Body support cushion having multiple layers of phase change material

Information

  • Patent Grant
  • 9980578
  • Patent Number
    9,980,578
  • Date Filed
    Friday, July 27, 2012
    12 years ago
  • Date Issued
    Tuesday, May 29, 2018
    6 years ago
Abstract
A body support cushion, e.g., mattress, has multiple foam layers, including a viscoelastic foam layer and a reticulated foam layer, and an outer cover. At least one of the foam layers and the outer cover each includes phase change material having latent heat properties that provide two intervals of dermal cooling.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to body support cushions such as those found in mattresses, pillows, office chairs, household furniture, car seating, theater seating, and the like.


As is generally the case with all body support cushions, but particularly so with mattresses consisting of “memory foam” or other body conforming material, the effectiveness of the cushion in providing body support is partly a function of how well the memory foam responds to the contour of the user resting on the cushion. Body support cushions made from temperature-sensitive viscoelastic material, such as TEMPUR® material that is commercially available from Tempur-Pedic International Inc., for example, are able change shape based in part upon the temperature of the supported body part. This conformance of the cushion to the body, in effect, causes more of the body to be in contact with the body support cushion. Thus, as the cushion cradles the supported body part, more of the body part that is supported by the cushion. Since more of the body is in contact with the cushion, rather than being pushed above it, less of the body that is exposed to ambient air around the cushion. As a consequence, many users find memory foam mattresses and other memory foam cushions to “sleep hot” and, ultimately, choose other types of cushions notwithstanding the supportive benefits often associated with memory foam and similar types of body conforming cushions.


In an effort to attract users with concerns of “sleeping hot” in a memory foam mattress, many mattress manufactures have incorporated so-called “cooler” technologies into their products. For example, many mattresses now come with covers containing latent heat storage units, such as phase change material (PCM), that provide a cool, albeit brief, dermal sensation. One such phase change material is OUTLAST®, which is commercially available from Outlast Technologies, Boulder, Colo. While the use of such PCM does provide some cooling, it is short-lived because in relatively short order the PCM will absorb heat from the supported body part and hold that heat until the supported body part is withdrawn.


Another approach to providing a “cooler” mattress has been in the inclusion of gel or similar material into the construction of the bed. Gel, similar to PCM, has some latent heat properties that provide a momentary dermal sensation of coolness. However, gel, like PCM, can only absorb so much heat before the gel becomes saturated and thus is no longer cool to touch. Further, once the gel is heated, it will hold that heat until the heat source, i.e., body, is removed.


Additional efforts to provide a “cooler” memory foam cushion have included the use of cooling blankets, such as the ChiliPad™ mattress pad from Chili Technology, Mooresville, N.C. Not only to do such blankets add to the overall cost of the cushion, but they can negatively impact the feel of the cushion as well. Moreover, such blankets require a pump to circulate coolant, e.g., water, and thus incorporate electromechanical devices that can fail and render the after-market blanket inoperable.


Based at least in part upon the limitations of existing cooling technologies and the demand from some consumers for a cooler memory foam body support cushion, new body support cushions are welcome additions to the art.


SUMMARY OF THE INVENTION

The present invention is generally directed to a multi-layer foam cushion enclosed within an outer cover. Portions of the outer cover and the foam cushion comprise PCM to provide an extended cool dermal sensation to a user resting on the cushion, in some alternate embodiments of the invention, the multi-layer foam cushion has one or more layers of viscoelastic polyurethane foam and one or more layers of high resilience (HR) foam. In yet other embodiments of the invention, one or more layers of the multi-layer construction may include reticulated viscoelastic foam.


Other objects, features, aspects, and advantages of the invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a sleep system having a body support cushion according on an embodiment of the invention.



FIG. 2 is a section view of the body support cushion taken along line 2-2 of FIG. 1.



FIG. 2A is a section view of the body support cushion taken along line A-A of FIG. 2.



FIG. 3 is an isometric view of a body support cushion according to another embodiment of the invention.



FIG. 4 is a section view of the body support cushion taken along line 4-4 of FIG. 3.



FIG. 4A is a section view of the body support cushion of FIG. 4 taken along line A-A of FIG. 4.





Before the various embodiments of the present invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that phraseology and terminology used herein with reference to device or element orientation (such as, for example, terms like “front”, “back”, “up”, “down”, “top”, “bottom”, and the like) are only used to simplify description of the present invention, and do not alone indicate or imply that the device or element referred to must have a particular orientation. In addition, terms such as “first”, “second”, and “third” are used herein and in the appended claims for purposes of description and are not intended to indicate or imply relative importance or significance. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and variations thereof herein are used broadly and encompass direct and indirect connections and couplings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.


DETAILED DESCRIPTION

The present invention will be described with respect to a body support cushion in the form of a mattress for use with a sleep system but it should be understood that the invention can be embodied in other types of support cushions, including but not limited to, pillows and seat cushions.


Turning now to FIG. 1, sleep system 6 is generally comprised of a foundation 8 and a mattress 10. The foundation 8 and the mattress 10 are supported in a raised position by a frame (not shown) as known in the art. The foundation 8 is of known construction and thus will be not be described in greater detail herein; however, it should be noted that the mattress 10 could be used with other types of mattress supports, such as box springs or tables.


With additional reference to FIG. 2, mattress 10 according to an embodiment of the present invention generally consists of three discrete, yet integrated components: a comfort foam system 12, a support foam system 14, and an outer cover system 16. The comfort foam system 12 includes a top comfort layer 18 comprising open-celled non-reticulated viscoelastic foam (sometimes referred to as “memory foam” or “low resilience foam”) and a bottom comfort layer 20 comprising open-celled reticulated viscoelastic foam. The top comfort layer 18 and the bottom comfort layer are secured to another by adhesive or cohesive bonding material 22. In a similar manner, the bottom comfort layer 20 is secured to the support foam system 14 using a suitable bonding material 22. In one embodiment, the bonding material used to bond the two comfort layers together is the same that is used to bond the comfort foam system 12 to the support foam system 14, but the invention is not so limited. Also, other types of bonding devices may be used to secure the foam layers together. For example, the top and bottom layers 18, 20 can be bonded together by tape, hook and loop fastener material, conventional fasteners, stitches extending at least partially through the top and bottom layers 18, 20, or in any other suitable manner.


