Many computing applications such as computer games, multimedia applications, or the like use controls to allow users to manipulate game characters or other aspects of an application. Typically such controls are input using, for example, controllers, remotes, keyboards, mice, or the like. Unfortunately, such controls can be difficult to learn, thus creating a barrier between a user and such games and applications. Furthermore, such controls may be different than actual game actions or other application actions for which the controls are used. For example, a game control that causes a game character to swing a baseball bat may not correspond to an actual motion of swinging the baseball bat.
Disclosed herein are systems and methods for capturing depth information of a scene that may be used to process a human input. For example, a depth image of a scene may be received or observed. The depth image may then be analyzed to determine whether the depth image includes a human target. For example, the depth image may include one or more targets including a human target and non-human targets. According to an example embodiment, portions of the depth image may be flood filled and compared to a pattern to determine whether the target may be a human target. If one or more of the targets in the depth image includes a human target, the human target may be scanned. A model of the human target may then be generated based on the scan.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
As will be described herein, a user may control an application executing on a computing environment such as a game console, a computer, or the like by performing one or more gestures. According to one embodiment, the gestures may be received by, for example, a capture device. For example, the capture device may capture a depth image of a scene. In one embodiment, the capture device may determine whether one or more targets or objects in the scene corresponds to a human target such as the user. To determine whether a target or object in the scene corresponds a human target, each of the targets, objects or any part of the scene may be flood filled and compared to a pattern of a human body model. Each target or object that matches the pattern may then be scanned to generate a model such as a skeletal model, a mesh human model, or the like associated therewith. The model may then be provided to the computing environment such that the computing environment may track the model, render an avatar associated with the model, determine clothing, skin and other colors based on a corresponding RGB image, and/or determine which controls to perform in an application executing on the computer environment based on, for example, the model.
As shown in
As shown in
According to one embodiment, the target recognition, analysis, and tracking system 10 may be connected to an audiovisual device 16 such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user such as the user 18. For example, the computing environment 12 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like. The audiovisual device 16 may receive the audiovisual signals from the computing environment 12 and may then output the game or application visuals and/or audio associated with the audiovisual signals to the user 18. According to one embodiment, the audiovisual device 16 may be connected to the computing environment 12 via, for example, an S-Video cable, a coaxial cable, an HDMI cable, a DVI cable, a VGA cable, or the like.
As shown in
As shown in
Other movements by the user 18 may also be interpreted as other controls or actions, such as controls to bob, weave, shuffle, block, jab, or throw a variety of different power punches. Furthermore, some movements may be interpreted as controls that may correspond to actions other than controlling the player avatar 24. For example, the player may use movements to end, pause, or save a game, select a level, view high scores, communicate with a friend, etc. Additionally, a full range of motion of the user 18 may be available, used, and analyzed in any suitable manner to interact with an application.
In example embodiments, the human target such as the user 18 may have an object. In such embodiments, the user of an electronic game may be holding the object such that the motions of the player and the object may be used to adjust and/or control parameters of the game. For example, the motion of a player holding a racket may be tracked and utilized for controlling an on-screen racket in an electronic sports game. In another example embodiment, the motion of a player holding an object may be tracked and utilized for controlling an on-screen weapon in an electronic combat game.
According to other example embodiments, the target recognition, analysis, and tracking system 10 may further be used to interpret target movements as operating system and/or application controls that are outside the realm of games. For example, virtually any controllable aspect of an operating system and/or application may be controlled by movements of the target such as the user 18.
As shown in
As shown in
According to another example embodiment, time-of-flight analysis may be used to indirectly determine a physical distance from the capture device 20 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging.
In another example embodiment, the capture device 20 may use a structured light to capture depth information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern or a stripe pattern) may be projected onto the scene via, for example, the IR light component 24. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 26 and/or the RGB camera 28 and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects.
