Body interface

Information

  • Patent Grant
  • 11850206
  • Patent Number
    11,850,206
  • Date Filed
    Monday, April 19, 2021
    3 years ago
  • Date Issued
    Tuesday, December 26, 2023
    12 months ago
Abstract
A body interface comprises a panel, and a lumbar support and may be configured to attach to an exoskeleton such as a leg/hip assist mechanism. The body interface has an adjustable tension provided by either a tensioning device or by the properties of materials in the panel and the lumbar support. Tension in the body interface allows the lumbar support to comfortably and dynamically contact a user's body while the panel cooperates with the leg/hip assist mechanism. First and second arms may extend from lateral portions of the panel to define with first and second belt members a circumference around the user.
Description
FIELD OF THE DISCLOSURE

A body interface, useable as an anterior-posterior orthosis, is provided for use as an exoskeleton having adjustability and means for proper placement over a hip and back of a user and is adapted to support an actuator or motion/energy storage module.


BACKGROUND

Exosuits or exoskeletons apply forces to the body in parallel with a user's muscles so walking or other repetitive motions results in less fatigue. These exoskeletons can give healthy individuals greater endurance or can provide small corrections to an impaired individual's gait.


An example of an exoskeleton is a multi-articular exoskeleton extending from the heel to the waist. The exoskeleton applies forces during transitions between legs, which is when the body uses the most energy. The calf muscles push the body upward and forward, while the thigh muscles swing the leg forward. The multi-articular exoskeleton can help or augment transitions or motions since it crosses both the ankle and hip joints.


Exoskeletons can aid a person performing physical labor and reduce the risk of injury from the lifting, bending, pulling, and pushing commonly required in many jobs. Assistive bionics technologies have the potential to improve quality of life, decrease at-work injury claims, and create a safer, more comfortable, and productive workplace environment.


Most exoskeletons comprise at least three components: a frame, an actuator or motion module (e.g. a motor, spring, etc.), and a physical body interface (often including straps, bindings, etc.). The exoskeletons may also include a power source supported by the frame for driving the actuator or motion module (should it be powered by an external source).


Good fit and ease and accuracy of adjustability are often challenges for the practical use of exoskeletons considering the length of use contemplated for many exoskeleton applications and the difficulty of conforming an exoskeleton, which includes rigid powered elements, to a user's dimensions in a comfortable manner. It is difficult to provide off-the-shelf or easy to manufacture exoskeletons that can adapt to the widely differing dimensions of different users, especially if the exoskeleton is worn successively by different users during different shifts.


In the instance of lumbar and hip supports, these supports for use as an exoskeleton are deficient in offering adjustability and proper placement over the hip and back of the user, and lack sufficient support and flexibility for comfortable and accurate placement over soft tissue while also permitting actuators to assist motion of the skeletal structure of the user. It may be difficult to properly place the support on a user because of the dynamic changes to a user's dimensions throughout use.


as a user may be susceptible to skin wounds and pressure sores of soft tissue adjacent the body interface at pressure points, particularly when used in combination of actuators driving the skeletal structure, a body interface should prevent any soft tissue irritation during use of the exoskeleton. Existing devices poorly address this issue, as the moving parts of the exoskeleton are often arranged to abut or rub against the user, particularly in the user's back.


The body interface also should be customized to an individual's own contours and anatomical needs, and the body interface should be adjustable to fit dimensions with different users. Existing devices fail to provide a comfortable interface between a body and an exoskeleton that can conform to a user's dynamically changing dimensions, contours, and other anatomical needs without sacrificing effective engagement with the exoskeleton.


From the foregoing, there is a need for a body interface suitable for an exoskeleton and configured for attachment to the user at multiple points to assist in supporting and coupling to the user's body, particularly in view of a user's dynamically changing dimensions and anatomical needs. There is further a need for a body interface that reduces forces on a user's lower back region while providing improved balance between adjustability and proper placement of the body interface.


SUMMARY

According to embodiments of the disclosure, the body interface is an improvement over known support interfaces in an exoskeleton, and reduces forces and torques on a user's lower back region. While described in a body interface, the embodiments disclosed and the individual components thereof, may likewise be extended to braces and supports in orthopedics, such as a spinal orthosis or an upper body orthosis.


The embodiments of the body interface include a lumbar support that serves as a suspension system to better accommodate and conform to the lumbar region of a user. Specifically, embodiments include lumbar tensioning to conform to a lumbar sacral shape, such as by increasing or decreasing purchase on demand, and to suspend a hip actuation device while forming a stable base for transmission of hip actuator forces (flexion and extension) through both a frame and a suspended soft good construction.


From these body interface embodiments, the body interface according to the disclosure provides increased breathability by using a lumbar support, such as an anatomically-shaped substrate formed from a non-stretch textile, that is suspended relative to a rigid frame or panel of the body interface. The lumbar support increases comfort by conforming to a user's anatomical shape. The lumbar support improves comfort and long-term use by reducing abrasion against a user by spacing the user's lumbar region a distance or clearance from the rigid frame or panel, by evenly distributing the forces to avoid pressure points, and by enhancing breathability and ease of donning and doffing.


The lumbar support securely sustains its place over soft-tissue while enabling actuators to drive the user's skeletal system, accommodating external movement relative or adjacent to the body interface without adjusting in placement against the user, enhancing the effectiveness of the exoskeleton. The lumbar support may be static because it maintains a fixed configuration, or may be dynamic in that a user can adjust tension of the lumbar support to adapt its conformability to the user and location relative to the frame. The body interface achieves an improved balance between proper support and comfortable fit for a user.


Embodiments of the body interface are adapted to anatomically improve donning and doffing of the body interface, and conformability to a user's waist and torso. A belt tensioning system enables the user to fasten the body interface to the user depending on intimacy of fit or lateral stabilization needed. The belt tensioning system includes three-dimensionally shaped belt arms that can readily open and close for ease and convenience of donning and doffing. The three-dimensionally shaped belt arms aid in single-handed donning, which is useful for quickly and securely securing the body interface to a user.


The belt tensioning system preferably has a soft-good construction including textile, foam, and semi-rigid plastic backing to yield an “anatomically shaped resting position,” that can be modified when donning the body interface and securely placing about the user. This allows for a natural and comfortable positioning of the body interface.


The body interface has versatility for supporting hip musculature and comfortably remaining in place as actuators assist a user with hip flexion and extension. The body interface is versatile further in supporting an anterior panel that can be added for additional truncal support for moderate hip/truncal extension assistance. The body interface can additionally support a posterior panel extension and shoulder straps to provide enhanced support and assistance for users with truncal weakness or during sit-to-stand activities. In this way, the body interface may be constructed and adapted modularly for easy and convenient adaptation to a user's specific and dynamic needs.


The above embodiments solve the problem of existing exoskeletons and body interfaces having improper balance between comfort and effectiveness by providing an improved lumbar support suspension system with a tensioning system and combines breathability, comfort, and enhanced conformity, improved belt arms for easier donning and offing, and improved versatility toward assistance for users with truncal weakness or for different activities.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic view of an exoskeleton including a body interface according to embodiments of the disclosure.



FIG. 1B is a schematic view of the exoskeleton of FIG. 1A including a posterior panel extension.



FIG. 2 is a perspective view of an embodiment of the body interface of FIG. 1A.



FIG. 3 is a perspective view of a frame in the body interface of FIG. 1A.



FIGS. 4A and 4B are force diagrams showing forces in flexion of the exoskeleton of FIG. 1A on a user wearing the body interface.



FIGS. 4C and 4D are force diagrams showing forces in extension of the exoskeleton of FIG. 1A on a user wearing the body interface.



FIG. 5 is a schematic plan view of the body interface of FIG. 2.



FIG. 6 is a schematic detail view VI of FIG. 5.



FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6.



FIG. 8 is a perspective view of another embodiment of the body interface having a variation of the lumbar support.



FIG. 9 is a perspective view of another embodiment of the body interface having a variation of the lumbar support.



FIG. 10 is a perspective view of another embodiment of the body interface having a variation of the lumbar support.



FIG. 11A is a perspective view of another embodiment of the body interface having a variation of the lumbar support having a first tension configuration.



FIG. 11B is a perspective view of the body interface of FIG. 11A having a second tension configuration.



FIG. 12A is a schematic posterior view of the body interface of FIG. 2 having a belt tensioning system.



FIG. 12B is a schematic top view of the body interface of FIG. 2 having a belt tensioning system.



FIG. 12C is a schematic side view of the body interface of FIG. 2 having a belt tensioning system.





The drawings and figures are not drawn to scale, but instead are drawn to provide a better understanding of the components, and are not intended to be limiting in scope, but to provide exemplary illustrations. The figures illustrate exemplary configurations of a body interface, and in no way limit the structures or configurations of a body interface and components according to the present disclosure.


DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

The embodiments of the disclosure relate to a body interface.


The body interface incorporates features in a spinal orthosis, such as a spinal orthosis disclosed in U.S. patent application publication 2017/0007435, published on Jan. 12, 2017. However, unlike in a spinal orthosis which is specifically designed for pain relief, protecting injured ligaments or muscles, and post-surgical immobilization, the body interface of the embodiments of the disclosure are provided for support over soft tissue while permitting mechanical actuators to assist motion of skeletal structures. The body interface, like the known spinal orthosis, may be configured to relieve pressure over the spinous processes while applying an even pressure to the paraspinal musculature to ensure comfortable support of the exoskeleton equipment.


