The following description relates generally to a hinge assembly for an appliance, and more specifically, to body-mounted component of a hinge assembly for an appliance.
Conventional household cooking appliances typically have a “uni-body” construction in which the load-carrying, structural aspects are provided by the same elements that provide the architectural or aesthetic features of the appliance. An example of such a prior art construction is illustrated in
The front panel 14, rear panel 16, and side panels 18, 20 are typically large, planar elements, and must not only serve as an aesthetically pleasing enclosure, but must also provide structural support for the oven housing 32, the cooktop panel 28, the burners, a control panel, a drawer, and other such elements typically found in a conventional household cooking range. For example, an oven door is typically coupled to the front panel 14 by a hinge assembly (not shown). The hinge assembly includes a hinge mounted to the door and a receiver attached to the front panel 14. Thus, the thin sheet metal that comprises the front panel 14 substantially carries the full load of the door 38.
The following presents a simplified summary in order to provide a basic understanding of the embodiments described herein. This summary is not an extensive overview nor is it intended to identify key or critical elements. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
According to one embodiment, a hinge assembly for an appliance is provided. The hinge assembly includes: an elongated housing comprising a base wall, a first sidewall, and a second sidewall opposite the first sidewall, the elongated housing further comprising a first end portion and a second end portion opposite the first end portion; at least one tab extending outward from and substantially perpendicular to one of the first sidewall or the second sidewall at the first end portion of the elongated housing; and at least one tab extending from the first sidewall or the second sidewall at a second end portion of the elongated housing.
According to another embodiment, an oven is provided. The oven includes: at least one vertical support column; an elongated bead provided on a face of the at least one vertical support column, the elongated bead being a recess with opposing lateral edges; and a hinge assembly comprising a hinge and a receiver, wherein one of the hinge or the receiver is secured to body of the oven such that a portion of the hinge or a portion of the receiver is positioned within the recess of and between the lateral edges of the elongated bead.
According to another embodiment, an oven is provided. The oven includes: a housing having opposed first and second side panels; first and second vertical support columns, the first vertical support column positioned at a front portion of the first side panel and the second vertical support column positioned at a front portion of the second side panel; and first and second hinge assemblies, each hinge assembly comprising a body-mounted component and a door-mounted component, wherein the body-mounted component of the first hinge assembly is directly engaged with the first vertical support column and the body-mounted component of the second hinge assembly is directly engaged with the second vertical support column, and wherein the door-mounted component of the first hinge assembly is secured to a first side of a door the door-mounted component of the second hinge assembly is secured to a second side of the door.
Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals can be understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
Example embodiments are described and illustrated herein. These illustrated examples are not intended to be a limitation on the present embodiments. For example, one or more aspects of the system can be utilized in other embodiments and other types of appliances. Example embodiments of a body-mounted component for an oven, such as a body-mounted hinge and a body-mounted receiver, will be described more fully hereinafter with reference to the accompanying drawings. Such systems may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like, but not necessarily the same, elements in the various figures are denoted by like reference numerals for consistency. Terms such as “first,” “second,” “front,” and “rear” are used merely to distinguish one component (or part of a component or state of a component) from another. Such terms are not intended to denote a preference or a particular orientation.
As shown in
Turning now to
Each vertical support column 160 can be provided with an elongated trough, rib, emboss, or bead 270 extending a substantial portion of its length. For instance, the bead 270 can extend continuously from a top portion 162 to a bottom portion 164 of the column 160. This bead 270 extends as a recess in at least one face of the column 160, such as a wall or surface facing an opposed side panel. It can be introduced via stamping or other metalworking techniques. Ideally, it is formed by metalworking rather than as an extrusion, because the process of bending the metal to form the bead 270 introduces work-hardening into the column 160, thus providing increased localized strength and buckling resistance in the vicinity of its longitudinal bends. At least one other face or wall of the vertical support column can also include a second strengthening trough, emboss, rib, or bead 275. The present example includes the second bead 275 provided in an adjacent, inner wall of the column 160; however, it is to be appreciated that the second bead can be additionally or alternatively provided in an outer wall of the column. The column 160 may comprise only three walls, such that it has a substantially c-shaped cross section, with the open side facing the adjacent side panel.
Due to the elongated bead 270, the vertical support column 160 is capable of withstanding greater loads, both static and dynamic, than a column made from an equivalent material without the bead 270. As shown, the bead 270 can be of a substantially rectangular shape and includes parallel lateral edges 290. Such a configuration provides a mechanism to easily and quickly localize, align and install attached components to the column 160, such as via brackets that are sized to be received within a recessed width of the bead 270.