According to another embodiment, the capture device 20 may include two or more physically separated cameras that may view a scene from different angles, to obtain visual stereo data that may be resolved to generate depth information
The capture device 20 may further include a microphone 30. The microphone 30 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 30 may be used to reduce feedback between the capture device 20 and the computing environment 12 in the target recognition, analysis, and tracking system 10. Additionally, the microphone 30 may be used to receive audio signals that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing environment 12.
In an example embodiment, the capture device 20 may further include a processor 32 that may be in operative communication with the image camera component 22. The processor 32 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions that may include instructions for receiving the depth image, determining whether a suitable target may be included in the depth image, converting the suitable target into a skeletal representation or model of the target, or any other suitable instruction.
The capture device 20 may further include a memory component 34 that may store the instructions that may be executed by the processor 32, images or frames of images captured by the 3-D camera or RGB camera, or any other suitable information, images, or the like. According to an example embodiment, the memory component 34 may include random access memory (RAM), read only memory (ROM), cache, Flash memory, a hard disk, or any other suitable storage component. As shown in
As shown in
Additionally, the capture device 20 may provide the depth information and images captured by, for example, the 3-D camera 26 and/or the RGB camera 28, and a skeletal model that may be generated by the capture device 20 to the computing environment 12 via the communication link 36. The computing environment 12 may then use the skeletal model, depth information, and captured images to, for example, control an application such as a game or word processor. For example, as shown, in
A graphics processing unit (GPU) 108 and a video encoder/video codec (coder/decoder) 114 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 108 to the video encoder/video codec 114 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 140 for transmission to a television or other display. A memory controller 110 is connected to the GPU 108 to facilitate processor access to various types of memory 112, such as, but not limited to, a RAM (Random Access Memory).
The multimedia console 100 includes an I/O controller 120, a system management controller 122, an audio processing unit 123, a network interface controller 124, a first USB host controller 126, a second USB controller 128 and a front panel I/O subassembly 130 that are preferably implemented on a module 118. The USB controllers 126 and 128 serve as hosts for peripheral controllers 142(1)-142(2), a wireless adapter 148, and an external memory device 146 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 124 and/or wireless adapter 148 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.
System memory 143 is provided to store application data that is loaded during the boot process. A media drive 144 is provided and may comprise a DVD/CD drive, hard drive, or other removable media drive, etc. The media drive 144 may be internal or external to the multimedia console 100. Application data may be accessed via the media drive 144 for execution, playback, etc. by the multimedia console 100. The media drive 144 is connected to the I/O controller 120 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).
The system management controller 122 provides a variety of service functions related to assuring availability of the multimedia console 100. The audio processing unit 123 and an audio codec 132 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 123 and the audio codec 132 via a communication link. The audio processing pipeline outputs data to the A/V port 140 for reproduction by an external audio player or device having audio capabilities.
The front panel I/O subassembly 130 supports the functionality of the power button 150 and the eject button 152, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 100. A system power supply module 136 provides power to the components of the multimedia console 100. A fan 138 cools the circuitry within the multimedia console 100.
The CPU 101, GPU 108, memory controller 110, and various other components within the multimedia console 100 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.
When the multimedia console 100 is powered ON, application data may be loaded from the system memory 143 into memory 112 and/or caches 102, 104 and executed on the CPU 101. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 100. In operation, applications and/or other media contained within the media drive 144 may be launched or played from the media drive 144 to provide additional functionalities to the multimedia console 100.
The multimedia console 100 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 100 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 124 or the wireless adapter 148, the multimedia console 100 may further be operated as a participant in a larger network community.
When the multimedia console 100 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.
In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.
With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.
After the multimedia console 100 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 101 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.
When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.
Input devices (e.g., controllers 142(1) and 142(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 26, 28 and capture device 20 may define additional input devices for the console 100.
