This invention relates to the field of safety devices as are often installed in motor vehicles, particularly automobiles. Amongst many safety devices that are installed in vehicles to lessen injuries arising from impact are bolsters. A bolster may be part of an instrument panel in which case the bolster extends transversely to the vehicle. Bolsters may also be used for side impact events in which case the length of a bolster may extend longitudinally of the vehicle. Such bolsters may be mounted in door panels, side panels or roof panels of the vehicle. Bolsters can also be utilized in other locations and directions as desired to lessen injuries arising from impact events.
In the first instance, bolsters are designed with a design point of impact. The design point of impact is determined by assuming the position of a statistical male or female occupant. Ideally, the vehicle occupant is in a designated position and is using a seatbelt or other similar safety harness. However, because of the differentiation in size of the vehicle occupants and because not all vehicle occupants use seatbelts, and therefore the location of the occupant may not be as expected, the point of impact between the occupant and the bolster may occur at other than the most desirable design location. Vehicles also have many other envelope constraints as to the amount of space available for mounting a bolster. In many cases, the vehicle mounting envelope constraints confine a bolster to a certain lateral length. It would be desirable, however, that the bolster, when called upon to provide its safety function, have a greater lateral length.
As used in this description and claims, the term “lateral” is used to describe the transverse width of the bolster. If the bolster were mounted against an instrument panel, the lateral extent of the direction would be transverse of the vehicle. If the bolster were mounted to a door frame, the lateral extent of the bolster would extend longitudinally of the vehicle. If the bolster were mounted on an angular support pillar such as an A pillar, the lateral length of the bolster would extend longitudinally and angularly of the vehicle. In short, the term “lateral” is intended to encompass any mounting location of the bolster with regard to the vehicle.
In accordance with the information set out above, it would be desirable, if a bolster were able to increase its lateral extent upon activation.
In accordance with this invention, an inflatable bolster includes a housing, the housing defines a substantially closed volume for receiving fluid under pressure. The bolster has a source of pressurizing fluid. The housing defines an occupant face and a mounting face. The housing has a lateral length L in the direction substantially parallel to the occupant face. The bolster comprises an extension structure for extending the lateral length L of the bolster upon pressurization of the bolster.
The invention will be better understood, upon review of the attached drawings which illustrate various embodiments in accordance with the invention.
Bolsters may be used to provide energy absorption to lessen injury in the event of a vehicle/occupant impact. A bolster achieves the energy absorption by filling the bolster with a pressurized fluid, usually a gas, upon the occurrence of an impact event. Once the bolster is filled with fluid, then energy is absorbed by releasing the fluid through an orifice of controlled size.
Some bolsters are described as active bolsters. An active bolster differs from an inactive bolster in that the bolster moves relative to its support surface towards the occupant. By decreasing the distance between the occupant face of the bolster and the occupant, then a greater length of time may be used to slow the speed of the occupant relevant to the speed of the vehicle and thus provide an opportunity for reduction of force in decelerating the occupant relative to the vehicle. The invention of the present application may be utilized with either active or inactive bolsters.
Typically bolsters are pressurized by a source of gas which may be contained in a cartridge. The gas may be released by initiators which may be linked to various vehicle sensors. The vehicle sensors may sense a vehicle impact which may be in the nature of an excessive deceleration, as may be typical in frontal impacts of moving vehicles, a rapid vehicle acceleration as may be involved in a rear impact, vehicle lateral acceleration as may be involved in impacts from either side of the vehicle or impending vehicle rollover. In all cases, when such a vehicle event occurs, there develops a relative velocity between the vehicle and the occupants riding in the vehicle. The occupants may then strike vehicle structure and the purpose of the bolster is to reduce the forces involved so as to lessen injury.
In accordance with this embodiment of this invention as illustrated in
As shown in the un-deployed stage, the housing defines a lateral length L extending in the direction which is substantially parallel to the occupant face.
It will be understood that upon activation, fluid will fill the closed volume of the bolster. In the embodiment illustrated in
Focusing now on the left hand end of the structure, in
Focusing now on the right hand end of the bolster 10 as illustrated in
As shown in
Preferably, the bolster 10 is made in a blow molding operation. In blow molding, a parison is extruded, the parison is enclosed in a blow mold structure, and a blowing gas is injected into the interior of the parison. Upon expansion of the parison, the parison then expands so as to obtain the shape of the mold cavity. Generally speaking, the wall thickness of the parison is relatively uniform throughout the expanded parison subject to the necessity of plastic flow to obtain the shape as defined by the mold. In the blow molding process, slides can be established in the mold. The term “slide” is used to describe a structure that is used to move from a withdrawn position (usually not in the mold cavity) to an extended position, before the parison has cooled. By extending the slide, which effectively moves the slide against the wall of the parison, the wall of the parison is stretched to move inwardly of the mold surface. Thus, use of a slide may be used to create the at least one pleat 72 in connection with the extension structure 18 and to locate that structure so that it extends internally of the housing 20. The use of the slide does not, however, rupture the wall of the parison. Thus the finished product can still remain as a housing defining a substantially closed volume. Use of the slide, will create a diminution of the thickness of the wall of the parison, this helps to create a relatively thinner wall, which is then capable of undergoing the movement between the un-deployed and deployed configurations illustrated in
Similarly, the extension structure 16 illustrated in
As shown in
As shown in
The bolster 100 includes a main portion 121 and an auxiliary portion 140. The extension structure 116 comprises in part the auxiliary portion 140. The auxiliary portion 140 is an integral part of the housing 120 and is also a hollow structure. The auxiliary portion 140 includes an auxiliary chamber 123.