Loads carried by the vertical support column 160 are principally carried at lateral portions 295 of the column adjacent to where the bends of the bead 270 have been introduced. These are generally the strongest portions of the column 160, and loads introduced via components fastened within the bead 270 will be transferred to the lateral portions 295 to be carried downward toward the ground or appliance supporting surface. Thus, weight loads will tend to be concentrated adjacent the lateral portions 295 of the column 160, rather than being uniformly distributed throughout the column 160. Prior to reaching an underlying support rail or surface on which a bottom end 300 of the column 160 rests, it is desirable to redistribute the carried loads more evenly to avoid localized-pressure points, which are more likely to result in point failures. Thus, in a lower region of the column 160 a width (W) of the bead 270 can be gradually reduced until it is completely eliminated, thereby forming a v-shaped recess 310 just above the bottom end 300 of the column 160. In this way, a uniform contour is gradually introduced into the column 160 (or at least to the surface thereof carrying the bead) adjacent to its bottom end 300. This will have the effect of redistributing weight loads from the lateral portions 295 uniformly about the bottom end 300 of the column 160 (or again, at least through its face bearing the bead), rather than driving those loads into an adjacent base rail concentrated at the lateral portions 295 of the column 160. In essence, while the bead structure 270 introduces greater strength and buckling resistance into the column 160 along its length, it also has the effect of concentrating loads adjacent the fortified, lateral portions 295 of the column. The narrowing feature or v-shaped recess 310 redistributes those loads uniformly about the column 160 or its face before they are delivered to the corresponding base rail.
While is known to form structural columns for supporting loads via stamping or metal bending from the decorative side walls of an appliance. The walls themselves are too thin to provide structural support. But a column formed as bends from a terminal edge of the side wall and onto itself can be sufficiently robust to provide structural support to the appliance. The features described herein, such as the bead 270, can be equally incorporated into a column that is formed integrally with a decorative side wall via metal bending. Turning now to
A locating hole 350 can be provided in a wall 271 of the bead 270 near the bottom end 300 of the column 160, or elsewhere along its length. The locating hole 350 may prove useful in assembly by providing a fixed, reproducible location where a robot can grasp the part, or from which automated machinery can gauge the location of remote features on, or the orientation of, the column 160 during assembly. Such an opening 350 also will ensure that loads are concentrated along the fortified lateral portions of the column surface, because loads cannot travel through the empty space in the column where the hole 250 has been provided.
Turning now to
The hinge housing 370 includes a first end portion 373 and an opposing second end portion 375. The first end portion 373 is located near a front portion of the appliance and adjacent a front vertical support column 160. The first end portion 373 includes at least one tab that engages the front vertical support column 160. The hinge housing 370 includes a first tab 400 extending outwardly and substantially perpendicularly from a first sidewall 410 of the hinge housing 370, and a second tab 420 extending outwardly and substantially perpendicularly from a second sidewall 430 of that housing 370. More specifically, the first tab 400 extends upward towards a top portion of the appliance and the second tab 420 extends in an opposite direction, downward towards the base rail 150. The first and second tabs 400, 420 are of a width that corresponds to the width W of the bead 270 in the vertical support column 160. Thus, the first and second tabs 400, 420 can be press fit within the bead 270 between its lateral edges 290. In other words, the first and second tabs 400, 420 can be held in position within the bead 270 via an interference fit between outer edges of the tabs 400, 420 and the lateral edges 290 of the bead 270. Fasteners can be used to secure the hinge housing 370 to the columns 160 and/or sidewall 430. The first end portion 373 of the hinge housing 370 further includes a flange 440 having an aperture 450 therein. The flange 440 can extend from the base wall 390 and is used for attachment to a claw or hanger assembly (not shown). The claw or hanger is used to couple the hinge 360 to a receptacle positioned in a door of the oven. Thus, a portion of the load of the door is transferred from the hinge housing 370 to the vertical support column 160 via the connection between the tabs 400, 420 and the bead 270. The load is then carried through the bead 270 downward toward the ground or appliance supporting surface, as described above.
The second end portion 375 of the hinge housing 370 is located near a rear portion of the appliance. The second end portion 375 also includes one or more tabs or extensions that engage an adjacent rear vertical support column 160. Specifically, a first rear tab 460 extends from the first sidewall 410 of the hinge housing 370 and a second rear tab 470 extends from the second sidewall 430 of the hinge housing 370. The first tab 460 is substantially parallel to the second tab 470. Moreover, the first tab 460 is substantially parallel to the second sidewall 430 and likewise, the second tab 470 is substantially parallel of the first sidewall 410. The adjacent rear vertical support column 160 includes a first narrow aperture or slot 480 and a second narrow aperture or slot 490 extending through a front surface 500 of the column 160 and through a portion of an outer sidewall 510 and an inner sidewall 520 of the column 160. A distance between the first and second rear tabs 460, 470 corresponds with a distance between the first and second slots 480, 490 such that the first and second rear tabs 460, 470 can be received within the first and second slots 480, 490, as shown in
At least one pin, rivet, fastener or other mounting member 650 spans a recess between the first and second sidewalls 560, 570. Second and/or third mounting members 660, 670 can also be provided within the recess in order to receive a claw of a hinge. When the claw is inserted into the opening 550, one or more of mounting pins 650, 660, 670 is received within a corresponding slot of the claw in order to pivotally secure the hinge, in this case a door-mounted hinge, to the receiver 630.