In
The computer 241 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 241 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 246. The remote computer 246 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 241, although only a memory storage device 247 has been illustrated in
When used in a LAN networking environment, the computer 241 is connected to the LAN 245 through a network interface or adapter 237. When used in a WAN networking environment, the computer 241 typically includes a modem 250 or other means for establishing communications over the WAN 249, such as the Internet. The modem 250, which may be internal or external, may be connected to the system bus 221 via the user input interface 236, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 241, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
For example, as described above, the target may include the user 18 described above with respect to
According to one embodiment, at 305, depth information may be received. For example, the target recognition, analysis, and tracking system may include a capture device such as the capture device 20 described above with respect to
According to an example embodiment, the depth information may include a depth image. The depth image may be a plurality of observed pixels where each observed pixel has an observed depth value. For example, the depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may represent a depth value such as a length or distance in, for example, centimeters, millimeters, or the like of an object in the captured scene from the capture device.
Referring back to
At 310, the target recognition, analysis, and tracking system may determine whether the depth image includes a human target. For example, at 310, each target or object in the depth image may be flood filled and compared to a pattern to determine whether the depth image includes a human target.
Additionally, as described above, the capture device may organize the calculated depth information including the depth image into “Z layers,” or layers that may be perpendicular to a Z axis extending from the camera along its line of sight to the viewer. The likely Z values of the Z layers may be flood filled based on the determined edges. For example, the pixels associated with the determined edges and the pixels of the area within the determined edges may be associated with each other to define a target or an object in the scene that may be compared with a pattern, which will be described in more detail below
According to another embodiment, upon receiving the depth image 400, predetermined points or areas on the depth image 400 may be flood filled to determine whether the depth image 400 includes the human target 402. For example, various depth values of pixels in a selected area or point of the depth image 400 may be compared to determine edges that may define targets or objects as described above. The likely Z values of the Z layers may be flood filled based on the determined edges. For example, the pixels associated with the determined edges and the pixels of the area within the edges may be associated with each other to define a target or an object in the scene that may be compared with a pattern, which will be described in more detail below.
In an example embodiment, the predetermined points or areas may be evenly distributed across the depth image. For example, the predetermined points or areas may include a point or an area in the center of the depth image, two points or areas in between the left edge and the center of the depth image, two points or areas between the right edge and the center of the depth image, or the like.
According to an example embodiment, the pattern may include one or more data structures that may have a set of variables that collectively define a typical body of a human such that the information associated with the pixels of, for example, the human target 402 and the non-human targets 404 may be compared with the variables to determine whether and which of the targets may be a human. In one embodiment, each of the variables in the set may be weighted based on a body part. For example, various body parts such as a head and/or shoulders in the pattern may have weight value associated therewith that may be greater than other body parts such as a leg. According to one embodiment, the weight values may be used when comparing a target such as the human target 402 and the non-human targets 404 with the variables to determine whether and which of the targets may be human. For example, matches between the variables and the target that have larger weight values may yield a greater likelihood of the target being human than matches with smaller weight values.
Additionally, in an example embodiment, a confidence value may be calculated that indicates, for example, the accuracy to which each of the flood filled targets in the depth image 400 corresponds to the pattern. The confidence value may include a probability that each of the flood filled targets may be a human. According to one embodiment, the confidence value may be used to further determine whether the flood filled target may be a human. For example, the confidence value may compared to a threshold value such that if the confidence value exceeds the threshold, the flood filled target associated therewith may be determined to be a human target.
Referring back to
At 315, if the depth image includes a human target, the human target may be scanned for one or more body parts at 320. According to one embodiment, the human target may be scanned to provide measurements such as length, width, or the like associated with one or more body parts of a user such as the user 18 described above with respect to
In an example embodiment, the human target may be isolated and a bitmask of the human target may be created to scan for one or more body parts. The bitmask may be created by, for example, flood filling the human target such that the human target may be separated from other targets or objects in the scene elements. The bitmask may then be analyzed for one or more body parts to generate a model such as a skeletal model, a mesh human model, or the like of the human target.