A known spinal orthosis, such as the exemplary spinal orthosis described in U.S. Pat. No. 8,172,779, granted on May 8, 2012 and incorporated by reference, and the embodiments of the body interface, have outer and inner side configurations, with the inner side arranged to be adjacent the user's back. The orthosis and body support have first and second belt members, and a compression or closure system adapted to exert pressure onto the lumbar region of a user's back. The compression or closure system includes tightening elements or drawstrings that permit the user to adjust pressure over the back and a cover extending over the compression system.


While in the spinal orthosis there is a flexible or semi-rigid back plate extending over at least part of the compression system, the body interface preferably has a rigid or semi-rigid frame that may include a posterior panel arranged to be adjacent the back of the user and to carry actuators and/or a power supply. An anterior panel may be attached to the body interface on an anterior side thereof.


Referring to FIG. 1A, a body interface 10 includes a frame, as in a panel 18 that is semi-rigid or rigid, and a lumbar support 22 anchored to the panel 18 at an anchor point. The lumbar support 22 may be tensionable over and spaced a distance apart from the panel 18. The lumbar support 22 preferably has a segment spaced apart from the panel 18 to match and increase lumbar support 22 to a shape and weight of a user over a sacral area, while being suspended from the panel 18. The body interface 10 is stabilized on a user's muscle and soft-tissue, while remaining stable in position on the user according to relative movement of an assistive system 12 attachable to the body interface 10 providing stability without sacrificing comfort or adaptability.


The lumbar support 22 may flexible relative to the panel 18; however, the lumbar support 22 is preferably a non-stretchable textile or other suitable material. In a variation, the lumbar support 22 may be stretchable or have stretchable components or segments. The lumbar support 22 may be static because it is not adjustable in tension aside from bearing weight from a user, or it may be dynamically adjustable because the lumbar support 22 is tensionable relative to the panel by one or more tensioning devices 28, 29.


The body interface 10 is preferably connected to an assistive system 12 movable relative to the panel 18, and a power supply 14 adapted to drive the assistive system 12. In FIGS. 1A and 1B, the assistive system 12 includes a leg/hip assist mechanism 42 and a leg connection 44, preferably on lateral sides of the panel 18. The driving system or power supply 14 includes a driving mechanism 46 for driving the leg/hip mechanism 42, and is preferably on a posterior side of the panel 18.


The panel 18 is arranged to control sagittal movement, thereby reducing gross and intersegmental flexion and extension of the hip(s) and trunk. The panel 18 is arranged to control coronal movement (with the arms) to control spinal/hip motion of lateral bending and abduction, respectively. The panel 18 may likewise be arranged to control flexion-extension movement.


As shown in FIG. 1B, the body interface 10 may include a panel attachment 38 for attaching to the panel 18 superiorly, the panel attachment 38 including a strap system 40.


Referring to FIG. 3, the panel 18 may be arranged with a superior or thoracic portion 60, an inferior or sacral portion 64, and a central or lumbar portion 62 between the superior portion 60 and the inferior portion 64. The panel 18 may define first and second lateral portions 66, 68 extending from the central portion 62. The panel 18 may define a plurality of openings 70.


As shown in FIGS. 1A-2, the body interface 10 includes an attachment system 16 secured to the panel and creating a circumference with the panel 18. The attachment system 16 may share a pulley system described in U.S. patent application publication no. 2017/0007435, and U.S. Pat. No. 8,172,779. A cover 20 extends over the lumbar support 22 between the cover 20 and the panel 18, or the lumbar support 22 is part of the cover, as disclosed below in other embodiments.



FIG. 2 shows the body interface 10 including first and second arms 24, 26 on opposed lateral sides of the panel 18 through which first and second belt segments 30, 32 of the attachment system 16, respectively, extend to engage one another. At least one tensioning element 34, 36 is movable relative to the panel 18 to tension the attachment system 16 by reducing the circumference thereof. The at least one tensioning element 34, 36 secures to one of the first and second belt segments 30, 32 of the attachment system 16 and is adapted to move the first and second belt segments 30, 32 relative to the panel 18. The first and second arms 24, 26 are preferably curved so that the first and second arms generally hug or closely embrace the body of the user. Such a configuration aids the donning and assures that the body interface remains securely on the user, particularly in view of the weight and movement of the activation system.


The body interface 10 has first and second arms 24, 26 which extend from opposed lateral sides of the panel 18, the first and second arms 24, 26 forming open channels 48 through which the first and second belt segments 30, 32 slidably extend. The first and second arms 24, 26 pivot relative to the panel 18 according to tensioning of the attachment system 16 to form a curvature 50. The first and second arms 24, 26 have upper portions 52 permitting flexure of the first and second arms 24, 26 to enable formation of the curvature 50.


According to an exemplary embodiment, the tensioning device 28 for regulating tension in the lumbar support 22 includes a cable 56 extending through the channel 48 to engage the lumbar support 22 and a dial tensioning device. The tensioning mechanism may be a dial tensioning device, a ladder strap or other suitable incremental tensioning mechanism, as taught in U.S. Pat. No. 7,198,610, issued on Apr. 3, 2007.


The tensioning element 34 includes an elongate element 58 and a handle 54 secured to an end of the elongate element 56. The handle 54 is securable over a belt segment 30 and the elongate element 58 is movable relative to the belt segment 30. The first and second belt segments 30, 32 are securable to one another by cooperating fasteners 82. The tensioning element 34 may be arranged similarly as in U.S. patent application no. publication 2017/0007435.



FIGS. 4A and 4B show hip flexion actuation schema:

    • (A) Actuator 42 drives thigh cuff/hip into flexion with force F3. The force F3 requirements may be smaller relative to other forces depicted in FIGS. 4A and 4B in that they may be generated to advance the non-weight bearing leg during swing phase.
    • (B) Attachment system 16 is the middle counter force F2.
    • (C) Counterforce F1, acting counter to a hip flexion moment generated by the actuator, is provided at a superior portion of panel 18. M1 represents a moment arm of the counterforce or stabilizing force F1. The length of the moment arm M1 is relatively long, and sufficient leverage counters the force/moment generated by the hip actuator 42.



FIGS. 4C and 4D show hip extension activation schema:

    • (A) Actuator drives thigh cuff/hip into extension with force F7;
    • (B) Middle counterforce F5 is provided from waist to distal posterior panel edge F6, yet this counterforce is relatively small. The moment arm M2, which is countering the actuator's extension force/moment is short (shorter than M1), and additional stabilization superiorly is needed, which is comprised in a panel extension and shoulder straps. It could also be provided by strap; and
    • (C) requires assistance of panel extension and shoulder loops. Force F8 can help to pull the shoulders and trunk into extension during a sit-to-stand maneuver.


In the event of a weak trunk, there is a need to create extension up the back by making a longer moment arm, particularly when a user is aiming to stand up. The force required to generate advancement of the thigh is low since it involves only the weight of the leg. The moment arm of the leg is diminished by the flexing of the knee. With hip flexion actuation overall stabilization, the forces required by the interface are low. For hip flexion force, the requirement is much lower as simply picking up the leg is required. The moment arm only goes to the knee joint whereby the lower leg flexes below the knee. If the user already has sufficient strength in trunk stability, they may be able to effectively balance the trunk over the actuators. If on the other hand trunk weakness exists, the interface may be required to provide adequate stabilization over the actuators.


The stabilizing forces required to offset the actuator's generation of adequate torque to provide sit-to-stand assistance, however, are high since it must move/stabilize most of a user's body weight against gravity during a weight bearing activity. This demonstrates the likely need for the additional stabilization, such that adding the anterior panel to the belt or even the posterior panel extension and shoulder straps for sit-to-stand motions or truncal weakness. The body interface is configured to be constructed modularly, such that the posterior panel extension and shoulder straps and/or anterior panel may be added or removed at any point during treatment or use, based on the user's current needs.


As shown in FIG. 5, the body interface 10 comprises a routing unit 72 secured to the panel 18 and connecting to a routing carriage 74 by a first segment tensioning element 76, the routing carriage 74 slidable along a lateral side 66 of the panel 18, a second tensioning element 34 extending from the routing carriage 74 through the first arm 24. The routing unit 72 is fixedly secured to the panel 18 at an anchor 80.


The first arm 24 includes a plate 78 extending from an end of the lateral portion 66 of the panel 18 and lining the open channel 48 within the first arm 24. The plate 78 resists yet yields to movement of the first belt segment 30 as it is drawn toward the second belt segment 32 to define an inner curvature C1. The first arm 34 generally has a straight profile (S) if symmetrically constructed in a configuration P1, however the first arm 34 has a curved profile C1 in an asymmetrical configuration P2 where the inner textile 88 is shorter in circumference than the outer textile 86, the connection made through the elastic textile forming the top layer 52 creates the 3D anatomical shape at rest. Once the body interface 10 is donned, the shape is not caused by tensioning but through connection of differing dimensions of internal/external materials 88, 86, 52, allowing the body interface 10 to conform simply and automatically to the user's dynamic dimensions.


The first arm 34 defines inner and outer surface layers comprising the inner and outer textiles 86, 88 and a top layer 52 spanning between the inner and outer surface layers 86, 88, such that the top layer 52 is more elastic than the inner and outer surface layers 86, 88. The inner and outer surface layers 86, 88 are substantially inelastic and the top layer 52 is comparatively elastic. The inner layer 86 defines an extension of the cover 20 extending about the panel 18.


The different elasticities of the materials of layers 52, 86, 88 allows the body interface 10 to assume a shape when donned by the user that conforms to the user's dimensions, thereby distributing pressures and contact evenly on the user's skin. This reduces or altogether eliminates pressure points and other discomforts experienced in existing exoskeleton interfaces.


