BOLT-ON CYLINDER KIT AND METHOD FOR INCREASING THE DISPLACEMENT OF AN ENGINE

Information

  • Patent Application
  • 20190195165
  • Publication Number
    20190195165
  • Date Filed
    February 27, 2019
    5 years ago
  • Date Published
    June 27, 2019
    5 years ago
Abstract
A method of retrofitting a V-twin engine for increasing displacement. A cylinder replacement is performed by dismounting each of a pair of original cylinders from a crankcase. A pair of replacement cylinders are provided, each having a second cylinder bore diameter larger than a first cylinder bore diameter of the original cylinder to provide the V-twin engine with a second displacement greater than a first displacement of the original cylinder. A replacement spigot portion from each of the pair of replacement cylinders are aligned with a respective bore of the crankcase. The replacement spigot portion includes a second outer diameter larger than a first outer diameter of an original spigot portion. The second outer diameter of the replacement spigot portion and the crankcase bore diameter defining a subsequent diametric clearance smaller than an original diametric clearance of the original cylinders.
Description
BACKGROUND

The present invention relates to engine cylinders for a V-twin engine.


V-twin engines typically include, among other things, two cylinders arranged in a V-configuration. Each cylinder typically includes a body having an exterior surface that may optionally have fins (e.g., for an air-cooled engine). The cylinder also includes opposing ends, whereby a cylinder head is disposed on one of the opposing ends, while the other opposing end is received within the crankcase. A cylinder sleeve within the body defines a cylinder bore configured to slidably receive a piston coupled to a crankshaft of the engine via a connecting rod.


Many owners of V-twin engines, including motorcycle owners, look for ways to increase the power output available from their vehicle. Although some may replace the existing engine with an entirely different, larger engine, this can be extremely costly, labor intensive, problematic and time consuming. Thus, many find that upgrading the existing engine is a more viable option. One way in which power output is increased for an existing V-twin engine entails, among other things, upgrading the engine with a big-bore kit to increase displacement. An exemplary upgrade includes converting existing 96 in3 and 103 in3 Harley-Davidson Twin Cam engines to 110 in3 displacement engines by providing replacement cylinders having cylinder bore diameters of 4 inches.


Along with the cylinder bore increase, the outer diameter portion of the sleeve that fits into the crankcase has a similar increase in size. This is because the cylinder sleeve wall thickness of the new cylinder is typically about the same as that of the original cylinder that is removed (i.e., typical wall thickness may be about 0.090 inch for cast iron sleeves) maintain the requisite sleeve strength. Thus, when replacing original cylinders with larger bore replacement cylinders as previously mentioned, it is also necessary to increase the diameter of the corresponding crankcase bores to which the cylinders are fitted. Increasing the size of the crankcase bores entails removing the crankcase from the vehicle, splitting apart the crankcase halves and machining the crankcase bores to allow fitting of the larger bore cylinders. Although not as involved as an entire engine replacement in some respects, this process is also very labor intensive and time consuming.


SUMMARY

The present invention provides, in one aspect, a cylinder for a V-twin engine. The cylinder includes a body with a first end having a surface configured to mate with a cylinder head, and a second end configured to mate with a crankcase. A sleeve is fixedly secured within the body to define a cylinder bore. The sleeve includes a first portion that extends from the first end of the body to the second end of the body. The first portion of the sleeve has a first wall thickness. The sleeve further includes a second portion that extends out of the second end of the body to be received within a crankcase bore. The second portion has a second wall thickness that is thinner than the first wall thickness. The sleeve is constructed from a chromoly steel alloy material, and the second wall thickness is less than 0.060 inch.


The present invention provides, in another aspect, a cylinder for a V-twin engine. The cylinder includes a body with a first end having a surface configured to mate with a cylinder head, and a second end configured to mate with a crankcase. A sleeve is fixedly secured within the body to define a cylinder bore. The sleeve includes a first portion that extends from the first end of the body to the second end of the body. The first portion of the sleeve has a first wall thickness. The sleeve further includes a second portion that extends out of the second end of the body to be received within a crankcase bore. The second portion has a second wall thickness that is thinner than the first wall thickness. The second portion has an outer diameter of about 4.068 inches, and the second wall thickness is less than 0.060 inch.