The first and second embossments 600, 610 can be of a width that corresponds to the width W of the bead 270. Thus, the first and second embossments 600, 610 fit within the bead 270 between lateral edges 290. Thus, a portion of the load of the door is transferred from the receiver 530 to the vertical support column 160 via the connection between the embossments 600, 610 and the bead 270. The load is then carried through the bead 270 downward toward the front base rail 150 or appliance supporting surface via one or more feet 250, 260, as described above.
It is to be appreciated that while a specific hinge housing and receiver have been illustrated and described herein, any suitable body-mounted component, such as a body-mounted hinge or body-mounted receiver of any configuration can be employed and still fall within the scope of the present invention. A portion of the body-mounted component is coupled to at least one vertical support column, and sometimes to two vertical support columns, in order to drive down a load of the oven door into an adjacent base rail. At least one of the vertical support columns can include an elongated bead to provide strength for the column and directed control of the load distribution.
Although embodiments described herein are made with reference to example embodiments, it should be appreciated by those skilled in the art that various modifications are well within the scope and spirit of this disclosure. Therefore, the scope of the example embodiments is not limited herein. The disclosure is intended to include all such modifications and alterations disclosed herein or ascertainable herefrom by persons of ordinary skill in the art without undue experimentation. It will be appreciated that a hinge system and appliance body construction configured in accordance with the examples shown herein can be used for a wide variety of other appliances such as clothes washers and dryers, dishwashers and the like.
This application is a continuation of U.S. patent application Ser. No. 16/724,355 filed Dec. 22, 2019, whose contents are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
190716 | Hauersperger | May 1877 | A |
1756179 | Busiek | Apr 1930 | A |
RE17917 | Boylan | Jan 1931 | E |
1920044 | Wiedemann | Jul 1933 | A |
1931910 | Wells | Oct 1933 | A |
2335279 | Hobson | Nov 1943 | A |
2775237 | Chadwick | Dec 1956 | A |
2823661 | Grannan | Feb 1958 | A |
3049115 | Carnahan et al. | Aug 1962 | A |
3626925 | Dalton | Dec 1971 | A |
4021968 | Kendall | May 1977 | A |
4359250 | Jenkins | Nov 1982 | A |
4817240 | Sovis, Jr. et al. | Apr 1989 | A |
7536752 | Laursen | May 2009 | B2 |
10082298 | White | Sep 2018 | B2 |
10436513 | Chivers | Oct 2019 | B2 |
11466864 | Funk | Oct 2022 | B2 |
11499720 | Funk | Nov 2022 | B2 |
20070251519 | Anikhindi | Nov 2007 | A1 |
20150027429 | Nelson | Jan 2015 | A1 |
20180216832 | White | Aug 2018 | A1 |
20190040666 | Park | Feb 2019 | A1 |
20200370351 | Lee | Nov 2020 | A1 |
20200408420 | Manara | Dec 2020 | A1 |
20210190324 | Funk | Jun 2021 | A1 |
20210190325 | Funk | Jun 2021 | A1 |
20210215342 | Hunt | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
9106422 | May 1991 | DE |
102005036815 | Feb 2007 | DE |
202019105241 | Jan 2020 | DE |
0034135 | Feb 1981 | EP |
0149937 | Jul 1985 | EP |
2908056 | Aug 2015 | EP |
03102119 | Mar 1990 | JP |
930003479 | Jun 1993 | KR |
0141259 | Mar 1999 | KR |
100246888 | May 2000 | KR |
200253015 | Nov 2001 | KR |
20030056953 | Jul 2003 | KR |
2010034833 | Apr 2010 | WO |
2021005548 | Jan 2021 | WO |
Entry |
---|
UK Whitegoods. Oven Door Hinge Receiver Bracket. https://shop.ukwhitegoods.co.uk/018290505-smeg-oven-door-hinge-receiver-bracket. 3 pages. |
International Search Report and Written Opinion for PCT/US2020/065069, dated May 31, 2021, 17 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 16724355 | Dec 2019 | US |
Child | 17971935 | US |