The invention relates to a window unit containing a multi-pane insulating glass module bonded in a force-fitting manner to the window sash or window frame, and to a method of producing such a multi-pane window unit.
Multi-pane insulating glasses have become generally used in the construction industry because of the advantages they offer. The improved thermal and sound insulation compared to single glazing deserves particular emphasis. It is well-known that multi-pane insulating glass systems consist of two or more panes of glass arranged in parallel, which are joined together in their edge region in such a way that the gap enclosed by the panes is sealed against the ambient air such that no moisture can penetrate that gap. In addition, the edge joint is domed in such a way that it can withstand all the mechanical and chemical loads resulting from changing climatic conditions. In many cases, this gap is also filled with dry gases, which serve to increase the thermal insulation or sound insulation compared to an air filling.
In the standard commercially available insulating glass arrangements, rigid spacers ensure the desired distance between the panes of glass. In the most common embodiment, the spacer consists of a hollow aluminium or sheet steel profile. It is disposed near the edges of the glass panes in such a way that the spacer, together with the edge regions of the glass pane, forms an outwardly facing channel to accommodate sealants and adhesives. Usually, the side of the spacer facing the gap between the glass panes has small apertures, and the cavity of the spacer serves to receive a desiccant to absorb the moisture and any solvent possibly remaining in the air or gas gap between the panes. This prevents moisture from condensing on the inside of the insulating glass panes when the ambient temperature is low. In high-quality insulating glass systems, there is a sealant with a high water vapour barrier effect between the surfaces of the spacer facing the glass panes and the glass surface. Formulations based on polyisobutylene and/or butyl rubber are used for this purpose as a rule. The channel formed by the outwardly facing surface of the spacer and the edge regions of the glass panes is usually filled with a two-component adhesive/sealant, which produces a sufficiently strong bond between the insulating glass arrangement. This adhesive/sealant must adhere well to the panes and also be elastic enough to withstand the expansion and contraction movements of the glass panes under changing climatic conditions.
Usually, an insulating glass unit produced in this way is either fitted into the window sash using glazing blocks or undergoes a further assembly step in the form of overturn bonding or rebate base bonding.
In addition to the above-mentioned spacers made from metal profiles, spacers made from hollow plastic profiles have also been proposed and used in more recent times, which may optionally be laminated with a metal film in order to enhance the water vapour barrier effect. In addition, spacers made from a strip of thermoplastic polymer based on polyisobutylene or butyl rubber are known, which, in the centre of the polymer matrix, may optionally contain a planar structure with an undulating shape, the planar extent of which is arranged perpendicularly to the glass panes. This planar structure with an undulating shape has the function of the spacer and acts at the same time as a water vapour barrier; spacers of this kind are described in EP-A-517067, for example.
Multiple-pane insulating glass units are known from U.S. Pat. No. 4,831,799 which use a strip of elastic foam as a spacer, which may be flexible or semi-rigid. The polymer matrix of this strip of foam is supposed to be moisture-permeable, and in addition, said strip of foam is supposed to contain an absorption means for moisture. In addition, this strip of spacer foam can be equipped with a flexible vapour and gas barrier layer, said vapour and gas barrier layer of the spacer facing away from the insulating air space located between the panes. This vapour and gas barrier may contain a plate, a film or layer of vinylidene chloride polymers or copolymers, and in addition, one of the barrier layers may consist of metallised polymer film, such as polyethylene terephthalate, for example. The polymer foam matrix may be constructed from various thermoplastic polymers, such as silicone polymers, polyurethanes or also thermoplastic elastomers. Examples of these are ethylene-propylene-diene copolymers (EPDM); further examples are thermoplastic polyolefins or styrene block copolymers.
In the standard technology of multi-pane window units, the insulating glass unit is first of all produced separately from the two or more glass panes, the spacers, the seal providing the water vapour barrier, and the elastomeric edge collar, and this insulating glass unit produced in this way is then inserted into the window sash or window frame in a separate step, often even at a different manufacturing location.
In order to simplify the assembly of insulating glazing, EP 1070824 A2 proposes that the insulating glass module should be adhered in a rebate of a profile frame. For this purpose, an adhesive is supposed to be applied in a strip along the rebate surface of the surrounding frame rebate parallel to the insulating glazing before the insulating glazing is inserted into the rebate. In the insertion step, the insulating glazing is then pressed against the surrounding strip of adhesive, which provides the connection between the insulating glass unit and the profile frame. The disadvantage of this construction is that the load imposed by the insulating glass module must be borne exclusively via the lipped outer edge on the profile frame gripping the insulating glazing. A further disadvantage is that only the inner pane is supported on the frame, and not the outer pane, which is partially supported also by the inner pane via the connection at the edge between the inner and outer panes.
From EP 1004740 A2 it is known for a pane of laminated glass which is inserted into a frame rebate to be fixed by means of a layer of adhesive that fills out the peripheral gap between the pane of laminated glass and the rebate. The teaching of this document is directed towards the production of explosion-proof windows, but this document does not disclose bonding in multi-pane insulating glass modules.