In one embodiment of the invention, the top comfort layer 18 is made of non-reticulated viscoelastic foam and the bottom comfort layer 20 is made of reticulated viscoelastic foam. In other embodiments, both of the aforementioned layers are made of reticulated viscoelastic foam. In yet other embodiments, both layers are made of non-reticulated viscoelastic foam. It is also contemplated that the top comfort layer 18 could be formed of reticulated viscoelastic foam. It is also contemplated that one or more of the comfort layers may be comprised of non-viscoelastic material.


Each of the top and bottom layers 18, 20 can be substantially flat bodies having substantially planar top and bottom surfaces 24, 26, 28, and 30 as shown in FIG. 2. However, in other embodiments, one or more of the top and bottom surfaces 24, 26, 28, 30 of either or both top and bottom layers 18, 20 can be non-planar, including without limitation surfaces having ribs, bumps, and other protrusions of any shape and size, surfaces having grooves, dimples, and other apertures that extend partially or fully through the respective layer 18, 20, and the like. Also, depending at least in part upon the application of the mattress 10 (i.e., the product defined by the mattress 10 or in which the mattress 10 is employed), either or both of the top and bottom layers 18, 20 can have shapes that are not flat. By way of example only, either or both layers 18, 20 can be generally wedge-shaped, can have a concave or convex cross-sectional shape, can have a combination of convex and concave shapes, can have a stepped, faceted, or other shape, can have a complex or irregular shape, and/or can have any other shape desired.


As illustrated in FIGS. 1 and 2, in one embodiment, the top comfort layer 18 provides a relatively soft and comfortable surface for a user's body or body portion (hereinafter referred to as “body”). Coupled with the slow recovery characteristic of the viscoelastic foam, the top comfort layer 18 can also conform to a user's body, thereby distributing the force applied by the user's body upon the top comfort layer 18. In some embodiments, the top comfort layer 18 has a hardness of at least about 30 N and no greater than about 175 N for desirable softness and body-conforming qualities. In other embodiments, a top comfort layer 18 having a hardness of at least about 40 N and no greater than about 160 N is utilized for this purpose. In still other embodiments, a top comfort layer 18 having a hardness of at least about 40 N and no greater than about 75 N is utilized. In one preferred embodiment, the top comfort layer 18 has a hardness of 48 N. Unless otherwise specified, the hardness of a material referred to herein is measured by exerting pressure from a plate against a sample of the material having length and width dimensions of 40 cm each (defining a surface area of the sample of material), and a thickness of 5 cm to a compression of 40% of an original thickness of the material at approximately room temperature (e.g., 21-23 Degrees Celsius), wherein the 40%/o compression is held for a set period of time, following the International Organization of Standardization (ISO) 2439 hardness measuring standard.


The top comfort layer 18 can also have a density providing a relatively high degree of material durability. The density of the foam in the top comfort layer 18 can also impact other characteristics of the foam, such as the manner in which the top comfort layer 18 responds to pressure, and the feel of the foam. In some embodiments, the top comfort layer 18 has a density of no less than about 25 kg/m3 and no greater than about 150 kg/m3. In other embodiments, a top comfort layer 18 having a density of at least about 40 kg/m3 and no greater than about 125 kg/m3 is utilized. In still other embodiments, a top comfort layer 18 having a density of at least about 60 kg/m3 and no greater than about 115 kg/m3 is utilized. In one preferred embodiment, the top comfort layer 18 has a density of 60 kg/m3.


The viscoelastic foam of the top comfort layer 18 can be selected for responsiveness to any range of temperatures. However, in some embodiments, a temperature responsiveness in a range of a user's body temperatures (or in a range of temperatures to which the mattress 10 is exposed by contact or proximity to a user's body resting thereon) can provide significant advantages. For example, a viscoelastic foam selected for the top comfort layer 18 can be responsive to temperature changes above at least about 0° C. In some embodiments, the viscoelastic foam selected for the top comfort layer 18 can be responsive to temperature changes within a range of at least about 10° C. In other embodiments, the viscoelastic foam selected for the top comfort layer 18 can be responsive to temperature changes within a range of at least about 15° C.


As used herein and in the appended claims, a material is considered “responsive” to temperature changes if the material exhibits a change in hardness of at least 10% measured by ISO Standard 3386 through the range of temperatures between 10 and 30 degrees Celsius.


The bottom comfort layer 20 is similar to the top comfort layer 18 in that is made of viscoelastic material. However, in a preferred embodiment, the bottom comfort layer 20, unlike the top comfort layer 18, is made of reticulated viscoelastic polyurethane foam. That is, while top comfort layer 18 and the bottom comfort layer 20 each comprise a cellular structure of flexible viscoelastic polyurethane foam in which the walls of the individual cells are substantially intact, the bottom comfort layer 20 comprises reticulated viscoelastic foam. As described in U.S. Ser. No. 11/265,410 (published as U.S. Publ. No. 2006/0288491), which is assigned to the Assignee of this application and which the disclosure thereof is incorporated herein in its entirety, the cells of reticulated foams are essentially skeletal structures in which many (if not substantially all) of the cell walls separating one cell from another do not exist. In other words, the cells are defined by a plurality of supports or “windows” and by no cell walls, substantially no cell walls, or by a substantially reduced number of cell walls. Such a cellular foam structure is sometimes referred to as “reticulated” foam. In some embodiments, a foam is considered “reticulated” if at least 50% of the walls defining the cells of the foam do not exist (i.e., have been removed or were never allowed to form during the manufacturing process of the foam).


Also, in some embodiments it is desirable that the bottom comfort layer 20 of reticulated viscoelastic foam be capable of providing some degree of support that is substantially independent of temperatures experienced by the top comfort layer 18 when supporting a user's body (i.e., independent of a user's body heat). Therefore, it is contemplated that the bottom comfort layer 20 can comprise reticulated viscoelastic foam that is responsive to temperature changes within a range of between about 10° C. and about 35° C. In some embodiments, the bottom comfort layer 20 can comprise reticulated viscoelastic foam that is responsive to temperature changes within a range of between about 15° C. and about 30° C. In still other embodiments, the bottom comfort layer 20 comprising reticulated viscoelastic foam that is responsive to temperature changes within a range of between about 15° C. and about 25° C. can be used. It is also contemplated that the comfort layer 20 could be reticulated non-viscoelastic foam, such as reticulated high resiliency foam.


