The present invention relates to a bogey particularly but not exclusively for carrying a hanger bolt for supporting a folding panel such as a door panel.
In accordance with the invention, there is provided a bogey with a body having only a single set of support wheels, with one wheel positioned either side of the body, and a threaded retainer arranged for threaded engagement with a shaft of a hanger bolt, wherein the retainer is located in spaced relation from the wheels, whereby the bolt is cantilevered from the body.
Preferably, the retainer is positioned internally of the body.
Preferably, the bogey further includes a lock mechanism to engage side flats of the bolt, to restrict axial movement of the bolt resulting from relative rotation between the bolt and the retainer.
Preferably, the lock mechanism includes a keeper that slides into an engaged position to lock the bolt against rotation.
Preferably, the lock mechanism includes a collar that is fitted to the flats of the bolt and the keeper engages and locks against the collar to restrict relative rotation of the bolt.
Preferably, the collar includes a slotted profile, in to which the keeper is moved to engage and lock the collar and bolt against rotation.
Preferably, the keeper is retained in an engaged position under bias.
Preferably, the lock mechanism includes an actuator button to move the keeper between a free position and the engaged position.
Preferably, the lock mechanism has a cover plate to capture the keeper in a housing in a base of the body and the button projects through the plate.
The bogey is preferably provided in combination with the threaded hanger bolt that is screw threaded into the retainer, the bolt having side flats for the lock mechanism to engage, to restrict relative rotation between the bolt and the retainer.
In another aspect, there is provided a panel assembly including the bogey, as described above, an end panel supported by the bogey and a hanger bolt interconnecting the end panel and the bogey.
In another aspect, there is provided a folding door system, including a frame with a jamb and an overhead track, a folding panel assembly mounted in the frame and the bogey, as described above, wherein an end panel of the folding panel assembly is mounted to the overhead track via the bogey and an interconnecting hanger bolt.
Preferably, the bogey travels above the panel through the track as the panel is opened and closed and wherein the body of the bogey holds the hanger bolt in a cantilevered position adjacent the jamb when the panel is closed, while the supporting wheels are positioned in spaced relation from the jamb so as to enable an edge of the end panel to substantially close against the jamb without obstruction from the wheels.
The invention is described in more detail, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Referring firstly to
The pivot arm assembly 6 is formed of two lateral sections 7 which extend from a central bearing, which is mounted to a pivot in the form of an axle 8 that projects from a first end 9 of the body 2. The assembly 6 is secured to the body 2 in place using a washer 10, which is riveted in place.
A boss 11 is provided on the body 2, beneath the pivot arm assembly 6 and is fitted with a rubber buffer 12. The boss 11 and buffer 12 serve as an end of travel stop for the bogey assembly 1.
The assembly 6 also has a top mounted guide roller 13, which is in alignment with a second guide roller 14 mounted toward a second end 15 of the body 2.
The second end 15 of the bogey assembly 1 also houses a retainer 16, which is in the form of a pivotal member or axle 17 that extends through a substantially horizontal passage 18 provided in the body 2, arranged transverse to a direction of travel of the bogey assembly 1.
The retainer 16 includes an internal thread 19 for threaded engagement with a hanger bolt 20, which is illustrated in
The hanger bolt 20 is shown as including a threaded shaft 21 with side flats 22 and a bolt head 23, which supports a hinge 24. In order to mount the shaft in the bogey assembly 1, the threaded shaft 21 is engaged with the internal thread 19 and rotated into the retainer 16 until the hanger bolt 20 is at a desired height.
Once the hanger bolt 20 is mounted in the bogey assembly 1, the hanger bolt 20 can pivot about the retainer 16 in a direction indicated by arrows 25. This serves to substantially reduce moments that might have otherwise applied through the hanger bolt 20 if, for example, the hanger bolt 20 had a fixed connection with the bogey assembly 1.