WO 02/081854 discloses a sash for a window or door, in which the sash has a rebate accommodating insulating glazing. The insulating glazing in this case is supposed to be fixed in the rebate with an adhesive layer which fills out a peripheral gap between the faces of the insulating glazing and the peripheral surface of the rebate opposite these faces at least in the peripheral areas of the insulating glazing. In this case, a limiting element running in the peripheral direction is supposed to be provided for the adhesive layer in the area of a covering pane of the insulating glazing facing the rebate surface. According to the teaching of this document, a preassembled insulating glass module is inserted into the rebate of the profile frame in a horizontal position and then bonded. In a particular embodiment, the adhesive is supposed to be injected or pressed under pressure into the peripheral gap between the rebate surface and the faces of the insulating glazing. In this case, therefore, the insulating glass module consisting of the two or more panes, the spacers and the edge seal is likewise prefabricated separately. Since the adhesive in this case is in direct contact with the adhesive/sealant of the edge compound of the insulating glass in order to bond the window sash to the insulating glass unit in a force-fitting manner, it must be ensured that the two layers of adhesive do not have a negative influence on each other over the life of the window sash, for example as a result of components migrating from one layer of adhesive into the other layer of adhesive, which can lead to a weakening of the bond.
The production of window units with high-quality insulating glass arrangements therefore naturally consists of a number of complex sequences of operations and is very cost-intensive despite the high degree of automation on large production lines. Proceeding from this prior art, the problem on which this invention is based is to provide a window unit containing a multi-pane insulating glass module which is bonded in a force-fitting manner to the window sash or window frame, which is simple to manufacture and can preferably be produced in a single manufacturing sequence.
The solution can be gathered from the claims. It consists substantially in providing a multi-pane window unit comprising
In a further embodiment, the multi-pane window unit may also comprise three or more glass panes, each of which is held in its edge region by a spacer to keep them parallel and spaced apart.
A further subject of the present invention is a method of producing complete window units containing a multi-pane insulating glass module, which is produced in a force-fitting manner with the window sash or window frame in a sequence of assembly steps.
The multi-pane window units in accordance with the invention will be described in greater detail in the following with reference to some drawings, in which
Within the meaning of this invention, the materials used as the hollow profiles may be hollow profiles made either from purely metallic materials such as sheet steel, and even stainless steel where appropriate, or aluminium, or equally from polymeric materials, optionally in the form of coextrudates with metal films.
Formulations based on polyisobutylene and/or butyl rubber are preferably used for the sealant (7) with the high gas and water vapour barrier effect.
In order to bond the spacer on the outer surface of the rear wall of the hollow profile (6) to the edge regions of the inner surfaces (1.1) and (2.1) of the glass panes (1) and (2) the inner surface (9.1) of the rebate base, a wide range of one-component or two-component adhesives based on polyurethanes, polysulphides, silicones, acrylates or silane-modified polymers (such as MS polymers) can be used. In addition, rubber-based melt adhesives or one-component “warm-melt adhesives” based on MS polymers, polyurethanes, polysulphides, silicones or acrylates can be used. Depending on the material of the window frame or window sash, it may be necessary to provide a primer as a pre-coat on the inner surface (9.1) of the rebate. In the multi-pane window unit of the invention, the secondary edge joint of the adhesive/sealant of the insulating glass module and the adhesive for bonding the insulating glass module to the window sash or window frame in a force-fitting and sealing manner are one and the same adhesive, so that any incompatibility between different adhesives can be excluded in this case. A further advantage of the multi-pane window unit of the invention consists in the possibility of efficiently producing a complete window sash or window from the insulating glass unit and window sash frame or window frame. The production in this respect can be carried out in a plant in successive manufacturing steps by means of partially or fully automatic bonding processes. In addition, with this production process, it is possible to place the insulating glass edge unit deeper in the base of the rebate. In this way, better insulation and superior heat transmission values for the window and thus energy savings can be achieved.
The production of the multi-pane window unit in accordance with the invention can be performed in different ways:
In one embodiment, the panes (1) and (2) are pre-fixed with the aid of the hollow profile (3), which is already pre-coated with the primary sealant (7), and this prefixed pane unit is then placed in the window frame or window sash, which is in a horizontal position, and the adhesive/sealant (10) is injected, optionally at high pressure, into the predefined gap between the inner surface of the base of the rebate (9.1) and the gap (4) through appropriate holes in the rebate (9). The holes in the rebate needed for this purpose are not shown in the Figures.
It goes without saying that the window unit can also be assembled vertically in appropriate mounts, in a manner similar to the one described above.
Instead of the hollow profile (3), the elastomeric foamed spacer profile (8) can be inserted in an analogous manner both for horizontal and for vertical assembly.
As a matter of principle, it is also possible to proceed in such a way that, first of all, the first pane (1) is positioned in the horizontal window frame or window sash, maintaining the gap (4). In order to maintain the gap, a washer (not shown in the Figures) can be placed between the pane and inner surface (9.1) of the rebate, but it is also possible to apply an appropriate pre-coat of the adhesive/sealant (10) to the outer surface of the pane (1.2) or the inner surface (9.1) of the rebate. In a subsequent step, the hollow profile (3) or the foamed elastomeric spacer (8), which is already pre-coated with the primary sealant (7), is fixed in the edge region of the inner surface (1.1) of the pane. After that, the pane (2) is positioned with its inner surface (2.1) on the second side of the hollow profile (3) or spacer (8) and optionally pressed gently. Then the adhesive/sealant (10), is injected, preferably under pressure, through a corresponding hole in the rebate (9)—the holes are not shown in the Figures. After the final strength has been reached, the layer formed by the adhesive/sealant (10) ensures a bond in a force-fitting and sealing manner between the insulating glass pane module and the window frame or window sash. It is optionally possible to seal the edge regions of the rebate above the gaps (4) with an elastomeric sealant (S1) or (S2) directly at the place of manufacture of the multi-pane window unit. It is, however, also possible to wait and only to create this edge seal at the place of use of the window.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 003 288.8 | Jan 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP06/12162 | 12/18/2006 | WO | 00 | 1/16/2009 |