As shown in
According to an example embodiment, to determine the location of the neck, shoulders, or the like of the human target 402, a width of the bitmask, for example, at a position being scanned, may be compared to a threshold value of a typical width associated with, for example, a neck, shoulders, or the like. In an alternative embodiment, the distance from a previous position scanned and associated with a body part in a bitmask may be used to determine the location of the neck, shoulders or the like.
In one embodiment, to determine the location of the shoulders, the width of the bitmask at the position indicated by scan bp3 in
In another embodiment, to determine the location of the shoulders, the bitmask may be parsed downward a certain distance from the head. For example, the top of the bitmask that may be associated with the top of the head may have an X value associated therewith. A stored value associated with the typical distance from the top of the head to the top of the shoulders of a human body may then added to the X value of the top of the head to determine the X value of the shoulders. Thus, in one embodiment, a stored value may be added to the X value associated with scan bp1 shown in
In one embodiment, some body parts such as legs, feet, or the like may be calculated based on, for example, the location of other body parts. For example, as described above, the information such as the bits, pixels, or the like associated with the human target 402 may be scanned to determine the locations of various body parts of the human target 402 represented by scan bp1-scan bp6 in
According to an example embodiment, upon determining the values of, for example, a body part, a data structure may be created that may include measurement values such as length, width, or the like of the body part associated with the scan of the bitmask of the human target 402. In one embodiment, the data structure may include scan results averaged from a plurality depth images. For example, the capture device such as the capture device 20 described above with respect to
Referring back to
As shown in
According to an example embodiment, to reposition the joint j4′, a dY value associated with the distance between a reference point of the top of the scanned shoulder of the human target 402 and the joint j4′ may be compared to a dX value associated with the distance between a reference point of the edge of the human target 402 and the joint j4′. If the dY value may be greater than the dX value, the joint j4′ may be moved in a first direction such as up the Y axis by the dX value to generate a new left shoulder joint, represented by the joint j4″ in
According to one embodiment, the joint j4′ may be repositioned to render subsequent joints j4″ and j4′″ shown in
Thus, according to an example embodiment, one or more joints may be adjusted until such joints may be within a range of typical distances between a joint and a body part of a human to generate a more accurate skeletal model. According to another embodiment, the model may further be adjusted based on, for example, a height associated with the received human target to generate a more accurate skeletal model. For example, the joints and bones may be repositioned or scaled based on the height associated with the received human target.
At 330, the model may then be tracked. For example, according to an example embodiment, the skeletal model such as the skeletal model 500 described above with respect to
In one embodiment, as described above, the skeletal model may be generated by the capture device. The skeletal model including any information associated with adjustments that may need to be made thereto may be provided to a computing environment such as the computing environment 12 described above with respect to
The visual appearance of an on-screen character may then be changed in response to changes to the skeletal model being tracked. For example, a user such as the user 18 described above with respect to
It should be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered limiting. The specific routines or methods described herein may represent one or more of any number of processing strategies. As such, various acts illustrated may be performed in the sequence illustrated, in other sequences, in parallel, or the like. Likewise, the order of the above-described processes may be changed.