The positioning of the retainer 16 toward the second end 15 of the bogey assembly 1 also means any weight load force applied to the hanger bolt 20, such as from a supported door panel or the like (as indicated by arrow 26) is transferred to the rollers 5 through pivot action of the body 2 (as indicated by arrow 27) so that the rollers maintain contact with a track 30, as illustrated in
More particularly,
As may be appreciated, any downward movement on the hanger bolt 20 will cause the main wheels 3 to firmly engage the lower rail section 30B but will also cause the rollers 5 to be loaded against the top rail section 30A via the pivot arm assembly 6. The hanger bolt 20 is able to pivot about the retainer 16 to maintain a generally vertical orientation.
The pivot arm assembly 6 and its associated axle 8 thereby represents a live axle of the bogey assembly 1 in the sense the pivot arm assembly 6 rotates about a substantially horizontal axis, oriented in a direction of travel of the bogey assembly 1, to ensure the rollers 5 split the load equally. On the contrary, the prior art fixed axle arrangement requires total precision to safeguard against uneven load distribution and wear.
A second live axle is provided by the retainer 16, which supports the hanger bolt 20. In that case, the axle 17 also compensates for inaccuracy in the bogey assembly 1. For example, if the rollers 5 are cast too low, the load down the hanger bolt 20 will not be perfectly perpendicular to the bogey assembly 1, which would normally create large bending moments in the hanger bolt 20 and possible fatigue and fracture. The live axle 17, however, compensates and automatically adjusts by allowing the retainer 16 to pivot so that the load passes through the hanger bolt 20 without bending. This will, of course, mean the hanger bolt 20 will move fractionally during use but any variation can be taken up by the height adjustment built into the design.
Pivotal movement of the hanger bolt 20 relative to the bogey assembly 1 does, however, present a problem in relation to locking the hanger bolt 20 at a selected height, to prevent the hanger bolt 20 unscrewing from the body 2 over time. A conventional lock-nut to lock the hanger bolt 20 to the body 2 is clearly inappropriate as the pivotal movement of the hanger bolt 20 would be restricted as a result. To address this problem, the bogey assembly 1 is provided with a lock mechanism 32, as shown in
Referring firstly to
The keeper 32A is formed as a U-shaped block 33, with flat surfaces 34 confined to fit with flats 22 of the hanger bolt 20. Accordingly, in the engaged condition the flat surfaces 34 of the U-shaped block 33 directly engage with the flats 22 of the hanger bolt 20. The U-shaped block 33 provides a slightly elongate housing for the hanger bolt 20 and as such when the keeper 32A is in the engaged position, the U-shaped block 33 restricts the hanger bolt 20 from rotation about its elongate axis but allows the hanger bolt 20 limited movement in the direction of travel of the bogey assembly 1 by pivoting about the retainer 16. During this pivoting it may be appreciated that there will be some limited sliding movement between the flats 22 of the hanger bolt 20 and the flat surfaces 34 of the U-shaped block 33.
The lock mechanism 32 also has an actuating button 35 which is biased by a spring 36 and which needs to be depressed in order to move the keeper 32A out of engagement with the hanger bolt 20. The button 35 has a base 37, received in a bore 38 of the block 33 and a neck 39 which passes through a guide slot, formed in cover plate 39A.
When the keeper 32A is in the engaged position where the lock mechanism 32 is in the locked condition, as illustrated in
To release the lock mechanism 32, the button 35 needs to firstly be pressed in a direction indicated by arrow 41 in
The button 35 is then slid in a direction indicated by arrow 43, as shown in
The hanger bolt 20 may then be rotated in a direction indicated by arrows 44 in
When the correct adjustment has been made the hanger bolt 20 is rotated slightly so that the flats 22 are aligned with the surfaces 34 of the keeper 32A as illustrated in
Another example of a bogey assembly 101 is shown in
The body 102 is provided with wheels 105 and rollers 106 for guiding the assembly in an overhead track (not shown) and the lock mechanism 103 serves to fix the hanger bolt 104 in the bogey assembly 101 to thereby lock the bolt head 107 and supported door panel at an appropriate height relative to the track.