A plate 78 lines a channel 48 within arm 24, and may be flexible and semi-rigid. The plate 78 is preferably formed from plastic. The plate 78 has a generally predetermined straight profile and resists but ultimately is bendable to a curved profile due to exertion of a load L bringing the first arm 24 into the curved profile C1. The plate 78 generally returns to the straight profile S upon release of the load L.


The resting shape of the textile construction is due to constraining the materials through connections and dimensions. The load L is created not by an external force or even the circumferential compression by the tensioned belt arms, but rather by the pulling toward the center by the constrained shorter non-stretch textile forming the inner layer 88. This results in a simple and automatic mechanism to allow the cover 20 and the panel 18 to cooperate for optimal effectiveness and comfort.


A padding layer 84 extends along the plate 78 and between the plate 78 and the outer layer 86. A lateral portion end 90 of the panel 18 preferably overlaps the plate 78. The belt segment 30 is adapted to slide within the channel 48, while the first arm 24 maintains its shape without interfering with the sliding of the belt segment 30. The features described regarding first arm 24 apply correspondingly to second arm 26 and to belt segment 32.


Referring to the embodiment of a body interface depicted in FIG. 8, a tensioning element 92 connects to the lumbar support 94 and is movable in a generally lateral direction LD1, LD2 relative to the panel 18. The tensioning device 28 is arranged to permit regulation of the tensioning element 92 to move an end 100, 102 of the lumbar support 94 relative to the panel 18.


The lumbar support 94 has first, second lateral portions 108, 110 coupled to first, and second tensioning devices 28, 29 each arranged to draw the first and second lateral portions 108, 110 in opposed directions LD1, LD2 relative to one another via the tensioning element 92 which extends between the first and second tensioning devices. The lumbar support 94 is anchored superiorly on the panel 18 at a superior attachment 96, and is anchored inferiorly on the panel 18 at an inferior attachment 98. The first and second lateral portions 108, 110 are defined such that the first and second lateral portions 108, 110 are movable relative to the superior and inferior portions 104, 106, according to regulation by the first and second tensioning devices 28, 29.


According to an embodiment, the lumbar support 94 is formed from a continuous sheet of unstretchable material. In another embodiment, the lumbar support 94 is a multi-sheet construction, wherein the superior, inferior and first and second lateral portions 104, 106, 108, and 110 may have different stretchability relative to one another.


The superior and inferior fixations or attachments 96, 98 secure the cover 20 and the lumbar support 94 along the panel 18 while ensuring that the lumbar support and the first and second lateral portions 108, 110 may change configuration to conform to the user's dynamic dimensions, such as during movement of an exoskeleton attached to the body interface. For example, the cover 20 and the lumbar support 94 may abut a user's body as the panel 18, spaced in some embodiments a distance apart from the lumbar support 94 due to the tensioning of lumbar support 94, cooperates with the exoskeleton. This arrangement reduces or eliminates pressure points, thereby enhancing comfort, without sacrificing effective engagement with the exoskeleton.


Similarly, the arrangement of the lateral portions 108, 110 and the arms 24, 26 in relation to the panel 18 allows for the arms 24, 26 to comfortable engage a circumference of a user while shifting in configuration relative to the panel 18, due to the properties of the lumbar support 94 and the materials forming the lumbar support 94.


In another embodiment of the lumbar support 112 in FIG. 9, the lumbar support 112 has a first lateral side 113 coupled to a tensioning device 28, and a second lateral side 115 anchored to a second lateral side 68 of the panel 18. The tensioning device 28 is arranged to pull the first lateral side 113 from the second lateral side 115. The tensioning device 28 has a tensioning element 118 coupled at a connector 116 attached to the first lateral side 113 of the lumbar support 112.


The lumbar support 112 preferably defines a band 114 extending between the first and second lateral sides 66, 68 of the panel 18. The lumbar support 112 is preferably only secured to the panel 18 at the second lateral side 68. This arrangement advantageously provides for simple and symmetrical control of the tensioning over the entire lumbar support 112 via the single tensioning device 28.


Band 114 additionally provides stability and control between the tensioning of first and second lateral sides. In certain embodiments, the band 114 may be more rigid or inflexible than the cover 20 or lumbar support 112, thereby supporting and evenly distributing pressure over a desired region or surface of the user's lumbar or sacral area. In certain embodiments, the band 114 may be arranged to provide, in addition to tensioning, optimal support and pressure distribution along key portions of the user's lumbar or sacral regions. A skilled artisan will understand that the band 114 may be of different configurations and in different locations than the depicted embodiment of FIG. 9.


In yet another embodiment of the lumbar support in FIG. 10, the lumbar support 120 comprises a first band 122 having superior and inferior portions 126, 128 secured to superior and inferior ends 125, 127 of the panel 18. The first band 122 is tensioned between the superior and inferior ends 125, 127 to be spaced apart by a clearance from the panel 18 between such superior and inferior ends 125, 127, the clearance being greatest at a center portion of the first band 122 between the superior and inferior portions 126, 128.


The lumbar support 120 comprises a second band 124 having first and second portions 130, 132 secured to first and second lateral ends 129, 131 of the panel 18. The second band 124 is preferably spaced apart a clearance D2 from the panel 18 between such first and second lateral ends 129, 130. The clearance D2 may be greatest at a center portion of the second band 124 between the first and second lateral ends 130, 132. First and second bands 122, 124 may be configured to resemble and coextend with the standard curvature of a user's sacral or lumbar region, thereby providing optimal engagement between the user and the lumbar support 120.


First and second bands 122, 124 provide close engagement between the lumbar support 120 and a user, thus providing enhanced comfort even through a user's dynamic motions when using an exoskeleton engaged with the body interface 10. By providing distances D1, D2 between the user and the lumbar support 120, a comfortable and even distribution of pressure is achieved without compromising the engagement of the body interface, exoskeleton, and the user. This reduces or altogether eliminates the problem of pressure points resulting from exoskeleton components abutting or rubbing against the user's body.


In FIGS. 11A and 11B, the cover 141 over the panel 18 serves as the lumbar support 139. The cover 141 is preferably a non-stretch textile that is tensioned and secured at superior and inferior ends 142, 144, and likewise tensioned at the first and second lateral ends 146, 148. The superior and inferior ends 142, 144 are constrained to the panel or frame 18, and form Arc A therebetween. The lateral ends 146, 148 are permitting to be yet further tensioned, and form Arc B therebetween. Both Arcs A and B are spaced apart from the panel 18, and suspended over the panel 18. The cover 141 may be formed of a textile that allows for defining a perforated texture that provides enhanced breathability and light-weight construction to provide optimal comfort for a user. FIGS. 11A and 11B illustrate a lumbar curve reshaping method to improve purchase on the back for adequate suspension of the actuators and to conform better for comfort. The arc B between the lateral ends 146, 148 can be shortened, creating more tension between the lateral ends 146, 148, and the superior and inferior ends 142, 144, which creates a new configuration of the lumbar support 139. The panel 18 is pulled inward at lateral ends 146, 148, which creates a new arc D. The reduced circumferential dimension along Arc D also reshapes Arc A into the new Arc C.


A plurality of apertures 150 may be defined by the panel 18, and arranged in a circular pattern 152 of apertures 150. Including apertures 150 in a specific pattern 152 advantageously imparts desired breathability, flexibility, and attachment points on the panel 18. In the depicted embodiment, providing apertures 150 in arcs 152 may allow the panel 18 to yield to circumferential bending to a desired degree as the cover 141 is tensioned to better encircle and contact a user's waist. A skilled person will recognize that the features of the depicted embodiment are illustrative only, and that additional patterns of apertures allowing for desired movement, bending, or other advantages may be provided in other embodiments.


The embodiment depicted in FIGS. 11A and 11B provides a simple and intuitive mechanism for conforming the panel 18 and the cover 141 to the dimensions of a user. Using cover 141 as a lumbar support is advantageous because it provides for enhanced breathability, simplicity, and reduction of material costs, while still allowing for a dynamic engagement between the body interface 10, the user, and an exoskeleton.


The lumbar support/cover 141 may be shaped based on the properties of the materials forming the cover 141, or may receive its shape based on tension applied to the panel 18 by the user via tensioning devices that may be used under other embodiments in the present disclosure.


By providing a cover 141 that attaches to panel 18 at key locations, such as near the extreme edges of the panel 18, the device can cooperate with and transmit forces generated through user motions, such as through exoskeleton-assisted motions, while providing even pressure distribution, comfort, and enhanced dynamic conformity with the user.


Referring to FIGS. 12A-12C, a closure device 71 for the attachment system 16 of FIG. 1A is on first and second lateral portions 66, 68 of panel 18. The closure device 71 includes first and second routing units 72, 73 fixedly attached on the first and second lateral portions 66, 68, respectively. The panel 18 defines at least one locking slot arrangement 134 in which an engaging part 136 of the first routing unit 72 locks to the panel 18 to prevent movement of the first routing unit 72 toward an end of the first lateral portion 66. The panel 18 defines an elongate slot 138 into which a slider part 140 of the first routing carriage 74 extends so the first routing carriage 74 is slidable relative to the panel 18 along the first lateral portion 66.


The closure units may be arranged with pulleys, as described in U.S. Pat. No. 8,172,779.