The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 12/363,542 filed on Jan. 30, 2009, the entire contents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson et al. | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6057909 | Yahav et al. | May 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng et al. | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100517 | Yahav et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6498628 | Iwamura | Dec 2002 | B2 |
6502515 | Burckhardt et al. | Jan 2003 | B2 |
6503195 | Keller et al. | Jan 2003 | B1 |
6512838 | Rafii et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6674877 | Jojic et al. | Jan 2004 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6711432 | Krause et al. | Mar 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6771277 | Ohba | Aug 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
6999084 | Mochizuki et al. | Feb 2006 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7006236 | Tomasi et al. | Feb 2006 | B2 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050177 | Tomasi et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7151530 | Roeber et al. | Dec 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7224384 | Iddan et al. | May 2007 | B1 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7293356 | Sohn et al. | Nov 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7333111 | Ng-Thow-Hing et al. | Feb 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7372977 | Fujimura et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7386150 | Fleisher | Jun 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7760923 | Walker et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8009867 | Mathe et al. | Aug 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
8411149 | Maison et al. | Apr 2013 | B2 |
20030091225 | Chen | May 2003 | A1 |
20040021660 | Ng-Thow-Hing et al. | Feb 2004 | A1 |
20040155962 | Marks | Aug 2004 | A1 |
20040207597 | Marks | Oct 2004 | A1 |
20050059488 | Larsen et al. | Mar 2005 | A1 |
20060010400 | Dehlin et al. | Jan 2006 | A1 |
20060050952 | Blais et al. | Mar 2006 | A1 |
20060152507 | Lee et al. | Jul 2006 | A1 |
20060188144 | Sasaki et al. | Aug 2006 | A1 |
20060239558 | Rafii et al. | Oct 2006 | A1 |
20070013718 | Ohba | Jan 2007 | A1 |
20070060336 | Marks et al. | Mar 2007 | A1 |
20070098222 | Porter et al. | May 2007 | A1 |
20070216894 | Garcia et al. | Sep 2007 | A1 |
20070260984 | Marks et al. | Nov 2007 | A1 |
20070279485 | Ohba et al. | Dec 2007 | A1 |
20070283296 | Nilsson | Dec 2007 | A1 |
20070298882 | Marks et al. | Dec 2007 | A1 |
20080001951 | Marks et al. | Jan 2008 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080062257 | Corson | Mar 2008 | A1 |
20080100620 | Nagai et al. | May 2008 | A1 |
20080126937 | Pachet | May 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080152191 | Fujimura et al. | Jun 2008 | A1 |
20080170749 | Albertson et al. | Jul 2008 | A1 |
20080215972 | Zalewski et al. | Sep 2008 | A1 |
20080215973 | Zalewski et al. | Sep 2008 | A1 |
20090002489 | Yang et al. | Jan 2009 | A1 |
20090010490 | Wang et al. | Jan 2009 | A1 |
20090034791 | Doretto et al. | Feb 2009 | A1 |
20090115849 | Landers et al. | May 2009 | A1 |
20090128632 | Goto et al. | May 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090154762 | Choi et al. | Jun 2009 | A1 |
20090167679 | Klier et al. | Jul 2009 | A1 |
20090221368 | Yen et al. | Sep 2009 | A1 |
20100194872 | Mathe et al. | Aug 2010 | A1 |
20100195867 | Kipman et al. | Aug 2010 | A1 |
20100277470 | Margolis | Nov 2010 | A1 |
20100277489 | Geisner et al. | Nov 2010 | A1 |
20100303290 | Mathe | Dec 2010 | A1 |
20110032336 | Mathe et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
101254344 | Jun 2010 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
WO 9310708 | Jun 1993 | WO |
WO 9717598 | May 1997 | WO |
WO 9915863 | Apr 1999 | WO |
WO 9944698 | Sep 1999 | WO |
WO 0159975 | Jan 2002 | WO |
WO 02082249 | Oct 2002 | WO |
WO 03001722 | Mar 2003 | WO |
WO 03046706 | Jun 2003 | WO |
WO 03073359 | Nov 2003 | WO |
WO 03054683 | Dec 2003 | WO |
WO 03071410 | Mar 2004 | WO |
WO 2009059065 | May 2009 | WO |
Entry |
---|
“Simulation and Training”, 1994, Division Incorporated. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Breen et al., “Interactive Occlusion and Collusion of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
Dian-Yong Zhang; Zhen-jiang Miao; “3D Human shape reconstruction from photographs based template model,” Signal Processing, 2008. ICSP 2008. |