The extension structure 116 also includes an expandable area 142. The expandable area 142 preferably includes at least one pleat 144. In this respect, the embodiment illustrated in
The principal difference between these two embodiments however is the ability to change the rate at which the activating fluid flows into the auxiliary chamber 123. The source of inflating fluid to cause activation of the bolster is first directed to the chamber 122 in main portion 120. To control the rate of flow of activating fluid from the main portion to the auxiliary portion, a restriction means including a limited flow path is provided. In this example, the expansion structure 116 includes a hollow ribs 117. The rib 117 is defined by slides which may be activated during the blow molding manufacturing process by setting out depressed areas 119 on either side of the rib. As shown in
It is preferred that in operation, particularly with respect to an active bolster, that the main portion of the bolster first begin to modify its position relative to the vehicle occupant before movement of the auxiliary portion 140 to the deployed position. By providing a relatively restrictive flow path using at least one such rib 117, the deployment timing of the auxiliary portion 140 can be selected as desired. Any number of ribs 117 having any particular size of flow channel or configuration may be utilized. By using at least one such rib, it is possible to obtain what is, in effect, a slightly delayed deployment of the auxiliary portion 140 relative to the time that the main portion 121 begins its deployment upon activation.
As shown in
Either of the bolsters 100 or 200 illustrated in
In accordance with the embodiments illustrated and described herein, it will be recognized, that a bolster has been provided having an un-deployed length L measured in a direction referred to as the transverse direction. Upon deployment, utilizing either of the embodiments as described herein, the bolster may gain an additional length in that transverse direction by expansion of an extension structure to provide increased lateral length. The orientation of the bolster may be selected as desired by the vehicle designer and thus the directions, vertical and horizontal are given only by way of illustrative example and not by limitation. In fact, the bolster may be active or inactive and may be located in the vehicle as desired and in any orientation desired.
All descriptions and illustrations contained herein are to be taken by way of example only and reference shall be made to the claims for the full scope and extent of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2834606 | Bertrand | May 1958 | A |
3473824 | Carey et al. | Oct 1969 | A |
3963362 | Hollis | Jun 1976 | A |
3981518 | Pulling | Sep 1976 | A |
4203616 | Okada | May 1980 | A |
4297051 | Robinson | Oct 1981 | A |
4362425 | Dixon | Dec 1982 | A |
4511281 | Schmanski | Apr 1985 | A |
4518172 | Bortz et al. | May 1985 | A |
4597691 | Clarke | Jul 1986 | A |
4721329 | Brantman et al. | Jan 1988 | A |
4951963 | Behr et al. | Aug 1990 | A |
5082310 | Bauer | Jan 1992 | A |
5273309 | Lau et al. | Dec 1993 | A |
5324070 | Kitagawa et al. | Jun 1994 | A |
5370417 | Kelman et al. | Dec 1994 | A |
5382051 | Glance | Jan 1995 | A |
5456490 | Carter et al. | Oct 1995 | A |
5476283 | Elton | Dec 1995 | A |
5498026 | Eckhout | Mar 1996 | A |
5533748 | Wirt et al. | Jul 1996 | A |
5536043 | Lang et al. | Jul 1996 | A |
5556128 | Sinnhuber et al. | Sep 1996 | A |
5567375 | Filion et al. | Oct 1996 | A |
5716093 | Sadr | Feb 1998 | A |
5845937 | Smith | Dec 1998 | A |
5865468 | Hur | Feb 1999 | A |