By virtue of the skeletal cellular structure of the bottom comfort layer 20, heat in the top comfort layer 18 can be transferred away from the top comfort layer 18, thereby helping to keep a relatively low temperature in the top comfort layer 18. Also, the reticulated viscoelastic foam of the bottom comfort layer 20 can enable significantly higher airflow into, out of, and through the bottom comfort layer 20—a characteristic of the bottom comfort layer 20 that can also help to keep a relatively low temperature in the top comfort layer 18. Additionally, since the bottom comfort layer 20 contains viscoelastic material, the bottom comfort layer 20 of the comfort system 12 also provides the performance benefits often associated with viscoelastic foam; namely, the distribution of force applied thereto.


Like the top comfort layer 18, the bottom comfort layer 20 can have a density providing a relatively high degree of material durability. Also, the density of the foam in the bottom comfort layer 20 can also impact other characteristics of the foam, such as the manner in which the bottom comfort layer 20 responds to pressure, and the feel of the foam. In some embodiments, the bottom comfort layer 20 has a density of no less than about 20 kg/m3 and no greater than about 130 kg/m3. In other embodiments, a bottom comfort layer 20 having a density of at least about 25 kg/m3 and no greater than about 150 kg/m3 is utilized. In still other embodiments, a bottom comfort layer 20 having a density of at least about 30 kg/m3 and no greater than about 150 kg/m3 is utilized. In a preferred embodiment, the bottom comfort layer 20 has a density of 85 kg/m3.


Also, in some embodiments, the bottom comfort layer 20 has a hardness of at least about 50 N and no greater than about 150 N. In other embodiments, a bottom comfort layer 20 having a hardness of at least about 40 N and no greater than about 100 N is utilized. In still other embodiments, a bottom comfort layer 20 having a hardness of at least about 40 N and no greater than about 80 N is utilized. In a preferred embodiment, the bottom comfort layer 20 has a hardness of 60 N.


In one embodiment, the mattress 10 can have a bottom comfort layer 20 that is at least as thick as the top comfort layer 18, e.g., 5 cm. However, it is contemplated that the layers 18, 20 could have different thickness. For instance, the top comfort layer 18 could have a thickness that is less than or greater than the thickness of the bottom comfort layer 20. In one embodiment, the top comfort layer 18 has a thickness of 5 cm and the bottom comfort layer 20 has a thickness of 5 cm.


In the illustrated embodiment, the support system 14 also includes two foam layers: a top support layer 32 and a bottom support layer 34. Each of the top and bottom support layers 32, 34 can be substantially flat bodies having substantially planar top and bottom surfaces or, as shown in FIG. 2, convoluted top surfaces 36, 40 and planar bottom surface 38, 42. In addition to the illustrated convolutions, other non-planar shapes are contemplated, including without limitation, surfaces having ribs, bumps, and other protrusions of any shape and size, surfaces having grooves, dimples, and other apertures that extend partially or fully through the respective layer 32, 34, and the like. Also, by way of example only, either or both layers 32, 34 can be generally wedge-shaped, can have a concave or convex cross-sectional shape, can have a combination of convex and concave shapes, can have a stepped, faceted, or other shape, can have a complex or irregular shape, and/or can have any other shape desired.


The support layers 32, 34 are preferably made of high resiliency (HR) polyurethane foam and provide support for the support comfort system 12. Alternately, the support layers 32, 34 are made of conventional foam. Preferably the support layers 32, 34 have a minimum ball rebound of 50. The support layers 32, 34 can independently have a reticulated or non-reticulated cellular structure. It is also contemplated that the support layers may be made from other types of foams. In one embodiment, the support layers 32, 34 each have a hardness of at least about 100 N and no greater than about 300 N for desirable support. In other embodiments, support layers 32, 34 each having a hardness of at least about 125 N and no greater than about 200 N is utilized for this purpose. In still other embodiments, support layers 32, 34 each having a hardness of at least about 150 N and no greater than about 175 N is utilized. In a preferred embodiment, each support layer 32, 34 has a hardness of 150 N. Unless otherwise specified, the hardness of a material referred to herein is measured by exerting pressure from a plate against a sample of the material having length and width dimensions of 40 cm each (defining a surface area of the sample of material), and a thickness of 5 cm to a compression of 40% of an original thickness of the material at approximately room temperature (e.g., 21-23 Degrees Celsius), wherein the 40% compression is held for a set period of time, following the International Organization of Standardization (ISO) 2439 hardness measuring standard.


The support layers 32, 34 can also have a density providing a relatively high degree of material durability. The density of the foam in the support layers 32, 34 can also impact other characteristics of the foam, such as the manner in which the support layers 32, 34 responds to loading. In some embodiments, the support layers 32, 34 each has a density of no less than about 15 kg/m3 and no greater than about 150 kg/m3. In other embodiments, a support layers 32, 34 each having a density of at least about 25 kg/m3 and no greater than about 125 kg/m3 is utilized. In still other embodiments, support layers 32, 34 each having a density of at least about 25 kg/m3 and no greater than about 115 kg/m3 is utilized. In one preferred embodiment, each support layer 32, 34 has a density of 25 kg/m3. It is understood that the support layers 32, 34 may have different densities and hardness values from one another. In one embodiment, the support layers are comprised of polyurethane foam similar to that described in International Patent Application PCT/US2012/022893.


In one embodiment, the mattress 10 can have a bottom support layer 34 that is at least as thick as the top support layer 32, e.g., 10.75 cm. However, it is contemplated that the layers 18, 20 could have different thickness. For instance, the top support layer 32 could have a thickness that is less than or greater than the thickness of the bottom support layer 34. In one embodiment, the top support layer 32 has a thickness of 8 cm and the bottom support layer 34 has a thickness of 10.75 cm. It will be appreciated that these thickness values are merely illustrative and that the mattress could be constructed to have layer thicknesses different from those provided above. Alternately, the support layers 32, 34 could be combined into a single layer.


Referring again to FIGS. 1 and 2, the outer cover system 16 comprises an outer cover 44 that encloses, or at least partially encloses, the comfort and support systems 12, 14, respectively. The outer cover 44 is made of fabric and, in a preferred embodiment, a combination of polyester, cotton natural yarn, and spandex. It is contemplated that other types of fabric or ticking could be used. It is also contemplated that a quilted outer cover could be used. The outer cover 44 has an outer surface 46 and an inner surface 48 that are spaced from one another by at least one layer of fabric or ticking 50 that extends across the upper surface of the mattress 10 and down the sidewalls 10′ of the mattress 10. The outer cover 44 fits snuggly around the mattress 10, which holds the outer cover 44 in place. Alternately, the outer cover 44 can extend completely around the mattress 10 with ends thereof being connectable, such as by a zipper, to allow removability of the outer cover 44, such as for washing. As known in the art, a fire sock 52 envelopes the comfort and support layers and, as such, the outer cover 44 fits around the fire sock 52 as well.


