The present invention is related in general to leg connections for tower constructions and, in particular, to a bolt calibrated angle mainstay.
Installing and constructing a vertical tower frame involves a significant number of man hours. In particular, large amounts of man hours are required to properly taper vertical towers during construction while keeping horizontal tower elements level. This is because bending and adjusting the heavy, metal members of a tower is difficult and imprecise.
Current universal leg connection requires some form of an external force to physically move the frame to a desired taper. This external force can come from many devises (cranes, come-along, ropes and pulleys, or human exertion). These methods are bulky, expensive, and typically imprecise. Other designs use multiple holes to accomplish different tapers. These require precise measurements before installation and do not allow for a universal range of adjustment.
To overcome the limitations of the prior art, the present invention provides a system and method which allows users to mount multiple pieces of equipment to a tower and it has the unique capability to adjust a steel frame to level without any additional equipment. In accordance with a first preferred embodiment, the present invention includes a duel locking system that includes a taper adjusting bolt to adjustably position the frame level with the earth. Further, the dual locking system of the present invention preferably further includes the use of retaining bolts to keep the assembly positioned correctly.
According to a still further aspect of the present invention, once the taper adjusting bolt is in its desired position, the retaining bolts are preferably tightened to lock the frame in place. Finally, the taper adjusting bolt preferably acts as a redundant measure to help maintain the level state.
One advantage of the present invention is that it allows the user to adjust or move a frame when loaded. Such adjustments are more precise because the added forces applied are the same forces that will be present when the installation is complete. Further, because of its unique screw-type adjustment design, the present invention further allows for an exact taper adjustment.
Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof.
Elements in the figures have not necessarily been drawn to scale in order to enhance their clarity and to improve the understanding of the various elements and embodiments of the invention. Furthermore, elements that are known to be common and well understood to those in the industry are not depicted in order to provide a clear view of the various embodiments of the invention. Thus, it should be understood that the drawings are generalized in form in the interest of clarity and conciseness.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any of the problems discussed above or only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
With reference now to
With reference now to
As shown, the right and left side elements 36, 44 preferably include a plurality of slide slots 43, 45. According to a further preferred embodiment, the straight slot weldment 42 is designed to slide over a front positioning plate 32 and between the right front wing 30 and the left front wing 21. Preferably these pieces are made to align so that the retaining bolts 24 may extend sequentially through the left wing slots 26, the left wall slots 43, the positioning plate 32, the right wall slots 45 and the right wing slots 30 and secured with a securing element 46 (i.e. washers, nuts and the like). Finally, the upper bracket element 15 preferably includes an adjusting bolt 40 which extends sequentially through the adjusting bolt guide 38, the positioning plate 32 and into hex nut 28. According to a preferred aspect of the present invention, the adjusting bolt 40 is engaged and screwed into the hex nut 28 so that tightening the adjusting bolt 40 causes the straight slot weldment 42 to move along the retaining bolts 24 and change the distance between the straight slot weldment 42 and the front plate 48.
With reference now to
With reference now to
Once installed, the angle of the bolt calibrated angle mainstay of the present invention is preferably calibrated/adjusted by first measuring the tower taper of the tower under construction. Depending on the angle of the taper, the user preferably selects either the low angle taper hole 12 (preferably between −2.5° and 2.5°) or a high angle taper hole 11 (preferably between 1.7° and 6°) on multi-hole taper plate weldment 19.
Thereafter, the user preferably turns the adjusting bolt 40 to adjust the frame to the desired taper and level. Finally, the user preferably torques the retaining bolts 41 (preferably to 75 lbs. or more) and advances the locking nut 28 to the front of the positioning plate 32. In accordance with a further preferred embodiment, once the taper adjusting bolt 40 is in its desired position, the retaining bolts 41 are preferably tightened to lock the frame in place, with the taper adjusting bolt 41 acting as a redundant measure to help maintain the level state.
Unless the context clearly requires otherwise, throughout the description and the claims, the words ‘comprise,’ ‘comprising,’ and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in a sense of ‘including, but not limited to.’ Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words, ‘herein,’ ‘hereunder,’ ‘above.’ ‘below,’ and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word ‘or’ is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combinations of the items in the list.
The above description of illustrated embodiments of the systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise form disclosed. While specific embodiments of, and examples for, the systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the systems and methods provided herein can be applied to other processing systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the system and methods in light of the above detailed description.
In general, in the following claims, the terms used should not be construed to limit the systems and methods to the specific embodiments disclosed in the specification and the claims, but should be construed to include all processing systems that operate under the claims. Accordingly, the systems and methods are not limited by the disclosure, but instead the scope of the systems and methods is to be determined entirely by the claims.
While certain aspects of the systems and methods are presented below in certain claim forms, the inventor contemplates the various aspects of the systems and methods in any number of claim forms. Accordingly, the inventor reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the systems and methods.
Number | Name | Date | Kind |
---|---|---|---|
2990151 | Phillips | Jun 1961 | A |
4138705 | Doll | Feb 1979 | A |
4768741 | Logsdon | Sep 1988 | A |
4993670 | Tesar | Feb 1991 | A |
5118060 | Spronken | Jun 1992 | A |
5718403 | Ott et al. | Feb 1998 | A |
5785447 | Fonti et al. | Jul 1998 | A |
6095466 | Sener et al. | Aug 2000 | A |
6185303 | Losey | Feb 2001 | B1 |
6209832 | Yamazaki | Apr 2001 | B1 |
6232928 | Zimmerman | May 2001 | B1 |
6406008 | Dudding et al. | Jun 2002 | B1 |
6913422 | Rogers | Jul 2005 | B2 |
7213376 | Puikkanen et al. | May 2007 | B2 |
7866616 | Wen et al. | Jan 2011 | B2 |
8919072 | Han | Dec 2014 | B2 |
9869108 | Butler | Jan 2018 | B2 |
9879818 | Adams | Jan 2018 | B2 |
10316511 | Chapman | Jun 2019 | B1 |
20050284995 | Hutter, III | Dec 2005 | A1 |
20070272510 | Kawakami | Nov 2007 | A1 |
20090152419 | Wallace | Jun 2009 | A1 |
20110083399 | Lettkeman | Apr 2011 | A1 |
20150316111 | Tanabe et al. | Nov 2015 | A1 |
20150351335 | Abts et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
9728692 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20200173162 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62458747 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16393635 | Apr 2019 | US |
Child | 16783632 | US | |
Parent | 15892469 | Feb 2018 | US |
Child | 16393635 | US |