The invention relates to a fastening assembly comprising a bolt and a locking nut assembly, wherein the locking nut assembly comprises a first nut and a second nut. The invention further relates to the bolt for use in such fastening assembly, and to the locking nut assembly for use in such fastening assembly.
A nut is a type of fastener with a threaded hole. Nuts are usually used opposite a mating bolt to fasten a stack of parts together. The nut and bolt are kept together by a combination of their threads' friction, a slight stretch of the bolt, and compression of the parts. The most common shape is hexagonal, for similar reasons as the bolt head—6 sides give a good granularity of angles for a tool to approach from (good in tight spots), but more (and smaller) corners would be vulnerable to being rounded off. Other specialized shapes exist for certain applications, such as wing nuts for finger adjustment and captive nuts for inaccessible areas.
Nuts are graded with strength ratings compatible with their respective bolts; for example, an ISO property class 10 nut will be able to support the bolt proof strength load of an ISO property class 10.9 bolt without stripping. Likewise, an SAE class 5 nut can support the proof load of an SAE class 5 bolt, and so on.
A wide variety of nuts exists, from household hardware versions to specialized industry-specific designs that are engineered to meet various technical standards.
In normal use, a nut-and-bolt joint holds together because the bolt is under a constant tensile stress called the preload. The preload pulls the nut threads against the bolt threads, and the nut face against the bearing surface, with a constant force, so that the nut cannot rotate without overcoming the friction between these surfaces. If the joint is subjected to vibration, however, the preload increases and decreases with each cycle of movement. If the minimum preload during the vibration cycle is not enough to hold the nut firmly in contact with the bolt and the bearing surface, then the nut is likely to become loose.
To prevent this problem a second nut may be added. For this technique to be reliable, each nut must be tightened to the correct torque. The inner nut is tightened to about a quarter to a half of the torque of the outer nut. It is then held in place by a wrench while the outer nut is tightened on top using the full torque. This arrangement causes the two nuts to push on each other, creating a tensile stress in the short section of the bolt that lies between them. Even when the main joint is vibrated, the stress between the two nuts remains constant, thus holding the nut threads in constant contact with the bolt threads and preventing self-loosening. When the joint is assembled correctly, the outer nut bears the full tension of the joint. The inner nut functions merely to add a small additional force to the outer nut and does not need to be as strong, so a thin nut (also called a jam nut) can be used.
In applications where vibration or rotation may work a nut loose, various locking mechanisms may be employed as reported in the prior art, for example: adhesives, safety pins or lockwire, nylon inserts, or slightly oval-shaped threads. Furthermore, in the prior art various types of specialized locking nuts exist to prevent the problem of loosening under vibration. Examples of such locking nuts are: castellated nut, distorted thread locknut (such as centerlock nut, elliptical offset locknut, toplock nut, and philidas nut), interfering thread nut (such as the tapered thread nut), jam nut, jet nut (or K-nut), Keps nut (or K-nut or washer nut) with a free-spinning washer, plate nut, polymer insert nut (Nyloc nut), security lock nut, serrated face nut, serrated flange nut, speed nut (or sheet metal nut or Tinnerman nut), and split beam nut. All these types of locking nuts rely upon increasing the friction between the nut and the bolt, between the nut and a contact surface, or both.
The invention has for its object to remedy or to reduce at least one of the drawbacks of the prior art, or at least provide a useful alternative to prior art.
The object is achieved through features, which are specified in the description below and in the claims that follow.
The invention is defined by the independent patent claims. The dependent claims define advantageous embodiments of the invention.
In a first aspect the invention relates to a fastening assembly.
The effects of the combination of the features of the invention are as follows. By providing a bolt having two threaded sections with different diameter it is rendered possible to give each section different thread characteristics in terms of pitch, orientation, and helix angle. Such differing characteristics may then be exploited to ensure a better locking of the first nut by the second nut. Literally, the invention opens up a new design space, which may be explored for optimum nut locking results. The first threaded section and the second threaded section have threads with opposite orientation (i.e. one right-handed and one left-handed). The consequence of this is that when for instance the first nut rotates in a specific direction, as soon as the first nut touches the second nut, the friction between said nuts causes the second nut to “want to” rotate in the same direction. However, this rotation cause that the respective nuts are firmly against each other, which increases the friction even more. Thereby, further rotation of both nuts is effectively prevented. The advantageous effects are even further enhanced by the locking member, which prevents relative rotation between said nuts. As soon as the first threaded section and the second threaded section have different thread characteristics, i.e. meaning the one revolution of one nut would imply a different revolution of the other nut, the locking member very effectively blocks any movement of said nuts. A very firm nut locking effect is thereby obtained. The locking member is prevented by the fixing member from getting loose from the nuts such that they may rotate relative to each other again, i.e. a better locking effect is obtained. The locking member comprises a housing comprising a hole having ends that are configured for receiving said nuts in a tight manner. This constitutes a convenient way of preventing said nuts from rotating with regards to each other, i.e. provided that the housing can still rotate freely, rotation of said nuts is now only allowed in the same direction.