To provide a cool dermal sensation, the outer cover 44 is impregnated with phase change material (PCM). In a preferred embodiment, PCM is in the form of a layer of microspheres 54 that are doped onto the outer surface 46, inner surface 48, and ticking 50 of the outer cover 44 using one of a number known application techniques. For example, the PCM could be applied using a screening process. Alternately, the outer cover 44 could be passed through a PCM bath. Regardless of application technique, it is contemplated that the portion of the outer cover 44 that extends across the upper surface of the mattress 10 is substantially saturated with PCM to, in effect, form a PCM layer 56 that is coextensive with the fabric layer 50. Alternately, the PCM could be applied to the outer surface 46 of the outer cover 44 to form a PCM layer (not shown) atop the outer surface 46. In one preferred embodiment, the PCM is THERMIC™ microcapsules commercially available from Devan Chemicals of Belgium. In other embodiment, the PCM is OUTLAST™ microcapsules, which is commercially available from Outlast Technologies.


With additional reference to FIG. 2A, in addition to PCM in the outer cover 44, mattress 10 also includes microspheres 54 of PCM forming a PCM layer 60 in the top comfort layer 18. The PCM microspheres 54 are preferably spray-applied to the upper surface of the top comfort layer 18 to form a PCM layer 60 having a thickness of between 500 μm and 4.0 mm, and preferably approximately 2.0 mm.


The material used to form the PCM layer 60 is similar to that applied to the outer cover 44, but it is contemplated that different types of phase change material could be used to form the respective PCM layers. Preferably, the thickness of the PCM layer 60 in the mattress is greater, or more dense, than the PCM layer 56 in the outer cover 44. That is, it is preferred that the heat capacity of the PCM layer 60 will be greater than the heat capacity of PCM layer 56.


The two PCM layers 56, 60 provide the dermal sensation of cool as well as the ability to absorb heat over an extended exposure period. As a result, as the thinner outer cover PCM layer 56 becomes saturated, i.e., heated, the latent heat characteristics of the PCM layer 60 in the top comfort layer 18 will effectively be a heat sink and thus absorb heat from the now-heated outer cover 44. This translates to an extended period by which PCM absorbs heat from the user as the user rests upon the mattress 10, and ultimately provides a longer cooler sleeping surface, which is believed to be desirable for those that “sleep hot”. For example, in one embodiment, the amount of PCM in the outer cover provides approximately 15-30 seconds of cool dermal feel whereas the amount of PCM in the top comfort layer provides cool dermal feel for up to 120 minutes. Moreover, should the ambient temperature drop below the melting point of the phase change material, the latent heat stored in the PCM will be released and thus provide some heating back to the consumer during the night.



FIGS. 3 and 4 illustrate another embodiment of a body support according to the present invention. This embodiment employs much of the same structure and has many of the same properties as the embodiments of the body support described above in connection with FIGS. 1 and 2. Accordingly, the following description focuses primarily upon the structure and features that are different than the embodiments described above in connection with FIGS. 1 and 2. Reference should be made to the description above in connection with FIGS. 1 and 2 for additional information regarding the structure and features, and possible alternatives to the structure and features of the body support illustrated in FIGS. 3 and 4 and described below. Structure and features of the embodiment shown in FIGS. 3 and 4 that correspond to structure and features of the embodiment of FIGS. 1 and 2 are designated hereinafter in the 100 series of reference numbers.


Like the embodiment illustrated in FIGS. 1 and 2, the mattress 100 illustrated in FIGS. 3 and 4 has a comfort layer system 102, a support layer system 104, and an outer cover system 106. In the illustrated embodiment, the only differences between the mattress 100 of FIGS. 3 and 4 and mattress 10 of FIGS. 1 and 2 can be found in the composition of the comfort layer system 102. As such, description of FIGS. 3 and 4 will be limited to that of the comfort layer system 102. Notwithstanding these similarities between mattress 100 and mattress 10, it is understood that mattress 100 could be constructed with a different support system and outer cover than those described with respect to mattress 10.


The comfort layer system 102 is comprised of two comfort layers 118 and 120 that are secured together using adhesive or similar bonding agent that effectively forms a bonding layer 22. The upper comfort layer 118 is formed from non-reticulated viscoelastic foam and the bottom comfort layer 120 is formed from reticulated viscoelastic foam. In a preferred embodiment, the upper comfort layer 118 has a thickness between 1-5 cm and more preferably 3 cm. The bottom comfort layer 120 has a thickness between 5-12 cm and more preferably 7 cm. The top comfort layer 118 has a density between 25 kg/m3 and 150 kg/m3, and more preferably a density of 100 kg/m3. The lower comfort layer 120 has a density between 25 kg/m3 and 150 kg/m3 and more preferably a density of 75 kg/m3. The upper comfort layer 118 has a hardness between 40 N and 150 N and preferably a hardness of 55 N. The bottom comfort layer 120 has a hardness between 30 N and 150 N and preferably a hardness of 55 N. With additional reference to FIG. 4A, the upper comfort layer 118 includes microspheres 54 of PCM that effectively form a PCM layer 60 that together with PCM in the outer cover provides multiple bands or layers of PCM in the mattress 100.


In the foregoing description, the application of PCM to a layer of polyurethane foam has been described but it should be understand that the body support cushions described herein may have different or other types of layers, such as latex or spacer fabric, to which PCM may be applied. For example, a body support cushion may be constructed with a spacer fabric between the outer cover and the top foam layer and the PCM could be applied to the spacer fabric.


Additionally, in preferred embodiments of the invention, the amount of PCM that is applied to the cover and/or foam layer is substantially consistent across the surface thereof. However, it is contemplated that intentional uneven applications of the PCM could be used to efficiently deposit the PCM based on believed sleeping preferences. For instance, the amount of PCM in the cover and/or foam layer upon which a sleeper's torso would rest may exceed that found in those sections upon which a sleeper's feet are expected to rest. Similarly, less PCM could be used along the periphery of the cover and/or foam layer in expectation that most sleepers do not rest on the edge of the mattress. Furthermore, it is contemplated that a mattress having two sleeping surfaces, e.g., a left side and a right side, such as that conventionally found in queen and king sized mattresses, the amount of PCM in the cover and/or foam could be selected to provide different cooling capacities for the respective sleeping surfaces.