The arrangement of the closure device 71 with the elongate element 77 on the lateral portions 66, 68 allows for a full cinch function and leaves the posterior portion of the panel 18 free for attaching the hip assist mechanism 42 posteriorly. The hatched-out portions in FIGS. 12A-12C represent areas that can be removed from the panel to open to a frame as needed. The narrow regions remain horizontally on the lateral sides to form the track 79, which the routing units 72, 73 ride in.


The opposing first closure units are stationary and located more to midline posteriorly. When the tensioning elements are drawn, the closure units will draw the belt arms medially back inside the channels of the arms. The lordosis control can span across the frame laterally, so it has good purchase to rigid members on both sides.


Panel 18 may define zones and patterns of apertures 99. Apertures 99 may be grouped into lateral zones 103, 105 at lateral regions and a central zone 107. Zones 103, 105, 107 may be discretized by a column 115 wherein apertures are not defined, adding rigidity at desired locations. Within zones 103, 105, 107, discrete patterns 101 may be provided to facilitate anisotropic flexibility in desired directions; for instance, the apertures within lateral zones 103, 105 may be configured to facilitate circumferential bending of the panel 18 to allow an optimal amount of cooperation between an exoskeleton and the user. In central zone 107, the apertures may be configured to facilitate a more limited degree of circumferential bending and more longitudinal bending.


It is to be understood that not necessarily all objects or advantages may be achieved under any embodiment of the disclosure. Those skilled in the art will recognize that the body interface may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught without achieving other objects or advantages as taught or suggested herein.


The skilled artisan will recognize the interchangeability of various disclosed features. Besides the variations described herein, other known equivalents for each feature can be mixed and matched by one of ordinary skill in this art to construct a body interface under principles of the present disclosure. It will be understood by the skilled artisan that the features described herein may be adapted to orthopedic devices. Hence, this disclosure and the embodiments and variations thereof are not limited to a body interface but can be utilized in any orthopedic device.


Although this disclosure describes certain exemplary embodiments and examples of a body interface, it therefore will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the disclosure and obvious modifications and equivalents thereof. It is intended that the present disclosure should not be limited by the particular disclosed embodiments described above, and may be extended to body interfaces and orthopedic devices, and other applications that may employ the features described herein.

