 1998; 84(5):1801-1816.
Matthie, “Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy,” J Appl Physiol 2005; 99:780-781.
McMurray et al., “Heart Failure: Epidemiology, Aetiology, and Prognosis of Heart Failure,” Heart 2000;83:596-602.
Miller, “Home monitoring for congestive heart failure patients,” Caring Magazine, Aug. 1995: 53-54.
Moser et al., “Improving outcomes in heart failure: it's not unusual beyond usual Care,” Circulation. 2002;105:2810-2812.
Nagels et al., “Actigraphic measurement of agitated behaviour in dementia,” International journal of geriatric psychiatry , 2009; 21(4):388-393. [Abstract Only].
Nakamura et al., “Universal scaling law in human behavioral organization,” Physical Review Letters, Sep. 28, 2007; 99(13):138103 (4 pages).
Nakaya, “Fractal properties of seismicity in regions affected by large, shallow earthquakes in western Japan: Implications for fault formation processes based on a binary fractal fracture network model,” Journal of geophysical research, Jan. 2005; 11(B1):B01310.1-B01310.15. [Abstract Only].
Naylor et al., “Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial ,” Amer. College Physicians 1994; 120(12):999-1006.
Nesiritide (Natrecor) [Presentation] Acutely Decompensated Congestive Heart Failure: Burden of Disease, downloaded from the Internet: <<http://www.huntsvillehospital.org/foundation/events/cardiologyupdate/CHF.ppt.>>, 39 pages.
Nieminen et al., “EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population,” European Heart Journal 2006; 27(22):2725-2736.
Nijsen et al., “The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy,” Epilepsy Behav. Aug. 2005;7(1):74-84.
Noble et al., “Diuretic induced change in lung water assessed by electrical impedance tomography,” Physiol. Meas. 2000; 21(1):155-163.
Noble et al., “Monitoring patients with left ventricular failure by electrical impedance tomography,” Eur J Heart Fail. Dec. 1999;1(4):379-84.
O'Connell et al., “Economic impact of heart failure in the United States: time for a different approach,” J Heart Lung Transplant., Jul.-Aug. 1994 ; 13(4):S107-S112.
Ohlsson et al., “Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors,” Eur J Heart Fail. Jun. 2003;5(3):253-259.
Ohlsson et al., “Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor,” European Heart Journal 2001 22(11):942-954.
Packer et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” J Am Coll Cardiol, 2006; 47(11):2245-2252.
Palatini et al., “Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension” Arch Intern Med. 2002;162:2313-2321.
Piiria et al., “Crackles in patients with fibrosing alveolitis bronchiectasis, COPD, and Heart Failure,” Chest May 1991; 99(5):1076-1083.
Pocock et al., “Predictors of mortality in patients with chronic heart failure,” Eur Heart J 2006; (27): 65-75.
Poole-Wilson, “Importance of control of fluid volumes in heart failure,” European Heart Journal 2000; 22(11):893-894.
Raj et al., ‘Letter Regarding Article by Adamson et al, “Continuous Autonomic Assessment in Patients With Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device’”, Circulation 2005;112:e37-e38.
Ramirez et al., “Prognostic value of hemodynamic findings from impedance cardiography in hypertensive stroke,” AJH 2005; 18(20):65-72.
Rich et al., “A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure,” New Engl. J. Med. 1995;333:1190-1195.
Roglieri et al., “Disease management interventions to improve outcomes in congestive heart failure,” Am J Manag Care. Dec. 1997;3(12):1831-1839.
Sahalos et al., “The Electrical impedance of the human thorax as a guide in evaluation of intrathoracic fluid volume,” Phys. Med. Biol. 1986; 31:425-439.
Saxon et al., “Remote active monitoring in patients with heart failure (rapid-rf): design and rationale,” Journal of Cardiac Failure 2007; 13(4):241-246.
Scharf et al., “Direct digital capture of pulse oximetry waveforms,” Proceedings of the Twelfth Southern Biomedical Engineering Conference, 1993., pp. 230-232.
Shabetai, “Monitoring heart failure hemodynamics with an implanted device: its potential to improve outcome,” J Am Coll Cardiol, 2003; 41:572-573.
Small, “Integrating monitoring into the Infrastructure and Workflow of Routine Practice: OptiVol,” Rev Cardiovasc Med. 2006 ;7 Supp 1: S47-S55.
Smith et al., “Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline ,” J Am Coll Cardiol, 2003; 41:1510-1518.