The present invention provides, in another aspect, a method of retrofitting a V-twin engine for increasing displacement. The V-twin engine is provided with a pair of cylinders, each of the pair of cylinders has a first cylinder bore diameter that provides the V-twin engine with a first displacement. Each of the pair of cylinders is dismounted from a crankcase of the V-twin engine. A pair of big-bore replacement cylinders is provided, each having a second cylinder bore diameter larger than the first cylinder bore diameter to provide the V-twin engine with a second displacement greater than the first displacement. A spigot portion of each of the pair of replacement cylinders is aligned with a respective bore of the crankcase. The spigot portion of each of the pair of replacement cylinders is inserted into the respective bore of the crankcase. The pair of replacement cylinders are secured to the crankcase without enlarging either bore of the crankcase.


Other features and aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a motorcycle according to one embodiment of the invention.



FIG. 2 is a cross-sectional view of a V-twin engine of the motorcycle of FIG. 1. The engine is in an original, conventional configuration.



FIG. 3 is a cross-sectional view of one cylinder of the engine of FIG. 2.



FIG. 4 is a bottom view of an engine cylinder according to one embodiment of the present invention.



FIG. 5 is a side view of the engine cylinder of FIG. 4.



FIG. 6 is a cross-sectional view of the engine cylinder taken along line 6-6 of FIG. 5.



FIG. 7 is a cross-sectional view of the V-twin engine of FIG. 2 after being converted with a pair of the engine cylinders of FIGS. 4-6.





Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


DETAILED DESCRIPTION


FIG. 1 illustrates a motorcycle 50. Although illustrated as a touring motorcycle 50, aspects of the invention may be applicable to other types of motorcycles (i.e., standard, cruiser, sport bike, sport touring, dual-sport, etc.). The motorcycle 50 includes a frame 52, a front wheel 54 coupled to the frame 52 through a steering assembly 56, and a rear wheel 58 coupled to the frame 52 through a swing arm assembly 59. The motorcycle 50 includes an engine 60 coupled to the frame 52 and operatively coupled to the rear wheel 58 through a transmission 62. As described below, the engine 60 can be a factory original engine that is modified to increase displacement in accordance with the structures and methods disclosed herein.


Illustrated separate from the motorcycle 50 in FIG. 2, the engine 60 includes a pair of cylinders 100 (FIG. 3) oriented in a V-configuration and coupled to a crankcase 64. On one end, a bottom end, each cylinder 100 is positioned in a crankcase bore 66 extending through a crankcase outer surface 68 such that a crankshaft 72 positioned in the crankcase 64 can be coupled to a piston 76 within each of the engine cylinders 100 via a corresponding connecting rod 74. On the other end, a top end, the cylinder 100 receives a cylinder head 70.


Each of the cylinders 100, as shown in FIG. 3, includes a body 104 and a cylinder liner 108. During construction of the cylinder 100, the body 104 is formed by a casting process around the liner 108. Thus, the cylinder liner 108 is fixedly secured within the body 104. The liner 108 defines a cylinder bore 112 and a spigot 116. The spigot 116, which extends out of the body 104, is configured to be received by the crankcase bore 66. The liner 108 and the spigot 116 share the same inner diameter D1. However, the liner 108 and the spigot 116 have different outer diameters, such that the spigot 116 has an outer diameter of D2, and the liner 108 has an outer diameter greater than the spigot outer diameter D2 above the spigot 116. The difference between the inner diameter D1 and the outer diameter D2 of the spigot 116 defines a wall thickness T1 of the spigot 116. The outer diameter D2 of the spigot 116 is designed to have a clearance (e.g., 0.025 inch) between the crankcase bore 66 and the spigot 116 to ensure a slip fit between the components.


The cylinder liner 108 of the factory original cylinder 100 may be constructed of cast iron. In one such example of an existing Harley-Davidson Twin Cam engine, the cylinder liner 108 is cast iron and provided with a spigot wall thickness T1 of 0.090 inch and an inner diameter D1 of 3.875 inches. Although durable, the brittle nature of cast iron results in the inability to machine or re-sleeve the cylinder 100 as the spigot 116 will not have the appropriate design characteristics required to achieve a reliable and robust design if the outer diameter D2 is limited to the size of the existing bore 66. Due to the practical limitations of ordinary cylinder sleeving material, it is common that any big-bore replacement cylinders include a wall thickness equal to or greater than the original cylinder spigot wall thickness T1, which necessitates increasing the size of the crankcase bores 66. In certain exemplary engines, such as Harley-Davidson Twin Cam engines, the crankcase bores 64 have a diameter of about 4.080 inches, which provides a diametric clearance, for example 0.025 inch, with the outer diameter D2 of the spigot 116 of the factory original cylinders 100. However, as previously mentioned, it is necessary to enlarge the crankcase bores 66 when retro-fitting the engine 60 with a big-bore kit.