The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

Claims
  • 1. A body support cushion, comprising: a layered arrangement of foam comprised of at least one layer of viscoelastic foam having a density of at least 20 kg/m3 and no more than 150 kg/m3; andphase change material in the layer of viscoelastic foam;wherein the layer arrangement of foam includes a first base layer, a first layer of viscoelastic foam adjacent the first base layer, and a second layer of viscoelastic foam adjacent the first layer of viscoelastic foam;wherein the first layer of viscoelastic foam includes reticulated foam; and,a mattress cover also comprising a phase change material wherein the amount of PCM in one area is greater than a second area.
  • 2. The body support cushion of claim 1 wherein the phase change material includes a plurality of microspheres containing the phase change material, and wherein the microspheres are formed in the second layer of viscoelastic foam.
  • 3. The body support cushion of claim 2 wherein the microspheres are spray-applied to an upper surface of the second layer of viscoelastic foam.
  • 4. A body support cushion, comprising: a layered arrangement of foam comprised of at least one layer of viscoelastic foam having a density of at least 20 kg/m3 and no more than 150 kg/m3; and phase change material disposed in the layered arrangement of foam; wherein the layer arrangement of foam includes a first base layer, a first layer of reticulated viscoelastic foam adjacent the first base layer, and a second layer of viscoelastic foam adjacent the first layer of viscoelastic foam; wherein the first base layer includes first and second base layers stacked adjacently to one another; said first layer of viscoelastic foam having a first layer of said phase change material; one of said second layer of viscoelastic foam or said first base layer also having a second layer of said phase change material; wherein an amount of phase change material within at least one of said first and second layers of said phase change material varies within said at least one of said first and second layers to provide differing cooling capacities.
  • 5. The body support cushion of claim 4 wherein the first and second layers are at least one of equal height and equal hardness.
  • 6. The body support cushion, of claim 5 wherein the first and second layers each has a height between 8.00-12.00 cm.
  • 7. The body support cushion of claim 6 wherein the first and second layers each has a height of 10.75 cm.
  • 8. The body support cushion of claim 5 wherein the first and second layers each has a hardness between 100 N-200 N.
  • 9. The body support cushion of claim 8 wherein the first and second layers each has a hardness of 150 N.
  • 10. A body support cushion, comprising: a layered arrangement of foam comprised of at least a first base layer, a first layer of viscoelastic foam adjacent the first base layer, and a second layer of viscoelastic foam adjacent the first layer of viscoelastic foam with at least one of the first layer and second layer of viscoelastic foam having a density of at least 20 kg/m3 and no more than 150 kg/m3; and a phase change material layer applied to an upper surface of the second layer of viscoelastic foam opposite the first layer of viscoelastic foam such that the phase change material layer extends into the second layer of viscoelastic foam; wherein the first layer of viscoelastic foam includes reticulated foam; further comprising a mattress cover on said layered arrangement of foam, said mattress cover having a second phase change material, and wherein amounts of said second phase change material vary along an upper surface of said mattress cover.
  • 11. The body support cushion of claim 10 wherein the first layer of viscoelastic foam has a thickness between 2.0 and 10.0 centimeters.
  • 12. The body support cushion of claim 11 wherein the first layer of viscoelastic foam has a height of 7.0 centimeters.
  • 13. A body support cushion, comprising: a layered arrangement of foam comprised of at least one layer of viscoelastic foam having a density of at least 20 kg/m3 and no more than 150 kg/m3; a first phase change material in the layer of viscoelastic foam; wherein the layer arrangement of foam includes a first base layer, a first layer of viscoelastic foam adjacent the first base layer, and a second layer of viscoelastic foam adjacent the first layer of viscoelastic foam; wherein the first layer of viscoelastic foam includes reticulated foam; and wherein the second layer of viscoelastic foam includes viscoelastic material having a density greater than the density of the first layer of viscoelastic foam; said second layer of viscoelastic foam having a second phase change material, an amount of one of said first phase change material and said second phase change material varying along a surface of the corresponding layer.
  • 14. The body support cushion of claim 1 wherein the second layer of viscoelastic foam includes viscoelastic material having a density less than the density of the first layer of viscoelastic foam.
  • 15. The body support cushion of claim 1 wherein the second layer of viscoelastic foam has a height no greater than the height of the first layer of viscoelastic foam.
  • 16. The body support cushion of claim 1 further comprising an outer cover having an outer surface and an inner surface opposite the outer surface with a thickness of the outer cover defined therebetween.