Something in the way he moves, The Economist, 2007, retrieved from the Internet: <<http://www.economist.com/science/printerFriendly.cfm?story id=9861412>>.
Starling, “Improving care of chronic heart failure: advances from drugs to devices,” Cleveland Clinic Journal of Medicine Feb. 2003; 70(2):141-146.
Steijaert et al., “The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals,” International Journal of Obesity Oct. 1997; 21(10):930-934.
Stewart et al., “Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care,” Arch Intern Med. 1998;158:1067-1072.
Stewart et al., “Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study,” The Lancet Sep. 1999, 354(9184):1077-1083.
Stewart et al., “Home-based intervention in congestive heart failure: long-term implications on readmission and survival,” Circulation. 2002;105:2861-2866.
Stewart et al., “Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure,” Arch Intern Med. 1999;159:257-261.
Stewart et al., “Trends in Hospitalization for Heart Failure in Scotland, 1990-1996. An Epidemic that has Reached Its Peak?,” European Heart Journal 2001 22(3):209-217.
Swedberg et al., “Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology,” Eur Heart J. Jun. 2005; 26(11):1115-1140.
Tang, “Case studies in advanced monitoring: OptiVol,” Rev Cardiovasc Med. 2006;7 Suppl 1:S62-S66.
The ESCAPE Investigators and ESCAPE Study Coordinators, “Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness,” JAMA 2005;294:1625-1633.
Tosi et al., “Seismic signal detection by fractal dimension analysis ,” Bulletin of the Seismological Society of America; Aug. 1999; 89(4):970-977. [Abstract Only].
Van De Water et al., “Monitoring the chest with impedance,” Chest. 1973;64:597-603.
Van Someren, “Actigraphic monitoring of movement and rest-activity rhythms inaging, Alzheimer's disease, and Parkinson's disease,” IEEE Transactions on Rehabilitation Engineering, Dec. 1997; 5(4):394-398. [Abstract Only].
Vasan et al., “Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction,” J Am Coll Cardiol, 1999; 33:1948-1955.
Verdecchia et al., “Adverse prognostic value of a blunted circadian rhythm of heart rate in essential hypertension,” Journal of Hypertension 1998; 16(9):1335-1343.
Verdecchia et al., “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension,” Hypertension. 1998;32:983-988.
Vollmann et al., “Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure,” Euorpean Heart Journal Advance Access published on Feb. 19, 2007, downloaded from the Internet:<<http://eurheartj.oxfordjournals.org/cgi/content/full/ehl506v1>>, 6 pages total.
Vuksanovic et al., “Effect of posture on heart rate variability spectral measures in children and young adults with heart disease,” International Journal of Cardiology 2005;101(2): 273-278.
Wang et al., “Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model,” PACE 2005;28(5):404-411.
Wickemeyer et al., #197—“Association between atrial and ventricular tachyarrhythmias, intrathoracic impedance and heart failure decompensation in CRT-D Patients,” Journal of Cardiac Failure 2007; 13 (6) Suppl.; S131-132.
Williams et al, “How do different indicators of cardiac pump function impact upon the long-term prognosis of patients with chronic heart failure,” American Heart Journal, 150(5 ):983.e1-983.e6.
Wonisch et al., “Continuous haemodynamic monitoring during exercise in patients with pulmonary hypertension,” Int J Cardiol. Jun. 8, 2005;101(3):415-420.
Wynne et al., “Impedance cardiography: a potential monitor for hemodialysis,” Journal of Surgical Research 2006, 133(1):55-60.
Yancy “Current approaches to monitoring and management of heart failure,” Rev Cardiovasc Med 2006; 7 Suppl 1:S25-32.
Ypenburg et al., “Intrathoracic Impedance Monitoring to Predict Decompensated Heart Failure,” Am J Cardiol 2007, 99(4):554-557.
Yu et al., “Intrathoracic Impedance Monitoring in Patients With Heart Failure: Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization,” Circulation. 2005;112:841-848.
Zannad et al., “Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: The EPICAL Study,” J Am Coll Cardiol, 1999; 33(3):734-742.
Zile, “Heart failure with preserved ejection fraction: is this diastolic heart failure?” J Am Coll Cardiol, 2003; 41(9):1519-1522.
Scapa Medical product listing and descriptions (2008) available at http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf; retrieved via WayBack Machine Aug. 29, 2013.
Related Publications (1)
Number Date Country
20110144470 A1 Jun 2011 US
Provisional Applications (1)
Number Date Country
61286075 Dec 2009 US