1. Field of the Invention
The systems and methods of this invention generally relate to communication systems. In particular, the systems and methods of this invention relate to asynchronous transfer mode (ATM) over digital subscriber line (DSL).
2. Description of Related Art
For the system illustrated in
The broadband network termination (B-NT) 100 performs the functions of terminating the ADSL signal entering the user's premises via the twisted pair cable and the ATU-R 22 and provides either the T, S or R interface towards the premises distribution network/terminal equipment 4. The access ATM module 26 and the VP/VC Mux module 24 perform the ATM layer functions to support the TC layers in the ATU-R. The broadband network termination 100 may also contain VPI/VCI translation functions to support multiplex/demuliplex of VC's between the ATU-R 22 and the premise distribution network/terminal equipment 4 on a VPI and/or VCI bases. The broadband network termination 100 may also comprise a PDN/TE interface element 28 and SAR module 30 the functions of which are well known and will be omitted for sake of clarity.
The exemplary systems and methods of this invention combine multiple DSL PHY's, i.e., multiple twisted wire pairs, to, for example, generate a high data rate connection for the transport of an ATM cell stream between the service provider and, for example, a DSL subscriber. The ATM cell stream may contain one or more payloads where each payload is channelized within the ATM data stream using different virtual paths (VP) and/or virtual channels (VC). At a transmitter, the ATM cell stream received from the ATM layer is distributed on a cell-by-cell bases across the multiple DSL PHY's. At the receiver, the cells from each DSL PHY are re-combined in the appropriate order to recreate the original ATM cell stream, which is then passed to the ATM layer.
Accordingly, aspects of the invention relate to ATM communications.
Additional aspects of the invention relate to transporting ATM over DSL, and more particularly over ADSL.
Additional aspects of the invention also relate to distributing ATM cells from a single ATM cell stream across multiple twisted wire pairs.
Further aspects of the invention relate to distributing ATM cells from a single ATM cell stream across multiple DSL communication links.
Further aspects of the invention relate to varying data rates over the multiple twisted wire pairs over which distributed ATM cells are transported.
These and other features and advantages of this invention are described in, or apparent from, the following detailed description of the embodiments.
The embodiments of the invention will be described in detailed, with reference to the following figures, wherein:
The exemplary systems and the methods of this invention will be described in relation to digital subscriber line communications and more particularly to asymmetric digital subscriber line communications. However, to avoid unnecessarily obscuring the present invention, the following description omits well-known structures and devices that may be shown in block diagram form or otherwise summarized. For the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It should be appreciated however that the present invention may be practiced in variety of ways beyond the specific details set forth herein. For example, the systems and methods of this invention can generally be applied to any type of communications system including wireless communication systems, such as wireless LANs, power line communications, or any other systems or combination systems that use ATM.
Furthermore, while the exemplary embodiments illustrated herein show the various components of the communication system collocated, it is to be appreciated that the various components of the system can be located at distant portions of distributed network, such as a telecommunications network and/or the Internet, or within a dedicated ATM over DSL system. Thus, it should be appreciated that the components of the communication system can be combined into one or more devices or collocated on a particular node of a distributed network, such as a telecommunications network. It will be appreciated from the following description, and for reasons of computational efficiency, that the components of the communication system can be arranged at any location within a distributed network without affecting the operation of the system.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or a combination thereof or any other know or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. Additionally, the term module as used herein can refer to any know or later developed hardware, software, or combination of hardware and software that is capable of performing the functionality associated with that element.
Additionally, although this invention will be described in relation to ATM systems, the systems and methods of this invention can be applied to any transport protocol that uses cells or packets for transmitting information. Therefore, for example, the same methods can be used for the bonding of PHYs that transport Ethernet or IP packets. Furthermore, although this invention will be described in relation to ATM transported over DSL PHYs, other PHYs, such as cable, voice band modems, ATM-25, and the like, can also be used.
The exemplary system illustrated in
In accordance with an exemplary embodiment of this invention, the ATU-C multi-pair multiplexer 140 is inserted between the VP/VC multiplexer 130 and the ATU-C's 150 at the V-C interface in the access node 100. Additionally, the ATU-R multi-pair multiplexer 220 is added to the broadband network termination 200 at the T-R interface. Both of these multi-pair multiplexers have transmitter and receiver sections (not shown) whose operations are comparable. The multi-pair multiplexer transmitter section performs the task of distributing cells from the ATM stream among multiple ATM cell substreams. Each ATM cell substream, also referred to as an ATM substream, is forwarded a different ATU. The multi-pair multiplexer receiver section performs the task of recombining the ATM substreams to regain the original ATM stream.