Claims
  • 1. A body interface, comprising: a panel being semi-rigid or rigid, the panel arranged to control sagittal movement and control coronal movement to control spinal/hip motion of lateral bending and abduction, respectively, the panel arranged to control flexion-extension such that the panel is arranged with a superior or thoracic portion, an inferior or sacral portion, and a central or lumbar portion located between the superior portion and the inferior portion of the panel;first and second arms located on opposed lateral sides of the panel through which first and second belt segments of an attachment system, respectively, extend to engage one another and to define a circumference around a user, the attachment system tensionable by at least one tensioning element;wherein the body interface further comprises a cover extending over the panel, the cover is a non-stretch textile tensioned and secured at superior and inferior ends of the panel to form a first arc, and the cover is tensioned at first and second lateral ends to form a second arc, both the first and second arcs being spaced apart and suspended over the panel.
  • 2. The body interface of claim 1, wherein the panel is arranged to connect to an assistive system movable relative to the panel, and a driving system adapted to drive the assistive system.
  • 3. The body interface of claim 2, wherein the assistive system includes a leg/hip assist mechanism and a leg connection, the leg/hip assist mechanism located on lateral sides of the panel.
  • 4. The body interface of claim 2, wherein the driving system is located on a posterior side of the panel and includes a driving mechanism for moving the leg/hip assist mechanism.
  • 5. The body interface of claim 1, further comprising a lumbar support anchored to the panel at an anchor point, and tensionable over and spaced a distance apart from the panel.
  • 6. The body interface of claim 5, wherein the lumbar support is flexible relative to the panel.
  • 7. The body interface of claim 5, wherein the lumbar support is tensionable relative to the panel by a tensioning device.
  • 8. The body interface of claim 1, further comprising an attachment system secured to the panel and creating a circumference with the panel.
  • 9. The body interface of claim 1, wherein the body interface further comprises first and second arms located on opposed lateral sides of the panel through which first and second belt segments of an attachment system, respectively, extend to engage one another and to define a circumference around the user, the attachment system tensionable by at least one tensioning element.
  • 10. The body interface of claim 9, wherein the first and second arms define elastic upper portions cooperating with inelastic inner and outer layers to permit flexure of the first and second arms.
  • 11. An exoskeleton comprising: a body interface arranged to stabilize on a user's muscle and soft-tissue, while remaining stable in position on a user according to relative movement of an assistive system attachable to the body interface; a panel being semi-rigid or rigid, the panel arranged to control sagittal movement and control coronal movement to control spinal/hip motion of lateral bending and abduction respectively, the panel arranged to control flexion-extension such that the panel is arranged with a superior or thoracic portion, an inferior or sacral portion, and a central or lumbar portion located between the superior portion and the inferior portion;wherein the body interface further comprises first and second arms located on opposed lateral sides of the panel through which first and second belt segments of an attachment system, respectively, extend to engage one another and to define a circumference around the user, the attachment system tensionable by at least one tensioning element;wherein the first and second arms define elastic upper portions cooperating with inelastic inner and outer layers to permit flexure of the first and second arms.
  • 12. The exoskeleton of claim 11, further comprising a lumbar support attached to the panel at an anchor point.
  • 13. The exoskeleton of claim 12, wherein a tensioning device for regulating tension in the lumbar support includes a cable extending through first and second arms to engage the lumbar support.
  • 14. The exoskeleton of claim 13, wherein the body interface further comprises a cover extending over the lumbar support, and the lumbar support located between the cover and the panel.
  • 15. The exoskeleton of claim 12, wherein the lumbar support is flexible relative to the panel.
  • 16. The exoskeleton of claim 12, wherein the panel defines patterns of apertures configured to cooperate with the lumbar support to define longitudinal and circumferential arcs and to adjust a clearance between the lumbar support and the panel based on a degree of tensioning applied to the body interface.
  • 17. The exoskeleton of claim 12, wherein the first arm defines inner and outer surface layers comprising inner and outer textiles and a top layer spanning between the inner and outer surface layers, such that the top layer is more elastic than the inner and outer surface layers.
  • 18. The exoskeleton of claim 11, wherein the body interface further comprises a cover extending over the panel, the cover is a non-stretch textile tensioned and secured at superior and inferior ends of the panel to form a first arc, and the cover is tensioned at first and second lateral ends to form a second arc, both the first and second arcs being spaced apart and suspended over the panel.
  • 19. The exoskeleton of claim 11, wherein the first and second arms each define a channel through which the first and second belt segments extend, the first and second arms each including a plate having a generally predetermined straight profile, the first and second arms are arranged to bend to a curved profile due to exertion of a load and returning to the straight profile upon release of the load.
  • 20. The exoskeleton of claim 19, further comprising a padding layer extending along the plate and between the plate and an outer layer of the first arm.
US Referenced Citations (709)
Number Name Date Kind
7916 Knapp Jan 1851 A
61487 Vollschwitz Jan 1867 A
181948 Kleinschuster Sep 1876 A
232420 Smith Sep 1880 A
321145 Spencer Jun 1885 A
321146 Spencer Jun 1885 A
328638 Battershall Oct 1885 A
368699 Zervas Aug 1887 A
386642 Mann Jul 1888 A
507172 Shelden Oct 1893 A
571749 Colton Nov 1896 A
596849 Combier Jan 1898 A
601446 Mestler Mar 1898 A
616196 Medbury Dec 1898 A
629900 Fosburgh Aug 1899 A
639072 Lyons Dec 1899 A
664250 Fitzpatrick Dec 1900 A
709055 Sheldon Sep 1902 A
714124 Adams Nov 1902 A
746563 McMahon Dec 1903 A
772926 Colton Oct 1904 A
787894 Colton Apr 1905 A
888490 Haas May 1908 A
894066 Scapra Jul 1908 A
980457 Toles Jan 1911 A
1124596 Dalpe Jan 1915 A
1316915 Meyer et al. Sep 1919 A
1393188 Whiteman Oct 1921 A
1463579 Funck Jul 1923 A
1469661 Migita Oct 1923 A
1481903 Hart Jan 1924 A
1530713 Clark Mar 1925 A
1558661 Yeganian Oct 1925 A
1607032 Whitley Nov 1926 A
1755641 Foulke Apr 1930 A
1948785 Dondelinger Feb 1934 A
1981157 Walter Nov 1934 A
2036484 Le May Apr 1936 A
2100964 Kendrick Nov 1937 A
2117309 Fritsch May 1938 A
2219475 Flaherty Oct 1940 A
2409381 Peace, Jr. Oct 1946 A
2543370 Kludt et al. Feb 1951 A
2554337 Lampert May 1951 A
2630801 Mest et al. Mar 1953 A
2696011 Galdik Dec 1954 A
2749550 Pease Jun 1956 A
2775767 Gould Jan 1957 A
2793368 Nouel May 1957 A
2808050 Ward Oct 1957 A
2815021 Freeman Dec 1957 A
2828737 Hale Apr 1958 A
2904040 Hale Sep 1959 A
2906260 Myers Sep 1959 A
2906261 Craig Sep 1959 A
3095875 Davidson et al. Jul 1963 A
3096760 Nelkin Jul 1963 A
3128514 Parker et al. Apr 1964 A
3274996 Jewett Sep 1966 A
3282264 Connelly Nov 1966 A
3351053 Stuttle Nov 1967 A
3358678 Kultsar Dec 1967 A
3371351 Allain Mar 1968 A
3434469 Swift Mar 1969 A
3449769 Mizen Jun 1969 A
3480012 Smithers et al. Nov 1969 A
3509875 Richter May 1970 A
3548817 Mittasch Dec 1970 A
3563431 Pletz Feb 1971 A
3570480 Stubbs Mar 1971 A
3578773 Schultz May 1971 A
3600717 McKeehan Aug 1971 A
3601819 Herrmann Aug 1971 A
3603316 Lehman Sep 1971 A
3762421 Sax, Sr. Oct 1973 A
3771513 Velazquez Nov 1973 A
3793749 Gertsch et al. Feb 1974 A
3808644 Schoch May 1974 A
3812850 Reiman May 1974 A
3816211 Haigh Jun 1974 A
3834048 Maurer Sep 1974 A
3889664 Heuser et al. Jun 1975 A