In an embodiment of the fastening assembly of the invention the first threaded section has a first pitch, and the second threaded section has a second pitch. Furthermore, the first pitch and the second pitch are different. By giving the first threaded section and a second threaded section a different pitch it is substantially prevented that said nuts may move easily in at least one direction, namely in the direction pointing to the section having the smaller pitch. This is because one revolution of the respective nut having the larger pitch would force more than one revolution of the respective nut having the smaller pitch.
In an embodiment of the fastening assembly of the invention the first threaded section has a first helix angle, and the second threaded section has a second helix angle. Furthermore, the first helix angle and the second helix angle are different. The helix angle of a threaded section is determines the pitch together with the radius of the threaded section. In other words, given a certain radius of the threaded section, it is the helix angle of the thread, which determines the pitch of the thread.
In an embodiment of the fastening assembly of the invention the fixing member is selected from a group comprising: i) an indentation in the housing provided such that in operational use it clamps between said nuts, ii) a screw, which, in operational use, is extending through a surface of the housing into the bolt or at least one of said nuts, and iii) a pivotable arm mounted on an outer surface of the housing for gripping through an opening in the housing in between said nuts at least one in of its positions in operational use. The techniques mentioned in this group of embodiments form convenient ways of fixing the locking member. The detailed description of the figures will give more details with regards to these techniques. It must be stressed, however, that the invention is by no means limited to any of these techniques, yet they are considered advantageous embodiments.
In an embodiment of the fastening assembly of the invention the locking nut assembly comprises a spacer element in between the first nut and the second nut for keeping a minimum distance between said nuts and for increasing friction between said nuts. The use of a spacer in between the nuts provides for a higher flexibility and a more robust solution in that the position of said nuts on the bolts is no longer confined to places abutting the transition region from the first radius of the first threaded section to the second radius of the second threaded section. The spacer elements may be designed with different thickness. More details of this embodiment will be given in the detailed description of the figures.
In an embodiment of the fastening assembly of the invention the spacer element has been integrated in one of said nuts. It may be advantageous in some application areas to integrate the spacer with one of said nuts, or alternatively, to provide both nuts with a spacer element, such that the total spacer width is the sum of each of said spacer elements.
In a second aspect the invention relates to the locking nut assembly in the fastening assembly according to the invention. The bolt and the locking nut assembly within the fastening assembly are cooperating parts like a plug and a socket. The invention resides in the combination, but has its implications for each of the parts. When the invention is commercialized, it is to be expected that each of said parts may be sold separately in a store or warehouse, for example. Hence, claims have been directed to each of said parts.
In the following is described an example of a preferred embodiment illustrated in the accompanying drawings, wherein:
It should be noted that the above-mentioned embodiments and the ones described hereinafter illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In the claims enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
With reference to
With reference to
With reference to
The invention thus relates to providing a fastening assembly having a nut and a bolt with improved locking functionality. The invention may be applied in a very large variety of application areas. One of such areas that will benefit from the current invention a lot is the oil and gas recovery industry, both onshore as well as offshore.
Many variations to the embodiments described are possible, and many embodiments may be advantageously combined. Instead of using a locking member 25 it is also possible to replace the second nut 24 with a rubber nut for example or another material having a very high friction coefficient with the bolt 10. Such fastening assembly still falls within the scope of the appended claims.
It must be further noted that in accordance with conventional use of bolt and nut assemblies, in the invention additional washers may be used. Such washers may be conventionally placed in between the first nut and the contact surface of the object through which the bolt extends, or in between the bolt head and the opposite contact surface, or both.
Number | Date | Country | Kind |
---|---|---|---|
20141366 | Nov 2014 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2015/050203 | 11/4/2015 | WO | 00 |