  • 17. The body support cushion of claim 16 wherein the outer cover includes phase change material.
  • 18. A mattress comprising: a multilayer arrangement of foam layers with at least two layers of viscoelastic foam having a density of at least 20 kg/m3 and no more than 150 kg/m3, and wherein at least one of the viscoelastic layers is comprised of reticulated viscoelastic material; an outer mattress cover encasing the multilayer arrangement of foam layers; and phase change material contained in one of the at least two layers of viscoelastic foam and the outer mattress cover; wherein said phase change material varies along a surface of the at least two layers of viscoelastic foam and the outer mattress cover.
  • 19. A mattress comprising: a multilayer foam arrangement comprised of a first non-reticulated viscoelastic layer, a second reticulated, viscoelastic layer, and a third non-reticulated non-viscoelastic layer; an outer mattress cover enclosing the multilayer foam arrangement; and phase change material, contained in the multilayer foam arrangement and the outer mattress cover; said phase change material in said outer mattress cover varying in amount along a surface to vary cooling capacity along the surface of said outer mattress cover.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/048669 7/27/2012 WO 00 6/17/2015
Publishing Document Publishing Date Country Kind
WO2014/018062 1/30/2014 WO A
US Referenced Citations (211)
Number Name Date Kind
2604642 Marco Jul 1952 A
2651788 Forwood Sep 1953 A
2835313 Dodge May 1958 A
2836228 Dahle May 1958 A
2898975 Wagner Aug 1959 A
3000020 Lombard et al. Sep 1961 A
3043731 Hill Jul 1962 A
3047888 Shecter et al. Aug 1962 A
3051601 Schick Aug 1962 A
3110042 Slemmons Nov 1963 A
3165355 Hitchcock, Jr. et al. Jan 1965 A
3171820 Volz Mar 1965 A
3608106 Parramon Sep 1971 A
3730588 Braun May 1973 A
3742526 Lillard Jul 1973 A
3833259 Pershing Sep 1974 A
3837020 Bosch Sep 1974 A
3894973 Yunan Jul 1975 A
3906137 Bauer Sep 1975 A
3639508 Hall et al. Feb 1976 A
3974532 Ecchuya Aug 1976 A
3987507 Hall Oct 1976 A
4031579 Larned Jun 1977 A
4086675 Talbert et al. May 1978 A
4147825 Talalay Apr 1979 A
4167612 Tucker et al. Sep 1979 A
4190697 Ahrens Feb 1980 A
4207636 Ceriani Jun 1980 A
4253452 Powers et al. Mar 1981 A
4254991 Venieris Mar 1981 A
4256096 Budde Mar 1981 A
4262048 Mitchell Apr 1981 A
4336621 Schwartz et al. Jun 1982 A
4379856 Samaritter et al. Apr 1983 A
4405681 McEvoy Sep 1983 A
4449261 Magnusson May 1984 A
4580301 Ludman et al. Apr 1986 A
4606088 Michaelsen et al. Aug 1986 A
4690847 Lassiter et al. Sep 1987 A
4706313 Murphy Nov 1987 A
4736911 Heitmann Apr 1988 A
4748768 Jacobsen Jun 1988 A
4755411 Wing et al. Jul 1988 A
4756949 Spence et al. Jul 1988 A
4808469 Hiles Feb 1989 A
4840430 Shimada Jun 1989 A
4842330 Jay Jun 1989 A
4843662 Handelman Jul 1989 A
4856118 Sapiejewski Aug 1989 A
4930171 Frantz Jun 1990 A
4947500 Seiler Aug 1990 A
4955095 Gerrick Sep 1990 A
4987156 Tozune et al. Jan 1991 A
4999868 Kraft Mar 1991 A
5007123 Salyards Apr 1991 A
5018790 Jay May 1991 A
5022111 Fenner, Sr. Jun 1991 A
5027589 Gleb et al. Jul 1991 A
5031261 Fenner, Sr. Jul 1991 A
5068983 Marc Dec 1991 A
5077849 Farley Jan 1992 A
5081728 Skinner Jan 1992 A
5088747 Morrison et al. Feb 1992 A
5105491 Yoshiyuki et al. Apr 1992 A
5117519 Thomas Jun 1992 A
5141285 Park Aug 1992 A
5172436 Masuda Dec 1992 A
5189747 Mundy et al. Mar 1993 A
5230947 Ou Jul 1993 A
5231717 Scott et al. Aug 1993 A
5265295 Sturgis Nov 1993 A
5294181 Rose et al. Mar 1994 A
5331750 Sasaki et al. Jul 1994 A
5366801 Bryant Nov 1994 A
5428852 Tenuta et al. Jul 1995 A
5499460 Bryant Mar 1996 A
5513402 Schwartz May 1996 A
5518802 Colvin et al. May 1996 A
5522106 Harrison et al. Jun 1996 A
5637389 Colvin Jun 1997 A
5669094 Swanson Sep 1997 A
5687436 Denton Nov 1997 A
5741568 Rudy Apr 1998 A
5747140 Herklotz May 1998 A
5804297 Colvin Sep 1998 A
5815865 Washburn et al. Oct 1998 A
5836654 DeBellis et al. Nov 1998 A
5851338 Pushaw Dec 1998 A
5855415 Lilley, Jr. Jan 1999 A
5857749 DeBellis et al. Jan 1999 A
5913774 Feddema Jun 1999 A
5955188 Pushaw Sep 1999 A
6017006 Cherubini et al. Jan 2000 A
6018832 Graebe Feb 2000 A
6048810 Baychar Apr 2000 A
6052851 Kohnle Apr 2000 A
6061856 Hoffmann May 2000 A
6077597 Pause Jun 2000 A
6093468 Toms et al. Jul 2000 A
6115861 Reeder et al. Sep 2000 A
6127010 Rudy Oct 2000 A
6159574 Landvik et al. Dec 2000 A
6163907 Larson Dec 2000 A
6192538 Fogel Feb 2001 B1
6202239 Ward et al. Mar 2001 B1
6207738 Zuckerman et al. Mar 2001 B1
6217993 Pause Apr 2001 B1
6230444 Pause May 2001 B1
6237173 Schlichter et al. May 2001 B1
6241320 Chew et al. Jun 2001 B1
6256821 Boyd Jul 2001 B1
6269504 Romano et al. Aug 2001 B1
6397419 Mechache Jun 2002 B1
6460209 Reeder et al. Oct 2002 B1
6481033 Fogel Nov 2002 B2
6503976 Zuckerman et al. Jan 2003 B2
6514362 Zuckerman et al. Feb 2003 B1
6541094 Landvik et al. Apr 2003 B1
6578220 Smith Jun 2003 B1
6598251 Habboub et al. Jul 2003 B2
6601253 Tarquino Aug 2003 B1
6602579 Landvik Aug 2003 B2
6660667 Zuckerman et al. Dec 2003 B2
6662393 Boyd Dec 2003 B2
6687933 Habboub et al. Feb 2004 B2
6687935 Reeder et al. Feb 2004 B2
6689466 Hartmann Feb 2004 B2
6709729 Baruch Mar 2004 B2
6735800 Salvatini et al. May 2004 B1
6745419 Delfs et al. Jun 2004 B1
6785923 Karafa et al. Sep 2004 B2
6787078 English et al. Sep 2004 B2
6793856 Hartmann et al. Sep 2004 B2
6866915 Landvik Mar 2005 B2
6893695 Baychar May 2005 B2
6952852 Reeder et al. Oct 2005 B2
6981341 Baychar Jan 2006 B2
7036172 Torbet et al. May 2006 B2