Shown in FIGS. 4-6 is a big-bore cylinder 200 that increases displacement of the engine 60 and that can easily be retrofitted to the crankcase 64 of the engine 60 originally provided with the cylinders 100 of FIG. 3. Switching to the cylinders 200 increases the displacement of the engine 60 in a simple bolt-on process that eliminates the current labor intensive process described above. In a particular exemplary construction, a pair of the big-bore cylinders 200 convert either one of an existing 96 in3 Harley-Davidson Twin Cam engine having cylinder bore diameters of 3.750 inches and an existing 103 in3 Harley-Davidson Twin Cam engine having cylinder bore diameters of 3.875 inches to have a displacement of 110 in3 by increasing cylinder bore diameters to about 4.000 inches. As described below, the cylinders 200 are designed such that they fit into the existing bores 66 of the crankcase 64 such that the engine 60 can be converted to a larger displacement without having to remove, disassemble, or machine the crankcase 64.


Each big-bore cylinder 200 includes a body 204 having a finned exterior 208 configured to increase efficiency of heat transfer of the air-cooled engine. As previously mentioned, the existence of the finned exterior 208 and the particular engine class (i.e., air-cooled) merely represent one exemplary embodiment. As such, it will be understood that, in other constructions, the cylinder 200 may be designed for a liquid-cooled engine and may or may not include a finned exterior.


Additionally, the body 204 includes a first end 212 with a surface 216 configured to mate with a cylinder head 70′ which can be a modified version of the cylinder head 70 of the original engine 60 of FIG. 2. The body 204 further includes a second end 220 with a flange 224 providing a surface configured to abut the crankcase 64. The distance between the first end 212 and the second end 220 define a height H2 of the cylinder 200 which, in this case, is the same as a height H1 of the cylinder 100. Furthermore, extending through the body 204 from the surface 216 are a plurality of mounting holes 228 (e.g., four symmetrically arranged mounting holes). Each of the mounting holes 228 is configured to receive a fastener (not shown) to removably couple the cylinder 200 to the crankcase 64.


The cylinder 200 includes a sleeve 232 fixedly secured within the body 204 to define a cylinder bore 236. The sleeve 232 may be fixedly secured by a casting process whereby the body 204 is formed onto the exterior of the sleeve 232. The sleeve 232 has a main portion 240 and a second portion or spigot 244. The main portion 240 extends from the first end 212 to the second end 220 within the body 204, and the spigot 244 extends out of the body 204 and protrudes past the second end 220. When the cylinder 200 and the crankcase 64 are coupled, the crankcase bore 66 receives the spigot 244, as shown in FIG. 7.


In some constructions, the sleeve 232 is manufactured from tubing. The tubing can be cut to length, and machined in a subtractive process to form the spigot 244. As depicted in FIG. 6, the main portion 240 has a wall thickness T2, and the spigot 244 has a spigot wall thickness T3 different from the wall thickness T2 of the main portion 240. In the illustrated construction, the spigot wall thickness T3 is thinner than the wall thickness T2 of the main portion 240. In order to provide a large bore size with a limited outside dimension, the spigot wall thickness T3 may be less than 0.060 inch. The spigot wall thickness T3 may be greater than 0.025 inch, and in some constructions, greater than 0.030 inch. In some constructions, the spigot wall thickness T3 is less than 0.050 inch, and furthermore, the spigot wall thickness T3 may be less than 0.040 inch. In some embodiments, the wall thickness T3 is about 0.034 inch (e.g., 0.033 inch to 0.035 inch). In a construction where the outer diameter D1 of the spigot portion 244 is about 4.068 inches (e.g., 4.067 inches to 4.069 inches), the thin wall thickness T3 allows a cylinder bore diameter D3 that is greater than 3.948 inches. In some constructions, the bore diameter D3 is about 4.000 inches (e.g., 3.9997 inches to 4.0005 inches). Whether the outer diameter D2 of the spigot portion 244 is at, above, or below 4.068 inches, diametric clearance may be provided between the spigot portion 244 and the crankcase bores 66 to enable a slip fit of the spigot portion 244 into the crankcase bore 66. For example, the nominal diametric clearance is 0.012 inch when the outer diameter D2 of the spigot portion 244 is 4.068 inches and each of the crankcase bores 66 has a diameter of 4.080 inches.