3902503 Gaylord, Jr. Sep 1975 A
3920008 Lehman Nov 1975 A
3926182 Stabholz Dec 1975 A
3927665 Wax Dec 1975 A
3945376 Kuehnegger Mar 1976 A
4042433 Hardy et al. Aug 1977 A
4055168 Miller et al. Oct 1977 A
4071387 Schlaepfer Jan 1978 A
4099524 Cueman et al. Jul 1978 A
4114788 Zufich Sep 1978 A
4162672 Yazaki Jul 1979 A
4173973 Hendricks Nov 1979 A
4175553 Rosenberg Nov 1979 A
4180870 Radulovic et al. Jan 1980 A
4182338 Stanulis Jan 1980 A
4230101 Gold Oct 1980 A
4261081 Lott Apr 1981 A
4285336 Oebser et al. Aug 1981 A
4298149 Gottschalk et al. Nov 1981 A
4308861 Kelly Jan 1982 A
4322092 Feucht et al. Mar 1982 A
4383523 Schurman May 1983 A
4392489 Wagner, Sr. Jul 1983 A
4433456 Baggio Feb 1984 A
RE31564 Hendricks Apr 1984 E
4475543 Brooks et al. Oct 1984 A
4479495 Isaacson Oct 1984 A
4494536 Latenser Jan 1985 A
4502471 Owens Mar 1985 A
4508110 Modglin Apr 1985 A
4531515 Rolfes Jul 1985 A
4555830 Petrini et al. Dec 1985 A
4559933 Batard et al. Dec 1985 A
4569336 Wheeler Feb 1986 A
4574500 Aldinio et al. Mar 1986 A
4574789 Forster Mar 1986 A
4574790 Wellershaus Mar 1986 A
4590939 Sakowski May 1986 A
4608971 Borschneck Sep 1986 A
4616524 Bidoia Oct 1986 A
4619657 Keates et al. Oct 1986 A
4628913 Lerman Dec 1986 A
4631839 Bonetti et al. Dec 1986 A
4631840 Gamm Dec 1986 A
4635626 Lerman Jan 1987 A
4640269 Goins Feb 1987 A
4648390 Friddle Mar 1987 A
4649574 Michels Mar 1987 A
4654985 Chalmers Apr 1987 A
4655201 Pirmantgen Apr 1987 A
4658807 Swain Apr 1987 A
4660302 Arieh et al. Apr 1987 A
4669451 Blauth et al. Jun 1987 A
4677699 Barabe Jul 1987 A
4677969 Calabrese Jul 1987 A
4680878 Pozzobon et al. Jul 1987 A
4691696 Farfan De Los Godos Sep 1987 A
4696291 Tyo Sep 1987 A
4697583 Mason et al. Oct 1987 A
4697592 Maddux et al. Oct 1987 A
4716898 Chauve et al. Jan 1988 A
4719670 Kurt Jan 1988 A
4719709 Vaccari Jan 1988 A
4761834 Kolb Aug 1988 A
4796610 Cromartie Jan 1989 A
4799297 Baggio et al. Jan 1989 A
4802291 Sartor Feb 1989 A
4805605 Glassman Feb 1989 A
4807605 Mattingly Feb 1989 A
4811503 Iwama Mar 1989 A
4836195 Berrehail Jun 1989 A
4843688 Ikeda Jul 1989 A
4862878 Davison et al. Sep 1989 A
4870761 Tracy Oct 1989 A
4896660 Scott Jan 1990 A
4905678 Cumins et al. Mar 1990 A
4923474 Klasson et al. May 1990 A
4937952 Olivieri Jul 1990 A
4961544 Bidoia Oct 1990 A
4963208 Muncy et al. Oct 1990 A
4976257 Akin et al. Dec 1990 A
4986263 Dickerson et al. Jan 1991 A
4997438 Nipper Mar 1991 A
5027482 Torppey Jul 1991 A
5072725 Miller Dec 1991 A
5074288 Miller Dec 1991 A
5092321 Spademan Mar 1992 A
5098770 Paire Mar 1992 A
5105828 Grant Apr 1992 A
5111807 Spahn et al. May 1992 A
5117567 Berger Jun 1992 A
5120288 Sinaki Jun 1992 A
5121741 Bremer et al. Jun 1992 A
5127897 Roller Jul 1992 A
5135470 Reeves Aug 1992 A
5135471 Houswerth Aug 1992 A
5154690 Shiono Oct 1992 A
5157813 Carroll Oct 1992 A
5170505 Rohrer Dec 1992 A
5171296 Herman Dec 1992 A
5176131 Votel et al. Jan 1993 A
5177882 Berger Jan 1993 A
5181331 Berger Jan 1993 A
5183036 Spademan Feb 1993 A
D334063 Dewall Mar 1993 S
5199940 Morris et al. Apr 1993 A
5201074 Dicker Apr 1993 A
5203765 Friddle, Jr. Apr 1993 A
5215518 Rosen Jun 1993 A
5226874 Heinz et al. Jul 1993 A
5230698 Garth Jul 1993 A
5259831 LeBron Nov 1993 A
5259833 Barnett Nov 1993 A
5267928 Barile et al. Dec 1993 A
5282460 Boldt Feb 1994 A
5295947 Muncy Mar 1994 A
5295996 Blair Mar 1994 A
5307521 Davis May 1994 A
5313952 Hoch May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5327662 Hallenbeck Jul 1994 A
5334135 Grim et al. Aug 1994 A
5342289 Munny Aug 1994 A
5346461 Heinz et al. Sep 1994 A
5362304 Varn Nov 1994 A
5363863 Lelli et al. Nov 1994 A
5365947 Bonutti Nov 1994 A
5368552 Williamson et al. Nov 1994 A
5376129 Faulkner et al. Dec 1994 A
5383893 Daneshvar Jan 1995 A
5385536 Burkhead et al. Jan 1995 A
5387245 Fay et al. Feb 1995 A
5399151 Smith Mar 1995 A
5407420 Bastyr et al. Apr 1995 A
5421809 Rise Jun 1995 A
5423852 Daneshvar Jun 1995 A
5429587 Gates Jul 1995 A
5433648 Frydman Jul 1995 A
5433697 Cox Jul 1995 A
5435015 Ellis-Brewer Jul 1995 A
5437614 Grim Aug 1995 A
5437617 Heinz et al. Aug 1995 A
5437619 Malewicz et al. Aug 1995 A
5449338 Trudell Sep 1995 A
5450858 Zablotsky et al. Sep 1995 A
5466214 Calderon-Garciduenas Nov 1995 A
5484395 Deroche Jan 1996 A
5499965 Sanchez Mar 1996 A
5500959 Yewer, Jr. Mar 1996 A
5502902 Sussmann Apr 1996 A
5503314 Fiscus Apr 1996 A
5503620 Danzger Apr 1996 A
5507681 Smith et al. Apr 1996 A
5507834 Laghi Apr 1996 A
5520619 Martin May 1996 A
5522792 Bassett et al. Jun 1996 A
5531669 Varnau Jul 1996 A
5536246 Saunders Jul 1996 A
5539020 Bracken et al. Jul 1996 A
5548843 Chase et al. Aug 1996 A
5551950 Oppen Sep 1996 A
5556374 Grace et al. Sep 1996 A
5558628 Bzoch Sep 1996 A
5569171 Muncy Oct 1996 A
5571355 Kornylo Nov 1996 A
5599287 Beczak, Sr. et al. Feb 1997 A
5599288 Shirley et al. Feb 1997 A
5603122 Kania Feb 1997 A
5620412 Modglin Apr 1997 A
5622529 Calabrese Apr 1997 A
5632724 Lerman et al. May 1997 A
5634891 Beczak, Sr. et al. Jun 1997 A
5638588 Jungkind Jun 1997 A
5669116 Jungkind Sep 1997 A
5674187 Zepf Oct 1997 A
5681270 Klearman et al. Oct 1997 A
5685830 Bonutti Nov 1997 A
5685831 Floyd Nov 1997 A
5688137 Bustance Nov 1997 A
5690260 Aikins et al. Nov 1997 A
5690609 Heinze, III Nov 1997 A
5695452 Grim et al. Dec 1997 A
5695520 Bruckner et al. Dec 1997 A
5704904 Dunfee Jan 1998 A
5704937 Martin Jan 1998 A
5708977 Morkunas Jan 1998 A
5718670 Bremer Feb 1998 A
5722940 Gaylord, Jr. et al. Mar 1998 A
5724993 Dunfee Mar 1998 A
5725139 Smith Mar 1998 A
5728054 Martin Mar 1998 A
5728168 Laghi et al. Mar 1998 A
5732483 Cagliari Mar 1998 A
5735807 Cropper Apr 1998 A
5737854 Sussmann Apr 1998 A
5746218 Edge May 1998 A
5752640 Proulx May 1998 A
5778565 Holt et al. Jul 1998 A
5782782 Miller Jul 1998 A
5795316 Gaylord Aug 1998 A
RE35940 Heinz et al. Oct 1998 E
5816251 Glisan Oct 1998 A
5819378 Doyle Oct 1998 A
5823981 Grim et al. Oct 1998 A
5826766 Aftanas Oct 1998 A
5827211 Sellinger Oct 1998 A
5830167 Jung Nov 1998 A
5836493 Grunsted et al. Nov 1998 A
5840050 Lerman Nov 1998 A
5848979 Bonutti et al. Dec 1998 A
5853378 Modglin Dec 1998 A
5853379 Ostojic Dec 1998 A
5857988 Shirley Jan 1999 A
5868292 Stephens et al. Feb 1999 A
5890640 Thompson Apr 1999 A
5891061 Kaiser Apr 1999 A
5893871 Tanaka Apr 1999 A
5911697 Biedermann et al. Jun 1999 A
5916070 Donohue Jun 1999 A
5938629 Bloedau Aug 1999 A
5950628 Dunfee Sep 1999 A
5954250 Hall et al. Sep 1999 A
5954253 Swetish Sep 1999 A
5967998 Modglin Oct 1999 A
5968002 Morrisseau Oct 1999 A
5993403 Martin Nov 1999 A
6007503 Berger et al. Dec 1999 A
6010472 Schiller Jan 2000 A
6027466 Diefenbacher et al. Feb 2000 A
6029273 McCrane Feb 2000 A
6036664 Martin, Sr. et al. Mar 2000 A
6039707 Crawford et al. Mar 2000 A
6063047 Minne May 2000 A
6066108 Lundberg May 2000 A
6070776 Furnary et al. Jun 2000 A
6090057 Collins et al. Jul 2000 A
6099490 Turtzo Aug 2000 A
6110138 Shirley Aug 2000 A
6113562 Bonutti et al. Sep 2000 A
6117096 Hassard Sep 2000 A
RE36905 Noble et al. Oct 2000 E
6125792 Gee Oct 2000 A
6129638 Davis Oct 2000 A
6129691 Ruppert Oct 2000 A
6156001 Frangi et al. Dec 2000 A
6159248 Gramnas Dec 2000 A
6182288 Kibbee Feb 2001 B1
6189538 Thorpe Feb 2001 B1
6190343 Heinz et al. Feb 2001 B1
D438624 Reina Mar 2001 S
6206932 Johnson Mar 2001 B1
6213968 Heinz et al. Apr 2001 B1
6227937 Principe May 2001 B1
6245033 Martin Jun 2001 B1
6254561 Borden Jul 2001 B1
6256798 Egolf et al. Jul 2001 B1
6267390 Maravetz et al. Jul 2001 B1
6267741 Lerman Jul 2001 B1
6282729 Oikawa et al. Sep 2001 B1
6289558 Hammerslag Sep 2001 B1
6301526 Kim et al. Oct 2001 B1
6315746 Garth et al. Nov 2001 B1
6322529 Chung Nov 2001 B1
6325023 Elnatan Dec 2001 B1
6338723 Carpenter et al. Jan 2002 B1
6401786 Tedeschi et al. Jun 2002 B1
6413232 Townsend et al. Jul 2002 B1
6416074 Maravetz et al. Jul 2002 B1
6419652 Slautterback Jul 2002 B1
6425876 Frangi et al. Jul 2002 B1
6428493 Pior et al. Aug 2002 B1
6432073 Pior et al. Aug 2002 B2
6471665 Milbourn et al. Oct 2002 B1
6478759 Modglin et al. Nov 2002 B1
6494853 Rossi et al. Dec 2002 B1
6502577 Bonutti Jan 2003 B1
6503213 Bonutti Jan 2003 B2
6508776 Chiang et al. Jan 2003 B2
6517502 Heyman et al. Feb 2003 B2
6540703 Lerman Apr 2003 B1
6589195 Schwenn et al. Jul 2003 B1
6599263 Bonutti et al. Jul 2003 B1
6602214 Heinz et al. Aug 2003 B2
6605052 Cool et al. Aug 2003 B1
6609642 Heinz et al. Aug 2003 B2
6623419 Smith et al. Sep 2003 B1
6652596 Smith et al. Nov 2003 B2