7059001 Woolfson Jun 2006 B2
7065816 McGettigan Jun 2006 B2
7103933 Gladney et al. Sep 2006 B2
7125816 Baychar Oct 2006 B1
7135424 Worley et al. Nov 2006 B2
7147911 Baychar Dec 2006 B2
7155765 Fogg Jan 2007 B2
7160612 Magill et al. Jan 2007 B2
7200884 Wright Apr 2007 B2
7241497 Magill et al. Jul 2007 B2
7244497 Hartmann et al. Jul 2007 B2
7311209 Bentz et al. Dec 2007 B2
7314840 Baychar Jan 2008 B2
7323243 Baychar Jan 2008 B2
7469437 Mikkelsen Dec 2008 B2
7507468 Landvik et al. Mar 2009 B2
7563398 Hartmann et al. Jul 2009 B2
7579078 Hartmann et al. Aug 2009 B2
7666500 Magill et al. Feb 2010 B2
7666502 Magill et al. Feb 2010 B2
7790283 Hartmann et al. Sep 2010 B2
7836722 Magill et al. Nov 2010 B2
8025964 Landvik et al. Sep 2011 B2
8034445 Landvik et al. Oct 2011 B2
8173257 Hartmann et al. May 2012 B2
8221910 Hartmann et al. Jul 2012 B2
8404341 Hartmann et al. Mar 2013 B2
8418297 Mikkelsen et al. Apr 2013 B2
8569190 Baychar Oct 2013 B2
8587945 Hartmann et al. Nov 2013 B1
8673448 Hartmann et al. Mar 2014 B2
8679627 Hartmann et al. Mar 2014 B2
8881328 Mikkelsen et al. Nov 2014 B2
20030109908 Lachenbruch Jun 2003 A1
20030135930 Varese et al. Jul 2003 A1
20030186044 Sauniere et al. Oct 2003 A1
20040074008 Martens et al. Apr 2004 A1
20040139552 Walters, Jr. Jul 2004 A1
20040142619 Ueno et al. Jul 2004 A1
20040209062 Sebag Oct 2004 A1
20050034330 Baychar Feb 2005 A1
20050084667 Landvik et al. Apr 2005 A1
20050140199 Kang et al. Jun 2005 A1
20050210595 Di Stasio et al. Sep 2005 A1
20050214501 Baychar Sep 2005 A1
20060031996 Rawls-Meehan Feb 2006 A1
20060112491 Buehner Jun 2006 A1
20060260059 Apperson et al. Nov 2006 A1
20060260060 Apperson et al. Nov 2006 A1
20060288491 Mikkelsen Dec 2006 A1
20070141940 Baychar Jun 2007 A1
20080313815 Guesquiere Dec 2008 A1
20090165213 Collins et al. Jul 2009 A1
20090172887 Landvik Jul 2009 A1
20090293199 Landvik Dec 2009 A1
20100009112 Baychar Jan 2010 A1
20100263128 Lean Oct 2010 A1
20100269241 Baychar Oct 2010 A1
20110000106 Baychar Jan 2011 A1
20110252562 Chandler et al. Oct 2011 A1
20110256380 Chandler et al. Oct 2011 A1
20110289683 Chandler et al. Dec 2011 A1
20110289689 Mikkelsen et al. Dec 2011 A1
20120023664 Joo Feb 2012 A1
20120263910 Baychar Oct 2012 A1
20130224458 Bolliou Aug 2013 A1
20130273300 Baychar Oct 2013 A1
20140120310 Baychar May 2014 A1
20140304921 Mikkelsen Oct 2014 A1
20140325758 Chandler et al. Nov 2014 A1
20150031258 Baychar Jan 2015 A1
20150033474 Mikkelsen et al. Feb 2015 A1
20150040327 Mikkelsen Feb 2015 A1
Foreign Referenced Citations (48)
Number Date Country
678390 Sep 1991 CH
103221201 Jul 2013 CN
1654301 Mar 1971 DE
2235818 Jan 1974 DE
3321720 Dec 1984 DE
3803448 Aug 1988 DE
10037888 Jun 2002 DE
202004003248 May 2004 DE
20023506 Aug 2004 DE
202004004701 Aug 2004 DE
202010006700 Aug 2010 DE
0338463 Oct 1989 EP
0486016 May 1992 EP
0713900 May 1996 EP
0718144 Jun 1996 EP
0777988 Jun 1997 EP
0782830 Jul 1997 EP
0962171 Dec 1999 EP
1192925 Apr 2002 EP
1430814 Jun 2004 EP
2 425 961 Mar 2012 EP
2598910 Nov 1987 FR
2795371 Dec 2000 FR
2818187 Jun 2002 FR
2848817 Jun 2004 FR
2244000 Nov 1991 GB
2290256 Dec 1995 GB
2297057 Jul 1996 GB
2410892 Aug 2005 GB
1238272 Jul 1993 IT
224783 Jun 1996 IT
62183790 Aug 1987 JP
3128006 May 1991 JP
2006296461 Nov 2006 JP
8504150 Sep 1985 WO
9324241 Dec 1993 WO
9850251 Nov 1998 WO
0128388 Apr 2001 WO
03072391 Sep 2003 WO
2004002729 Jan 2004 WO
2004089682 Oct 2004 WO
2005011442 Feb 2005 WO
2005046988 May 2005 WO
2010075300 Jul 2010 WO
20130112840 Aug 2013 WO
2014204934 Jul 2014 WO
2014204934 Dec 2014 WO
2015012859 Jan 2015 WO
Non-Patent Literature Citations (74)
Entry
Office Action from U.S. Appl. No. 12/407,605, dated Nov. 12, 2010, 15 pages.
Office Action from U.S. Appl. No. 11/080,739, dated Oct. 27, 2010, 11 pages.
Office Action from U.S. Appl. No. 11/080,739, dated Apr. 14, 2011, 13 pages.
Examiner Interview Summary from U.S. Appl. No. 11/187,032, dated Nov. 4, 2010, 3 pages.
Office Action from U.S. Appl. No. 11/187,032, dated Jan. 13, 2011, 9 pages.
Office Action from U.S. Appl. No. 11/005,803, dated Jan. 3, 2011, 12 pages.
Office Action from U.S. Appl. No. 11/187,032 dated Aug. 17, 2007, 10 pages.
Office Action from U.S. Appl. No. 11/187,032 dated Mar. 19, 2008, 9 pages.
Office Action from U.S. Appl. No. 11/187,032 dated Aug. 3, 2010, 8 pages.
Office Action from U.S. Appl. No. 11/080,739 dated Sep. 23, 2005, 6 pages.
Office Action from U.S. Appl. No. 11/080,739 dated Jun. 15, 2006, 7 pages.
Office Action from U.S. Appl. No. 11/080,739 dated Mar. 9, 2007, 10 pages.
Office Action from U.S. Appl. No. 11/080,739 dated Nov. 1, 2007, 12 pages.
Webster's Dictionay, p. 1240, 1984.
Examiner's Answer for U.S. Appl. No. 11/080,739, Before the Board of Patent Appeals and Interferences, dated Aug. 6, 2008, 15 pages.
Decision on Appeal for U.S. Appl. No. 11/080,739, Before the Board of Patent Appeals and Interferences, dated Apr. 22, 2010, 13 pages.
Request for Continued Examination with Amendment/Reply for U.S. Appl. No. 11/080,739, filed Jun. 22, 2010, 12 pages.
Examiner's Answer for U.S. Appl. No. 11/187,032, Before the Board of Patent Appeals and Interferences, dated Jan. 13, 2009, 12 pages.
Decision on Appeal for U.S. Appl. No. 11/187,032, Before the Board of Patent Appeals and Interferences, dated Apr. 22, 2010, 10 pages.
Request for Continued Examination with Amendment/Reply for U.S. Appl. No. 11/187,032, filed Jun. 22, 2010, 11 pages.
Comments of Third Party Requester Following Patent Owqner's Response in Inter Partes Reexamination, U.S. Pat. No. 7,507,468, dated May 5, 2010, 46 pages.