The sleeve 232 is constructed from a material that is substantially less brittle than cast iron. For example, the sleeve 232 can be constructed of a type of chromoly steel alloy material. In some constructions, the sleeve 232 is constructed from SAE grade 4140 steel.


Additionally, the radially exterior surface of the main portion 240 of the sleeve 232 includes an intersecting helical pattern having a helical coarse rib 248 and a helical fine rib 252, each protruded radially outward as shown in FIG. 6. The helical ribs 248, 252 may be provided in the form of two different sized screw threads. The axial component of the helix is opposite for the two helical ribs 248, 252 such that one of the helical ribs 248, 252 is provided in a right hand rotation direction (i.e., clockwise), and the other of the helical ribs 248, 252 is provided in a left hand rotation direction (i.e., counterclockwise), which provides the intersecting pattern. Each of the helical ribs 248, 252 extends a majority of the height H2 of the main portion 240. The intersecting helical pattern is designed to securely lock the body 204 and the sleeve 232 together against separation or movement, particularly from rotational forces caused by twisting or vibration.


The design of the cylinder 200 enables it to be used in place of one of the factory original cylinder 100 to increase the displacement of the engine 60 without removal of the crankcase 64 and modification to the crankcase bores 66. The process entails a simple removal procedure of the cylinders 100 and replacement procedure with the corresponding big-bore cylinders 200. FIG. 7 illustrates an engine 60′ that results from converting the engine 60 of FIG. 2 with the installation of the cylinders 200 after removal of the cylinders 100. During installation, the spigot portion 244 of each cylinder 200 is aligned with and inserted into the respective crankcase bore 66, which is unmodified and retains its original size which was provided when accommodating the original, smaller-bore cylinder 100. The installation of the cylinders 200 may be performed as part of a kit of corresponding parts matched with the cylinders 200. For example, converting the engine 60 to the modified engine 60′ may include installation of new pistons 76′ (and corresponding piston rings) in addition to the cylinder heads 70′. New connecting rods 74′ may optionally be provided and installed as well, although alternately, the factory original connecting rods 74 may be re-utilized when upsizing the displacement. The engine cylinder 200 may be removably secured to the crankcase 64 with suitable fasteners. Also provided is the cylinder head 70′ for each cylinder 200.


The embodiment described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention.