The body 102 is formed from a casting 108 which provides housing 109 for the lock mechanism 103. The body 102 also includes a bore 110 for receiving the hanger bolt 104.
The lock mechanism 103 includes a keeper 111 which is biased by a spring 112 into an engaged position with a locking collar 113. The locking collar 113 has an external profile with slots 114 which are engaged by the keeper 111 and an internal throat 115 profiled to engage flats 116 of the hanger bolt 104.
A cover plate 117 is provided to retain the components of the lock mechanism against the body 102. The cover plate 117 has an aperture 118 to receive a shaft 119 of the hanger bolt 104. The aperture 118 is aligned with the collar 113 so that, when the hanger bolt 104 is received in the bogey assembly 101, the flats 116 are appropriately aligned and fit within the throat 115.
The cover plate 117 also includes opening 118A, through which an actuator button 120 is accessible. The actuator button 120 is coupled to the keeper 111 and allows the keeper 111 to be moved between the engaged and free positions. When the button 120 is depressed and the 111 keeper is disengaged, the locking collar 113 is free to rotate relative to the body 102, which in turn means the hanger bolt 104 is free to rotate.
Accordingly, it may be appreciated the lock mechanism 103 provides a locked condition when the keeper 111 is the engaged condition and an unlocked condition when the keeper 111 is the free position.
Threaded engagement between an internal thread of the bore 110 and external thread on the shaft 119, causes the hanger bolt 104 to be moved in or out of the bogey assembly 101 as a result of such rotation, so as to provide height adjustment of the hanger bolt 104.
The keeper 111 is biased into the engaged position by the spring 12 so that when adjustment has been completed, the keeper 111 will automatically re-engage the collar 113, as soon as the flats 116 of the hanger bolt 104 are at right angles to the keeper 111, so that the keeper 111 can lock into one of the slots 114.
The operation of the lock mechanism 103 is now further described with reference to
In
While the button 120 is pressed inwardly of the body 102, the hanger bolt 104 may be manually rotated for adjustment or a spanner key 124 can instead be inserted in the bolt head 107, as illustrated in
Rotation of the hanger bolt 104, as indicated by arrow 125 in
When the appropriate height adjustment is obtained, the key 121 is removed, as shown in
As may be appreciated from the above, the lock mechanisms 32, 103 provide a convenient and simple means to securely lock the hanger bolt 20, 104 after appropriate height adjustment relative to the bogey assembly 1, 101. The lock mechanisms 32, 103 have no free parts that might otherwise be dropped or lost and can be manually disengaged for further adjustment, if required, without the need for specialised tools. The mechanisms 32, 103 are also housed within the body 4, 102 of the bogey assemblies 1, 101, to minimise aesthetic impact. Since the body assemblies 1, 101 are themselves located within an overhead track during use the entire height adjustment and lock mechanism will also be hidden from view.
The invention is now described with reference to
Referring firstly to
The panel 152 is hinged to the hanger bolt 156, and rotates about the bolt 156 as the panel 152 moves between closed and opened positions, while the hanger bolt travels back and forth along the track, parallel to the seal timber 153. Reference numeral 157 indicates an arc of a leading corner 158 of an edge 160 of the panel 152 as it moves into the closed position. As can be seen, there is a small distance 161 of overlap between the arc 157 and the seal 154 and this results in the corner 158 of the panel 152 pressing into the seal 154 as the panel 152 is closed. The bolt 156 is positioned as close to the edge 160 as possible to minimise the degree of overlap so that the face 155 of the panel 152 can still be reliably sealed against the seal without the leading corner 159 causing damage to the seal.
For comparison,
To carry the weight load of the panel 166 whilst maintaining smooth operation, it is important for the wheel 168 to be of a reasonably large size. In the configuration shown, however, the wheel is past the edge 170A of the panel 166 which means the end hanger 164 will collide with, for example, a jamb before the panel 166 is closed. Similarly, in an arrangement where the edge 170A of the panel 166 is intended to close against an opposite edge of another, opposed end panel, the associated hangers will collide and prevent the panels closing.