D412880 | Sadr | Aug 1999 | S |
5931493 | Sutherland | Aug 1999 | A |
5957493 | Larsen et al. | Sep 1999 | A |
5967594 | Ramanujam | Oct 1999 | A |
5968431 | Ang et al. | Oct 1999 | A |
6032978 | Spencer et al. | Mar 2000 | A |
6158766 | Kowalski | Dec 2000 | A |
6203057 | Spencer et al. | Mar 2001 | B1 |
6213497 | Spencer et al. | Apr 2001 | B1 |
6250665 | Sutherland et al. | Jun 2001 | B1 |
6305710 | Bosgeiter et al. | Oct 2001 | B1 |
6471242 | Schneider | Oct 2002 | B2 |
6517103 | Schneider | Feb 2003 | B1 |
6568743 | Jayasuriya et al. | May 2003 | B1 |
6578867 | Khoudari et al. | Jun 2003 | B2 |
6619689 | Spencer et al. | Sep 2003 | B2 |
6688643 | Schneider | Feb 2004 | B2 |
6712385 | Enders | Mar 2004 | B2 |
6758493 | Conlee et al. | Jul 2004 | B2 |
6817625 | Hjerpe | Nov 2004 | B2 |
6848715 | Nelson et al. | Feb 2005 | B2 |
6874811 | Enders et al. | Apr 2005 | B2 |
6971667 | Enders et al. | Dec 2005 | B2 |
6976706 | Smith et al. | Dec 2005 | B2 |
6991252 | Enders | Jan 2006 | B2 |
7021652 | Kumagai et al. | Apr 2006 | B2 |
7086663 | Honda | Aug 2006 | B2 |
7093846 | Reiter et al. | Aug 2006 | B2 |
7093851 | Lotspih | Aug 2006 | B2 |
7144032 | Lunt et al. | Dec 2006 | B2 |
7168733 | Kumagai et al. | Jan 2007 | B2 |
7213840 | Kumagai | May 2007 | B2 |
7350852 | Rust et al. | Apr 2008 | B2 |
7367587 | Taoka | May 2008 | B2 |
7393013 | Best et al. | Jul 2008 | B2 |
7396040 | Enders et al. | Jul 2008 | B2 |
7413215 | Weston et al. | Aug 2008 | B2 |
7422234 | Huber et al. | Sep 2008 | B2 |
7448645 | Bederka et al. | Nov 2008 | B2 |
7481457 | Best et al. | Jan 2009 | B2 |
7568722 | Sato et al. | Aug 2009 | B2 |
7578518 | Ochiai et al. | Aug 2009 | B2 |
20010054811 | Spencer et al. | Dec 2001 | A1 |
20030197354 | Beland et al. | Oct 2003 | A1 |
20040007856 | Enders et al. | Jan 2004 | A1 |
20040075252 | Pan | Apr 2004 | A1 |
20040100075 | Sakai et al. | May 2004 | A1 |
20040135353 | Enders et al. | Jul 2004 | A1 |
20040145163 | Galmiche et al. | Jul 2004 | A1 |
20040155447 | Smith et al. | Aug 2004 | A1 |
20040163872 | Lincoln et al. | Aug 2004 | A1 |
20040163873 | Polz et al. | Aug 2004 | A1 |
20040178616 | Yoshikawa | Sep 2004 | A1 |
20040232666 | Sato et al. | Nov 2004 | A1 |
20050023802 | Enders et al. | Feb 2005 | A1 |
20050029781 | Enders et al. | Feb 2005 | A1 |
20050052005 | Lunt et al. | Mar 2005 | A1 |
20050052010 | Best et al. | Mar 2005 | A1 |
20050052011 | Best et al. | Mar 2005 | A1 |
20050057024 | Weston et al. | Mar 2005 | A1 |
20050098996 | Enders | May 2005 | A1 |
20050253369 | Taoka | Nov 2005 | A1 |
20060214400 | Enders et al. | Sep 2006 | A1 |
20070052219 | Rust et al. | Mar 2007 | A1 |
20070108746 | Ochiai et al. | May 2007 | A1 |
20070152431 | Rust et al. | Jul 2007 | A1 |
20070296187 | Ochiai | Dec 2007 | A1 |
20080061537 | Enders | Mar 2008 | A1 |
20090152848 | Sadr et al. | Jun 2009 | A1 |
20090152849 | Saraf et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
19546143 | Jun 1997 | DE |
19858520 | Apr 2000 | DE |
10123207 | Jul 2002 | DE |
0274535 | Jul 1988 | EP |
1426249 | Jun 2004 | EP |
1663725 | Dec 2009 | EP |
2272670 | May 1994 | GB |
63-002741 | Jan 1988 | JP |
06-037011 | May 1994 | JP |
11-091454 | Apr 1999 | JP |
2000-326810 | Nov 2000 | JP |
2002-522286 | Jul 2002 | JP |
2004-338677 | Dec 2004 | JP |
2007-504050 | Mar 2007 | JP |
0007851 | Feb 2000 | WO |
0050270 | Aug 2000 | WO |
2004071818 | Aug 2004 | WO |
2006132990 | Dec 2006 | WO |
2007056849 | May 2007 | WO |
2009124394 | Oct 2009 | WO |
2009124395 | Oct 2009 | WO |
2009124401 | Oct 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20070108747 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60738222 | Nov 2005 | US |