Patent Owner Remarks, U.S. Pat. No. 7,507,468, dated Jun. 7, 2010, 3 pages.
Office Action from U.S. Appl. No. 11/005,803, dated Jun. 23, 2010, 10 pages.
AliMed, Inc., Catalog #1039, 1990.
Translation of DE 2 235 818, Jan. 31, 1974, 2 pages.
Written Opinion and International Search Report, USPTO, dated Mar. 25, 2013, 10 pgs.
AliMed Inc., Rehab-Ortho Plus, Anti-Decubitus Cushions and Pads Temper Foam, pub.#187, pp. 35-36, date unknown.
AliMed Inc., Rehab-Orthopedic, Occupational Therapy, About T-Foam and Temper Foam—New Dimensions in Sitting Comfort, Stability, and Safety, pp. 46-47, 1988 Edition.
AliMed Inc., Lower Extremities Catalog, Materials Listing, pp. 34-35, 1989 Edition.
AliMed Inc., Physical Rehabilitation and Orthopedics, Catalog #1039, C71, C72, C81, C161, C164-167, 1990.
AliMed Inc., Self-Help Aids Catalog, Combo T-Foam Cushions Fit Everyone, D68, 1990.
AliMed, Inc., Lower Extremities Orthoses and Accessories, Materials Index and T-Foam and T-Stick Padding, B10-B11, & B21, 1990-91.
ASTM, “Standard Methods of Testing Flexible Cellular Materials—Slab Urethane Foam”, American National Standard J151, American National Standards Institute, pp. 330-346, approved May 28, 1975.
Carter, Tom, “Ex-Horseman Marketing Foam Pillows, Mattresses”, At Home, Gadgets, Lexington Herald-Leader, Lexington, KY, Jul. 1, 1995.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, 15 pages, date unknown.
Brookstone Company, Inc., Brookstone Collection, Holiday Catalog, Printed in the United States of America, 16 pages, Holiday 1993.
Brookstone, Explore the Wonders, Holidays at Brookstone, Catalog, 16 pages, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, p. 49, C294 B-1, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-63, C294 B-1, date unkown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-67, T181-D2, date unknown.
Brookstone Company, Inc., Brookstone Collection, Spring Catalog, Printed in the United States of America, pp. 1-47, c-1-94, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-63, C294 A-1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-67, T181-A6, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-47, c-2-94, date unkown.
Brookstone Company, Inc., Brookstone Collection, Doodads for Whatever Dads Do, Father's Day Catalog, Printed in the United States of America, pp. 1-47, c-1-94, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-5-94 D1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-67, T181-B1, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-63, C294 E-1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-5-94 A4, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-5-94 A2, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-4-94 A2, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-4-94 B1, date unknown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-63, C294 C-1, date unkown.
Brookstone Company, Inc., Brookstone Collection, Catalog, Printed in the United States of America, pp. 1-63, C294 C-1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, pp. 1-63, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-5-94 B1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-63, T-5-94 C1, date unknown.
Brookstone Company, Inc., Brookstone, Hard-To-Find Tools Catalog, Printed in the United States of America, pp. 1-67, T181-C1, date unknown.
Technical Support Package, “Viscoelastic Foam Cushion”, NASA—Ames Research Center, Tech Brief ARC-11089, Dec. 1976.
Koreska, J. et al., “A New Foam for Support of the Physically Handicapped”, Biomedical Engineering, vol. 10, pp. 56-62 (Feb. 1975) (also contained within NASA Technical Support Package ARC-11089).
Singer, “Beds Should be Firm but Kind: National Back Pain Week Oct. 11-16”, published by PR Newswire Europe on Sep. 29, 1993.
Spinoff 1981: An Annual Report, published by NASA, pp. 76-77, 1981.
Krouskop, T., et al., “Factors Affecting the Pressure-Distributing Properties of Foam Mattress Overlays”, Journal of Rehabilitation Research and Development, vol. 23, No. 3, pp. 33-39, Jul. 3, 1986.
Peterson, M. et al., “Measurement and Redistribution of Excessive Pressures During Wheelchair Sitting”, Physical Therapy, vol. 62, No. 7, pp. 990-994, Jul. 1982.
Hayes, M. et al., “Spontaneous Motor Activity is Affected by Sleep Surface Quality in Children”, Sleep Research, vol. 23, p. 126, 1994.
Haggerty, James, J., “Foaming Cushioning”, Spinoff, published by NASA, pp. 68-69, Aug. 1988.
AliMed, Inc., Cushions, Catalog #683, pp. 53-58, Jun. 14, 1983.
Dynamic Systems, Inc., Sun-Mate Seat Cushions, pp. WC00648246-250, Jan. 1, 1984.
The Comfort Store, Memory Foam Mattress Pad—Jobri BetterRest Memory Foam Mattress Topper, Available Online at: <http://www.sittincomfort.com/bemefoto.html>, 5 pages, 1994.
Tempur-Pedic Investor Relations: Investor FAQ, Available Online at: <http://phx.corporate-ir.net/phoenix.zhtml?c=176437&p=irol-faq>, 2 pages, 2006.
Office Action from U.S. Patent Office for U.S. Appl. No. 12/407,605 dated Feb. 17, 2010 (8 pages).
Office Action from U.S. Patent Office for U.S. Appl. No. 95/000,494 dated Feb. 4, 2010 (60 pages).
European Patent Office, Office Action issued in corresponding Application No. 12881919.0, dated Oct. 14, 2016.
The State Intellectual Property Office of The People's Republic of China, Second Office Action issued in corresponding Application No. 201280075541.X, dated Oct. 18, 2016.
Related Publications (1)
Number Date Country
20150296994 A1 Oct 2015 US