To avoid the problem of collision, the wheel 168 can be offset from the hanger bolt 165, as shown in
A bogey assembly 180 embodying the above principles is shown in more detail in
The body 183 is formed with a depending boss 190, which carries a guide roller 191 and a retainer 192 at a second end 193 of the bogey assembly 180 for receiving a hanger bolt 194 (shown in
Referring now to
The bogey assembly 180 is shown mounted in a track 197 in
In that configuration, the set of rollers 184 are biased (as indicated by force 200) against an internal, underside 201 of the track 197, above the bogey assembly 180, to counteract rotational forces (indicated by arrow 202) on the cantilevered hanger bolt 194 caused by the weight load (indicated by arrow 203) of panel 204.
The attachment of the bolt 194 to the bogey assembly 180 is different to the live axle attachment described with reference to the bogey assemblies of
The rigid connection of the bolt 194 with the bogey assembly 180, coupled with the set of rollers 184 acting to resist rotation of the body 183 away from the rails, means that rotational forces on the hanger bolt 194 are counterbalanced, which substantially reduces bending forces on the bolt 194 itself. As such, the hanger bolt 194 is able to carry heavier panels.
Referring now to
The system 220 includes the panel assembly 210, as well as the bottom track 217, overhead track 30 and jambs 221 and 222. It will be appreciated the use of a bogey assembly 1 allows the end panel 214 to close snugly against the jamb 222 for reliable sealing without gouging, due to the cantilevered position of the bolt 219 relative to the body 2 of the bogey assembly 1.
It should be noted the invention has been described with reference to supporting a folding panel, however, the bogey assembly is equally applicable to supporting any other type of panel such as a sliding door or the like.
Many modifications will be apparent to those skilled in the art without departing from the scope of the present invention.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
Number | Date | Country | Kind |
---|---|---|---|
2009903608 | Jul 2009 | AU | national |
2009251170 | Dec 2009 | AU | national |
2009906264 | Dec 2009 | AU | national |
2012201223 | Feb 2012 | AU | national |
This application claims the benefit of priority from U.S. patent application Ser. Nos. 13/626,427, 13/388,252, International Patent Application No. PCT/AU2010/000963, Australian Patent Application No. 2009903608, Australian Patent Application No. 2009906264 and Australian Patent Application No. 2009251170, the contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1420087 | Frantz | Jun 1922 | A |
2761172 | Jorgensen et al. | Sep 1956 | A |
2957197 | Johnson, Jr. | Oct 1960 | A |
3757384 | Rusch | Sep 1973 | A |
3829929 | Foltz et al. | Aug 1974 | A |
4750237 | Johnston | Jun 1988 | A |
5035025 | Morris et al. | Jul 1991 | A |
6209171 | Pelletier et al. | Apr 2001 | B1 |
6463625 | Mittag | Oct 2002 | B2 |
6983512 | De Oliveira | Jan 2006 | B2 |
7117559 | Barber | Oct 2006 | B1 |
20020162190 | Spork et al. | Nov 2002 | A1 |
20100205772 | Haab et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
199947374 | Mar 2000 | AU |
691073 | Apr 2001 | CH |
1013864 | Jun 2000 | EP |
2009133060 | Jun 2009 | EP |
1674643 | Mar 2012 | EP |
659625 | Feb 1950 | GB |
1405931 | Sep 1975 | GB |
2007315106 | Dec 2007 | JP |
2009133060 | Jun 2009 | JP |
Entry |
---|
European Search Report corresponding to EP10803741.7. |
European Search Report corresponding to EP12187697.3. |
Number | Date | Country | |
---|---|---|---|
20140251555 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13626427 | Sep 2012 | US |
Child | 14177724 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13388252 | US | |
Child | 13626427 | US |