Doulamis, et al, “Intelligent Techniques for Image Sequence Analysis: Towards Semantic Video Object Segmentation”, National Technical University of Athens, Department of Electrical and Computer Engineering, Accessed on Dec. 4, 2008, 4 pages. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Grammalidis, et al, “3-D Human Body Tracking From Depth Images Using Analysis by Synthesis”, Image Processing, 2001, proceedings of the International Conference on Image Processing, Thessaloniki, Greece, Oct. 7-10, 2001, vol. 2, 185-188. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
He, “Generation of Human Body Models”, The University of Auckland, Master of Science in Computer Science, Thesis Paper, Apr. 2005, 111 pages. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
Hyewon Seo, Nadia Magnenat-Thalmann: An automatic modeling of human bodies from sizing parameters. SI3D 2003: 19-26. |
Hyewon Seo, Young in Yeo, Kwangyun Wohn: 3D Body Reconstruction from Photos Based on Range Scan. Edutainment 2006: 849-86. |
Isard et al., “Condensation—Conditional Density Propagation for Visual Tracking”, 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
O'Brien, J.F. et al., “Automatic Joint Parameter Estimation from Magnetic Motion Capture Data”, in Proc. Graphics Interface, 2000, pp. 53-60. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, 1997, Germany. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA. |
Villa-Uriol, M. et al., “Hierarchical kinematic synthesis of motion for avatars creation”. Submitted to SIGGRAPH 2005. |
Micilotta and Bowden, “View-based Location and Tracking of Body Parts for Visual Interaction”, CVSSP, SEPS, University of Surrey, Guildford, United Kingdom, (no month available) 2004, 849-858. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Mustafa Shabbir Kurbanhusen, et al. “Self-Identification of the Joint Centre of a Cable-Driven Shoulder Rehabilitator” ICRA 2007: 3767-3772. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
PCT Application No. PCT/US2010/1020794: International Search Report and Written Opinion of the International Searching Authority, Aug. 13, 2010, 8 pages. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, IEEE International Conference on Multimedia and Expo, Taipei, Taiwan Jun. 30, 2004, 4 pages. |
Reinbolt et al, Determination of patient-specific multi-joint kinematic models through two-level optimization, Journal of Biomechanics 38, 2005, 621-626. |
Rosenhahn et al., “Automatic Human Model Generation”, 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
Shivappa et al., “Person Tracking with Audio-Visual Cues Using Iterative Decoding Framework”, IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, AVSS '08, Santa Fe, NM, Sep. 1-3, 2008, 260-267. |
Srinivasan and Shi, “Bottom-Up Recognition and Parsing of the Human Body”, Lecture Notes in Computer Science, Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug. 14, 2007, vol. 4679, 153-168. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
Villa-Uriol, M.C. et al., “Kinematic Synthesis of Avatar Skeletons from Visual Data”, Advances in Robot Kinematics, Sestri-Levante, Jun. 2004, J. Lenarcic and C. Galletti, eds., Kluwer Academic Publishing, 2004. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Cambridge, MA. |
Xu and Fujimura, “Human Detection Using Depth and Gray Images”, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS '03), Jul. 21-22, 2003, 115-121. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, CMU-RI-TR-01-19, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Jul. 26, 2001, 121 pages. |
Zhang, Xu, “A technology on the Recognition Algorithm of the Division of Car Label Recognition Area” Computer Engineering, Apr. 2002, vol. 28, No. 4, pp. 113-115 [English Abstract included]. |
Zhu et al., “Controlled human pose estimation from depth image streams”, In Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, Jun. 23, 2008, 8 pages, http://airlab.stanford.edu/workshops/june2010presentations/BehzadDariush—HondaResearch—CVPR2008Paper.pdf. |
Colombo et al., “A real-time full body tracking and humanoid animation system”, In Parallel Computing, Sep. 19, 2008, pp. 718-726 http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary;jsessionid=2DCD9C9106FAAB6E10126CCD97D7A3E0?doi=10.1.1.158.7215. |
Aguiar et al, Automatic Learning of Articulated Skeletons from 30 Marker Trajectories, ISVC 2006, LNCS 4291, pp. 485-494, 2006. |
Number | Date | Country | |
---|---|---|---|
20120287038 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12363542 | Jan 2009 | US |
Child | 13552027 | US |