6656144 Coligado Dec 2003 B1
6676617 Miller Jan 2004 B1
6676620 Schwenn et al. Jan 2004 B2
6685662 Curry et al. Feb 2004 B1
6688943 Nagaoka Feb 2004 B2
6689080 Castillo Feb 2004 B2
6702770 Bremer et al. Mar 2004 B2
6711750 Yoo Mar 2004 B1
6711787 Jungkind et al. Mar 2004 B2
6726641 Chiang et al. Apr 2004 B2
6726643 Martin Apr 2004 B1
6769155 Hess et al. Aug 2004 B2
6770047 Bonutti Aug 2004 B2
6773411 Alvarez Aug 2004 B1
6790191 Hendricks Sep 2004 B1
6802442 Thompson Oct 2004 B1
D499806 Machin et al. Dec 2004 S
6827653 Be Dec 2004 B2
D501078 Cabana Jan 2005 S
6893098 Kohani May 2005 B2
6893411 Modglin May 2005 B1
6913585 Salmon et al. Jul 2005 B2
6921375 Kihara Jul 2005 B2
6921377 Bonutti Jul 2005 B2
6923780 Price et al. Aug 2005 B2
6926685 Modglin Aug 2005 B1
6929616 Bonutti et al. Aug 2005 B2
6936021 Smith Aug 2005 B1
6942630 Behan Sep 2005 B2
6951547 Park et al. Oct 2005 B1
6962572 Zahiri Nov 2005 B1
6964644 Garth Nov 2005 B1
6991611 Rhee Jan 2006 B2
7001348 Garth et al. Feb 2006 B2
7001350 Grosso Feb 2006 B2
7025737 Modglin Apr 2006 B2
7028873 Collier et al. Apr 2006 B1
7034251 Child et al. Apr 2006 B1
7048707 Schwenn et al. May 2006 B2
7074204 Fujii et al. Jul 2006 B2
7083584 Coligado Aug 2006 B2
7083585 Latham Aug 2006 B2
7087032 Ikeda Aug 2006 B1
7101348 Garth et al. Sep 2006 B2
7118543 Telles et al. Oct 2006 B2
7128724 Marsh Oct 2006 B2
7134224 Elkington et al. Nov 2006 B2
7137973 Plauche et al. Nov 2006 B2
7140691 Kohani Nov 2006 B2
7166083 Bledsoe Jan 2007 B2
7186229 Schwenn et al. Mar 2007 B2
7198610 Ingimundarson et al. Apr 2007 B2
7201727 Schwenn et al. Apr 2007 B2
7235059 Mason et al. Jun 2007 B2
7281341 Reagan et al. Oct 2007 B2
7306571 Schwenn et al. Dec 2007 B2
7306573 Bonutti Dec 2007 B2
7309304 Stewart et al. Dec 2007 B2
7316660 Modglin Jan 2008 B1
7320670 Modglin Jan 2008 B1
7322950 Modglin Jan 2008 B2
7329231 Frank Feb 2008 B2
7331126 Johnson Feb 2008 B2
7351368 Abrams Apr 2008 B2
7389547 Wiens Jun 2008 B1
7402147 Allen Jul 2008 B1
7404804 Bonutti Jul 2008 B2
7410338 Schiele et al. Aug 2008 B2
7413554 Kobayashi et al. Aug 2008 B2
7416565 Al-Turaikl Aug 2008 B1
7438698 Daiju Oct 2008 B2
7473235 Schwenn et al. Jan 2009 B2
7476185 Drennan Jan 2009 B2
7513018 Koenig et al. Apr 2009 B2
7549970 Tweardy Jun 2009 B2
7578798 Rhee Aug 2009 B2
7591050 Hammerslag Sep 2009 B2
7597671 Baumgartner et al. Oct 2009 B2
7597672 Kruijsen et al. Oct 2009 B2
7600660 Kasper et al. Oct 2009 B2
7615021 Nordt, III et al. Nov 2009 B2
7618386 Nordt, III et al. Nov 2009 B2
7618389 Nordt, III et al. Nov 2009 B2
7654972 Alleyne Feb 2010 B2
7662121 Zours Feb 2010 B2
7670306 Nordt, III et al. Mar 2010 B2
7682219 Falla Mar 2010 B2
7699797 Nordt, III et al. Apr 2010 B2
7704219 Nordt, III et al. Apr 2010 B2
7727048 Gransberry Jun 2010 B2
7727174 Chang et al. Jun 2010 B2
7757307 Wong Jul 2010 B2
7775999 Brown Aug 2010 B2
7806842 Stevenson et al. Oct 2010 B2
7815585 Vollbrecht Oct 2010 B2
7819831 Dellanno Oct 2010 B2
7833182 Hughes Nov 2010 B2
7842000 Lai et al. Nov 2010 B2
7857776 Frisbie Dec 2010 B2
7862524 Carignan et al. Jan 2011 B2
7862529 Brown Jan 2011 B2
7862621 Kloos et al. Jan 2011 B2
7871388 Brown Jan 2011 B2
7878998 Nordt, III et al. Feb 2011 B2
7887500 Nordt, III et al. Feb 2011 B2
7914473 Josey Mar 2011 B2
D636494 Garth et al. Apr 2011 S
7922680 Nordt, III et al. Apr 2011 B2
7947004 Kazerooni et al. May 2011 B2
7950112 Hammerslag et al. May 2011 B2
7954204 Hammerslag et al. Jun 2011 B2
7955285 Bonutti et al. Jun 2011 B2
7959591 Powers et al. Jun 2011 B2
7993296 Nordt, III et al. Aug 2011 B2
8002724 Hu et al. Aug 2011 B2
8006877 Lowry et al. Aug 2011 B2
8038635 Dellanno Oct 2011 B2
8038637 Bonutti Oct 2011 B2
8047893 Fenske Nov 2011 B2
8048014 Brown Nov 2011 B2
8066161 Green et al. Nov 2011 B2
8066654 Sandifer et al. Nov 2011 B2
8091182 Hammerslag et al. Jan 2012 B2
8142377 Garth et al. Mar 2012 B2
8152699 Ma et al. Apr 2012 B1
8162194 Gleason Apr 2012 B2
8162864 Kruijsen et al. Apr 2012 B2
8172779 Ingimundarson et al. May 2012 B2
8214926 Brown Jul 2012 B2
8216167 Garth et al. Jul 2012 B2
8273043 Bonutti et al. Sep 2012 B2
8303528 Ingimundarson et al. Nov 2012 B2
8308669 Nace Nov 2012 B2
8308670 Sandifer et al. Nov 2012 B2
8308869 Gardner et al. Nov 2012 B2
8356604 Tweardy et al. Jan 2013 B2
8372023 Garth et al. Feb 2013 B2
8381314 Takamoto et al. Feb 2013 B2
8409118 Agrawal et al. Apr 2013 B2
8425436 Sankai Apr 2013 B2
8460222 Garrec Jun 2013 B2
8556840 Burke et al. Oct 2013 B2
8591442 Bonutti et al. Nov 2013 B2
8597222 Lucero et al. Dec 2013 B2
8641782 Kim et al. Feb 2014 B2
8657769 Ingimundarson et al. Feb 2014 B2
8728019 Kruijsen et al. May 2014 B2
8758284 Kozersky Jun 2014 B1
8795215 Rossi Aug 2014 B2
8893312 Takamoto et al. Nov 2014 B2
8926537 Ingimundarson et al. Jan 2015 B2
8956315 Garth et al. Feb 2015 B2
8968222 Kazerooni et al. Mar 2015 B2
8992452 Carter Mar 2015 B2
9144528 Agrawal et al. Sep 2015 B2
9155651 Ochoa Oct 2015 B2
9204730 Brown Dec 2015 B2
9205017 Doyle Dec 2015 B2
9220625 Ingimundarson et al. Dec 2015 B2
9345606 Bonutti et al. May 2016 B2
9358173 Fu et al. Jun 2016 B2
9370440 Ingimundarson et al. Jun 2016 B2
9375325 Garrec et al. Jun 2016 B2
9404618 Brown et al. Aug 2016 B2
9414953 Ingimundarson et al. Aug 2016 B2
9427865 Doyle Aug 2016 B2
9468554 Petursson et al. Oct 2016 B2
9504596 Kozersky Nov 2016 B1
9522077 Johnson Dec 2016 B1
9554935 Ingimundarson et al. Jan 2017 B2
9572705 Ingimundarson et al. Feb 2017 B2
9597219 Ingimundarson et al. Mar 2017 B2
9636247 Miller et al. May 2017 B2
9795500 Ingimundarson et al. Oct 2017 B2
9889554 Van Engelhoven et al. Feb 2018 B2
20010020144 Heinz et al. Sep 2001 A1
20010031936 Pior et al. Oct 2001 A1
20020032397 Coligado Mar 2002 A1
20020068890 Schwenn et al. Jun 2002 A1
20020148461 Heinz et al. Oct 2002 A1
20020158097 Beale Oct 2002 A1
20020165474 Chiang et al. Nov 2002 A1
20020165475 Chiang et al. Nov 2002 A1
20030000986 Smith Jan 2003 A1
20030028952 Fujii et al. Feb 2003 A1
20030115954 Zemlyakov et al. Jun 2003 A1
20030125650 Grosso Jul 2003 A1
20030125705 Ruman et al. Jul 2003 A1
20030139698 Hyson Jul 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030229301 Coligado Dec 2003 A1
20040024340 Schwenn et al. Feb 2004 A1
20040050391 Kiwala et al. Mar 2004 A1
20040082895 Price et al. Apr 2004 A1
20040097857 Reinecke et al. May 2004 A1
20040108350 Warren Jun 2004 A1
20040116260 Drennan Jun 2004 A1
20040132380 Kihara Jul 2004 A1
20040133138 Modglin Jul 2004 A1
20040143204 Salmon et al. Jul 2004 A1
20040162582 Banziger Aug 2004 A1
20040254505 Begley et al. Dec 2004 A1
20050054960 Telles et al. Mar 2005 A1
20050059917 Garth et al. Mar 2005 A1
20050067816 Buckman Mar 2005 A1
20050081339 Sakabayashi Apr 2005 A1
20050131323 Bledsoe Jun 2005 A1
20050137508 Miller Jun 2005 A1
20050154337 Meyer Jul 2005 A1
20050160627 Dalgaard et al. Jul 2005 A1
20050165338 Iglesias et al. Jul 2005 A1
20050228325 Zours et al. Oct 2005 A1
20050240134 Brown Oct 2005 A1
20050251074 Latham Nov 2005 A1
20050267390 Garth et al. Dec 2005 A1
20050273025 Houser Dec 2005 A1
20060011690 Bareno Jan 2006 A1
20060052733 Schwenn et al. Mar 2006 A1
20060064048 Stano Mar 2006 A1
20060074365 Brown Apr 2006 A1
20060079821 Rauch Apr 2006 A1
20060129077 Parizot Jun 2006 A1
20060135900 Ingimundarson et al. Jun 2006 A1
20060135901 Ingimundarson et al. Jun 2006 A1
20060135903 Ingimundaron et al. Jun 2006 A1
20060155229 Ceriani et al. Jul 2006 A1
20060156517 Hammerslag et al. Jul 2006 A1
20060206992 Godshaw et al. Sep 2006 A1
20060254598 Saul Nov 2006 A1
20060260620 Kazerooni et al. Nov 2006 A1
20070060445 Reinkensmeyer et al. Mar 2007 A1
20070152007 Kauss et al. Jul 2007 A1
20070167895 Gramza et al. Jul 2007 A1
20070179417 Schwenn et al. Aug 2007 A1
20070185425 Einarsson et al. Aug 2007 A1
20070225620 Carignan et al. Sep 2007 A1
20080045873 Zours Feb 2008 A1
20080091132 Bonutti Apr 2008 A1
20080195010 Lai et al. Aug 2008 A1
20080208090 Vollbrecht Aug 2008 A1
20080208091 Vollbrecht et al. Aug 2008 A1
20080249448 Stevenson et al. Oct 2008 A1
20080262401 Wagner et al. Oct 2008 A1
20080302839 Murdoch et al. Dec 2008 A1
20080319362 Joseph Dec 2008 A1
20090025115 Duffy et al. Jan 2009 A1
20090030353 Bonutti et al. Jan 2009 A1
20090030359 Wikenheiser et al. Jan 2009 A1
20090062704 Brown et al. Mar 2009 A1
20090082707 Rumsey Mar 2009 A1
20090100649 Bar et al. Apr 2009 A1
20090124948 Ingimundarson et al. May 2009 A1
20090127308 Mori et al. May 2009 A1