Claims
  • 1. A method of retrofitting a motorcycle ngine for increasing displacement, the method comprising: performing a cylinder replacement including dismounting an original cylinder from a crankcase having a crankcase bore diameter, the original cylinder having a first cylinder bore diameter that provides the motorcycle engine with a first displacement and an original spigot portion with a first outer diameter, the original spigot portion having a first spigot wall thickness, the first outer diameter and the crankcase bore diameter defining an original diametric clearance;providing a replacement cylinder having a second cylinder bore diameter larger than the first cylinder bore diameter to provide the motorcycle engine with a second displacement greater than the first displacement, the replacement cylinder having a replacement spigot portion with a second spigot wall thickness, the second spigot wall thickness being smaller than the first spigot wall thickness;aligning the replacement spigot portion from the replacement cylinder with a bore of the crankcase, the replacement spigot portion having a second outer diameter larger than the first outer diameter of the original spigot portion, the second outer diameter of the replacement spigot portion and the crankcase bore diameter defining a subsequent diametric clearance smaller than the original diametric clearance; andwithout enlarging the crankcase bore diameter following the dismounting of the original cylinder, inserting the replacement spigot portion of the replacement cylinder into the bore of the crankcase.
  • 2. The method of claim 1, wherein providing the replacement cylinder includes providing the second spigot wall thickness to be more than 33 percent reduced as compared to the first spigot wall thickness.
  • 3. The method of claim 1, wherein providing the replacement cylinder includes providing the second spigot wall thickness to be reduced by more than 0.030 inches as compared to the first spigot wall thickness.
  • 4. The method of claim 1, wherein providing the replacement cylinder includes providing the second spigot wall thickness to be reduced by more than 33 percent and up to 72 percent as compared to the first spigot wall thickness.
  • 5. The method of claim 1, wherein performing the cylinder replacement includes replacing the original cylinder having a cast iron sleeve defining the original spigot portion with the replacement cylinder having a steel alloy sleeve defining the replacement spigot portion.
  • 6. The method of claim 1, wherein providing the replacement cylinder includes providing the second cylinder bore diameter to be greater than 3.948 inches.
  • 7. The method of claim 1, wherein providing the replacement cylinder includes providing the second cylinder bore diameter to be more than 0.073 inch greater than the first cylinder bore diameter.
  • 8. The method of claim 1, wherein performing the cylinder replacement includes reducing the original diametric clearance by half to the subsequent diametric clearance.
  • 9. A method of retrofitting a motorcycle engine for increasing displacement, the method comprising: performing a cylinder replacement including dismounting an original cylinder from a crankcase of the motorcycle engine, the crankcase having a crankcase bore diameter of 4.080 inches, the original cylinder having a first cylinder bore diameter that provides the motorcycle engine with a first displacement and an original spigot portion with a first outer diameter, the first outer diameter and the crankcase bore diameter defining an original diametric clearance of 0.025 inch:providing a replacement cylinder having a second cylinder bore diameter larger than the first cylinder bore diameter to provide the motorcycle engine with a second displacement greater than the first displacement;aligning a replacement spigot portion the replacement cylinder with a bore of the crankcase, the replacement spigot portion having an second outer diameter larger than the first outer diameter of the original spigot portion, the second outer diameter of the replacement spigot portion and the crankcase bore diameter defining a subsequent diametric clearance smaller than the original diametric clearance; andinserting the replacement spigot portion from the replacement cylinder into the original 4.080 inch bore of the crankcase.
  • 10. The method of claim 9, wherein providing the replacement cylinder includes providing a second spigot wall thickness of the replacement spigot portion to be more than 33 percent reduced as compared to a first spigot wall thickness of the original spigot portion.
  • 11. The method of claim 9, wherein providing the replacement cylinder includes providing the second outer diameter to be about 4.068 inches.
  • 12. The method of claim 9, wherein performing the cylinder replacement includes reducing the original diametric clearance by half to the subsequent diametric clearance.
  • 13. The method of claim 9, wherein performing the cylinder replacement includes replacing the original cylinder having a cast iron sleeve defining the original spigot portion with the replacement cylinder having a steel alloy sleeve defining the replacement spigot portion.
  • 14. The method of claim 9, wherein providing the replacement cylinder includes providing the second cylinder bore diameter to be greater than 3.948 inches.
  • 15. The method of claim 9, wherein providing the replacement cylinder includes providing the second cylinder bore diameter to be more than 0.073 inch greater than the first cylinder bore diameter.
  • 16. A method of retrofitting a motorcycle engine for increasing displacement, the method comprising: performing a cylinder replacement including dismounting an original cylinder from a crankcase having a crankcase bore diameter, the original cylinder having a first cylinder bore diameter that provides the motorcycle engine with a first displacement and an original spigot portion with a first outer diameter, the original spigot portion constructed of cast iron, the first outer diameter and the crankcase bore diameter defining an original diametric clearance;providing a replacement cylinder having a second cylinder bore diameter larger than the first cylinder bore diameter to provide the motorcycle engine with a second displacement greater than the first displacement, the replacement cylinder having a replacement spigot portion constructed of steel alloy;aligning the replacement spigot portion from the replacement cylinder with a bore of the crankcase, the replacement spigot portion having an outer diameter larger than the first outer diameter of the original spigot portion, the outer diameter of the replacement spigot portion and the crankcase bore diameter defining a subsequent diametric clearance smaller than the original diametric clearance; andwithout enlarging the crankcase bore diameter following the dismounting of the original cylinder, inserting the replacement spigot portion from the replacement cylinder into the bore of the crankcase.
  • 17. The method of claim 16, wherein providing the replacement cylinder includes providing the second cylinder bore diameter to be more than 0.073 inch greater than the first cylinder bore diameter.
  • 18. The method of claim 16, wherein performing the cylinder replacement includes reducing the original diametric clearance by half to the subsequent diametric clearance.
  • 19. The method of claim 16, wherein providing the replacement cylinder includes providing a second spigot wall thickness of the replacement spigot portion to be more than 33 percent reduced as compared to a first spigot wall thickness of the original spigot portion.
  • 20. The method of claim 16, wherein providing the replacement cylinder includes providing a second spigot wall thickness of the replacement spigot portion to be reduced by more than 0.030 inches as compared to a first spigot wall thickness of the original spigot portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/697,038, filed Sep. 6, 2017, now U.S. Pat. No. **, which is a continuation of U.S. patent application Ser. No. 14/674,222, filed Mar. 31, 2015, now U.S. Pat. No. 9,856,817, the entire contents of both of which are incorporated by reference herein.

Continuations (2)
Number Date Country
Parent 15697038 Sep 2017 US
Child 16286817 US
Parent 14674222 Mar 2015 US
Child 15697038 US