20090182253 Grim et al. Jul 2009 A1
20090192425 Garth et al. Jul 2009 A1
20090198166 Shlomovitz Aug 2009 A1
20090275871 Liu Nov 2009 A1
20090287128 Ingimundarson et al. Nov 2009 A1
20100010568 Brown Jan 2010 A1
20100037369 Reichert Feb 2010 A1
20100139057 Soderberg et al. Jun 2010 A1
20100204630 Sandifer et al. Aug 2010 A1
20100204804 Garrec Aug 2010 A1
20100205713 Takamoto et al. Aug 2010 A1
20100217163 Sankai Aug 2010 A1
20100217167 Ingimundarson et al. Aug 2010 A1
20100228170 Imai Sep 2010 A1
20100256717 Brown Oct 2010 A1
20100268139 Garth Oct 2010 A1
20100268141 Bannister Oct 2010 A1
20100274364 Pacanowsky et al. Oct 2010 A1
20100292622 Weissleder et al. Nov 2010 A1
20100299959 Hammerslag et al. Dec 2010 A1
20100318010 Sandifer et al. Dec 2010 A1
20110000005 Brown Jan 2011 A1
20110009793 Lucero et al. Jan 2011 A1
20110046528 Stevenson et al. Feb 2011 A1
20110082402 Oddou et al. Apr 2011 A1
20110098618 Fleming Apr 2011 A1
20110105971 Ingimundarson et al. May 2011 A1
20110127390 Brown Jun 2011 A1
20110137221 Brown Jun 2011 A1
20110144551 Johnson Jun 2011 A1
20110152737 Burke et al. Jun 2011 A1
20110178448 Einarsson Jul 2011 A1
20110184326 Ingimundarson et al. Jul 2011 A1
20110266384 Goodman et al. Nov 2011 A1
20110295169 Hendricks Dec 2011 A1
20120010547 Hinds Jan 2012 A1
20120010749 Van Der Merwe et al. Jan 2012 A1
20120022420 Sandifer et al. Jan 2012 A1
20120029404 Weaver, II et al. Feb 2012 A1
20120078151 Cropper Mar 2012 A1
20120095373 Hirata et al. Apr 2012 A1
20120172769 Garrec Jul 2012 A1
20120179075 Perry et al. Jul 2012 A1
20120184880 Doyle Jul 2012 A1
20120197167 Kruijsen et al. Aug 2012 A1
20120204381 Ingimundarson et al. Aug 2012 A1
20120220910 Gaylord et al. Aug 2012 A1
20120232450 Garth et al. Sep 2012 A1
20120245502 Garth et al. Sep 2012 A1
20120323154 Ingimundarson et al. Dec 2012 A1
20130006158 Ingimundarson et al. Jan 2013 A1
20130007946 Brown Jan 2013 A1
20130012853 Brown Jan 2013 A1
20130158457 Garth et al. Jun 2013 A1
20130174326 Takamoto et al. Jul 2013 A1
20130184625 Ingimundarson et al. Jul 2013 A1
20130184628 Ingimundarson et al. Jul 2013 A1
20130190670 Von Zieglauer Jul 2013 A1
20130211302 Brown Aug 2013 A1
20130237891 Fryman et al. Sep 2013 A1
20130281901 Ochoa Oct 2013 A1
20130298914 Shibaya et al. Nov 2013 A1
20140033391 Doyle Feb 2014 A1
20140081189 Ingimundarson et al. Mar 2014 A1
20140100493 Craig et al. Apr 2014 A1
20140100501 Burke et al. Apr 2014 A1
20140116452 Ingimundarson et al. May 2014 A1
20140135672 Joseph et al. May 2014 A1
20140158839 Doyle Jun 2014 A1
20140207040 Ingimundarson et al. Jun 2014 A1
20140200121 Von Hoffmann et al. Jul 2014 A1
20140207041 Ingimundarson et al. Jul 2014 A1
20140336020 Von Hoffmann et al. Nov 2014 A1
20140371646 Kozersky Dec 2014 A1
20150048134 Fawcett et al. Feb 2015 A1
20150076196 Brown et al. Mar 2015 A1
20150217444 Asada et al. Aug 2015 A1
20150316204 Doyle Nov 2015 A1
20150366694 Bujold et al. Dec 2015 A1
20160081871 Doyle Mar 2016 A1
20160206497 Deshpande et al. Jul 2016 A1
20160250061 Ingimundarson et al. Sep 2016 A1
20160339583 Van Engelhoven et al. Nov 2016 A1
20170007435 Klutts Jan 2017 A1
20170156911 Ingimundarson et al. Jun 2017 A1
20170173783 Angold et al. Jun 2017 A1
20170189220 Ingimundarson et al. Jul 2017 A1
Foreign Referenced Citations (102)
Number Date Country
2010271020 Feb 2012 AU
2010271020 Feb 2012 AU
2010286851 Mar 2012 AU
2010286851 May 2012 AU
2112789 Aug 1994 CA
2114387 Aug 1994 CA
2767353 Jan 2011 CA
2772296 Mar 2011 CA
577282 Jul 1976 CH
612076 Jul 1979 CH
624001 Jul 1981 CH
1311648 Sep 2001 CN
1383799 Dec 2002 CN
1461190 Dec 2003 CN
101219079 Jul 2008 CN
201101603 Aug 2008 CN
101444443 Jun 2009 CN
101820783 Sep 2010 CN
102470040 May 2012 CN
1197192 Jul 1965 DE
8804683 Jun 1988 DE
3822113 Jan 1990 DE
9417221 Jan 1995 DE
9315776 Feb 1995 DE
29503552 Apr 1995 DE
19945045 Mar 2001 DE
19940603 Apr 2001 DE
20204747 Jul 2002 DE
10329454 Jan 2005 DE
202004015328 Feb 2005 DE
202005007124 Jun 2005 DE
102005017587 Apr 2006 DE
202009004817 Sep 2010 DE
0393380 Sep 1992 EP
0589233 Mar 1994 EP
0614624 Sep 1994 EP
0614625 Sep 1994 EP
0657149 Jun 1995 EP
0589232 Nov 1995 EP
0693260 Sep 1998 EP
0651954 Feb 1999 EP
1016351 Jul 2000 EP
1159940 Dec 2001 EP
1236412 Sep 2002 EP
1342423 Sep 2003 EP
1588678 Oct 2005 EP
1743608 Jan 2007 EP
1985264 Oct 2008 EP
2200545 Jun 2010 EP
2451412 May 2012 EP
2473072 Jul 2012 EP
1104562 Nov 1955 FR
2757073 Jun 1998 FR
2917323 Dec 2008 FR
2952807 May 2011 FR
826041 Dec 1959 GB
909970 Nov 1962 GB
2133289 Jul 1984 GB
H07246212 Sep 1995 JP
3031760 Dec 1996 JP
H09273582 Oct 1997 JP
H10237708 Sep 1998 JP
2000290331 Oct 2000 JP
2001204851 Jul 2001 JP
3091470 Jan 2003 JP
2003175063 Jun 2003 JP
2004016732 Jan 2004 JP
2004041666 Feb 2004 JP
2004160075 Jun 2004 JP
2004209050 Jul 2004 JP
2007291539 Nov 2007 JP
3142546 Jun 2008 JP
2008178618 Aug 2008 JP
2008220883 Sep 2008 JP
2009082697 Apr 2009 JP
2012011550 Jan 2012 JP
2013503268 Jan 2013 JP
2013536010 Sep 2013 JP
20150003562 Oct 2015 KR
9401496 Jan 1994 WO
9503720 Feb 1995 WO
9532842 Dec 1995 WO
9703581 Feb 1997 WO
0053045 Sep 2000 WO
2004110197 Dec 2004 WO
2005086752 Apr 2005 WO
2005086752 Sep 2005 WO
2006121413 Nov 2006 WO
2007003148 Jan 2007 WO
2008031023 Mar 2008 WO
2009017499 Feb 2009 WO
2009017949 Feb 2009 WO
2009052031 Apr 2009 WO
2009068503 Jun 2009 WO
2010141958 Dec 2010 WO
2011005430 Jan 2011 WO
2011025675 Mar 2011 WO
2011066323 Jun 2011 WO
2012029917 Mar 2012 WO
2013016670 Jan 2013 WO
2016138215 Sep 2016 WO
2017109190 Jun 2017 WO
Non-Patent Literature Citations (15)
Entry
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit, Application Instructions (CP020205 Rev B 04/07), New Hip Arthroscopy Padding and Positioning Kit”, Council Directive 93/42/EEC of Jun. 14, 1993 concerning Medical Devices, 2 pages.
Mehlman, Charles T. et al., “Hyphenated History: Knight-Taylor Spinal Orthosis”; American Journal of Orthopedics; Jun. 2000; pp. 479-483, vol. 29, Issue 6.
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit”, Bledsoe Brace Systems, Medical Technology Inc., 2004, 2 pages.
Posture Control Brace. Soft Form, Orthopaedic by Design, FLA Orthopedics, Inc., 1 page; 2004. http://www.flaorthopedics.com.
Michael Pfiefer, MD et al., “Effects of a New Spinal Orthosis on Posture, Trunk Strength, and Quality of Life in Women with Postmenopausal Osteoporosis—a Randomized Trial”, American Journal of Physical Medicine & Rehabilitation, vol. 83, No. 3, Mar. 2004, USA, pp. 177-186.
Scoliosis Specialists. About the SpineCor Brace; 2006-2012; http://www.scoliosisspecialists.com/aboutspinecorbrace.html. Retrieved from Internet on Aug. 1, 2013.
Hsu et al., “Principles and Components of Spinal Orthoses”, AAOS Atlas of Orthoses and Assistive Devices, 4th Ed., Chapter 7, 2008, pp. 89-111.
Bledsoe Products, “Philippon K.A.F. Positioning Kit”. Http://bledsoebrace.com/products/kaf.asp [retrieved from the Internet May 10, 2012].
Spinomed Brochure—Spinal Orthosis for Vertebral Extension in Osteoporosis; Stellar Orthotics and Prosthetics Group, 2 pages, retrieved from Internet Sep. 23, 2013. http://www.stellaroandp.com/spotlight.html.
Sato, Ena et al., “Effect of the WISH-type hip brace on functional mobility in patients with osteoarthritis of the hip: evaluation using the timed UP & GO Test”, Prosthetics and Orthotics International 2012 36:25 originally published online Nov. 17, 2011, http://poi.sagepub.com/content/36/125 [retrieved from internet on Jan. 22, 2014].
Silosheath Brochure, Soft Socket Gel Liner, 4 pages, 1994.
Etherington et al., “Hyundai's Future Mobility Plans Include Wearable Robotic Assistants,” Tech Cruch, Dec. 19, 2016, 10 Pages, https://techcrunch.com/2016/12/19/hyundais-future-mobility-plans-include-wearable-robotic-assistants/.
“Ford Pilots New Exoskeleton Technology to Help Lessen Chance of Worker Fatigue, Injury,” Ford Media Center, Nov. 9, 2017, 2 Pages, https://media.ford.com/content/fordmedia/fna/us/en/news/2017/11/09/ford-exoskeleton-technology-pilot.html.
“StrongArm Ergoskeleton Lift Assist Device V22,” Strong Arm Technologies, Retrieved from the Internet on Apr. 14, 2018, 2 Pages, www. strongarmtech.com.
International Search Report from PCT Application No. PCT/US2018/053303, dated Dec. 21, 2018.
Related Publications (1)
Number Date Country
20210236374 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62564798 Sep 2017 US
Continuations (1)
Number Date Country
Parent 16146455 Sep 2018 US
Child 17233748 US