In the exemplary system illustrated in
In may ADSL systems, the logical interface between the ATM layer the PHY is based on UTOPIA Level 2 with a cell level handshake. This same UTOPIA Level 2 logical interface can also be used between the multi-pair multiplexer and the ATM layer and also between the multi-pair multiplexer and the PHY in the access node 100 and the broadband network termination 200. Although, the above example and the remainder of this discussion will be directed toward the multi-pair multiplexer functions using a ADSL PHY, any version of DSL that has an ATM-TC, e.g., VDSL, SHDSL, or the like, may be used instead of, or conjunction with, the ADSL PHY.
In particular, the exemplary multi-pair multiplexing transmitter 300 illustrated in
The configuration of the multi-pair multiplexing transmitter 300 can be varied to, for example, provide an equal or unequal data rate on the DSL PHYs.
For the multi-pair multiplexing transmitter 300 illustrated in
For example, in a two modem environment where there is a “high-speed” and a “low-speed” implementation, an exemplary ratio of N:1 where N=2 to 8 can be specified. This means that the “high-speed” modem will have eight times the cells as the “low-speed” modem. In this exemplary configuration, there are eight cells of receiver FIFO meaning that the entire “high-speed” receiver could be empted before needing to service the “low-speed” receiver.
Similarly, as illustrated in relation to the multi-pair multiplexing transmitter 300 illustrated in
Furthermore, an in addition to the changes in data rate that are possible on the DSL PHYs, ATM cells transported over a DSL PHY can have different end-to-end delay (latency) based on several parameters. This potential latency difference between bonded PHYs places implementation requirements on the multi-pair multiplexer. In particular, the multi-pair multiplexer receiver must be able to reconstruct the ATM stream even if the ATM cells are not being received in the same order as they where transmitted.
For example, some of the exemplary reasons for having different delays over different DSL PHYs include, but are not limited, configuration latency which is based on the configuration of the DSL transmission parameters. Specifically, these parameters include the data rate, coding parameters, such as the coding method, codeword size, interleaving parameters, framing parameters, or the like.
ATM-TC latency is based on cell rate decoupling in the ATM-TC. Specifically, the ATM-TC block in ADSL transceivers performs cell rate decoupling by inserting idle cells according to the ITU Standard I.432, incorporated herein by reference in its entirety. This means that depending on the ATU timing and the state of the ATU buffers, an ATM cell that is sent over a DSL PHY will experience non-constant end-to-end delay (latency) through the PHY.
Wire latency is based on differences in the twisted wire pairs. Specifically, the DSL electrical signals can experience different delays based on the difference in length of the wire, the gauge of the wire, the number bridged taps, or the like.
Design latency is based on differences in the DSL PHY design. Specifically, the latency of the PHY can also depend on the design chosen by the manufacture.
Thus, as result of the different latencies in the PHYs, it is possible that an ATM cell that was sent over a DSL PHY may be received at the multi-pair multiplexing receiver after an ATM cell that was sent out later on a different DSL PHY.
Another effective method of reducing the difference in latency between DSL PHYs is mandate that all DSL PHYs are configured with transmission parameters in order to provide the same configuration latency. An exemplary method of accomplishing the same configuration latency is by configuring the exact same data rate, coding parameters, interleaving parameters, etc. on all DSL PHYs. Alternatively, different PHYs can have, for example, different data rates but use the appropriate coding or interleaving parameters to have the same latency on all the bonded PHYs.
As an example, for Reed Solomon coding and interleaving functions as defined in ADSL standards G.992.1 and G.992.3, incorporated herein by reference in their entirety, the latency due to these functions is defined as:
Latency=N*D/R,
where N is the number of bits in a codeword, D is the interleaver depth in codewords and R is the data in bits per second.
For example if N=1600 bits, i.e., 200 bytes, D=64 codewords and R=6400000 bps then:
Latency=1600*64/640000=0.016 seconds.
Therefore if, for example, two PHYs have different data rates, R1 and R2 then, in order to bond these PHYs together and have the same configuration latency set:
N1*D1/R1=N2*D2/R2,
where N1 and N2 are the bits in a codeword for each PHY and D1 and D2 are the interleaver depths for each PHY.
This can also be rewritten as:
N1*D1=(R1/R2)*N2*D2.
Thus, in general, the N1, D1, N2 and D2 parameters must be chosen to satisfy the above equations and this can be accomplished in several ways.
For example, if the configuration latency is specified as 0.016 seconds, and R1=6400000 bps and R2=1600000 then, as described in the example above, N1 anss D1 can be configured as N1=1600 and D1=64. Therefore:
N2*D2=(R2/R1)*D1*N1=(1600000/6400000)*1600*64=1600*64/4.
Therefore, for example, N2 and D2 can be configured as (N2=1600, D2=16) or (N2=400, D2=64) or (N2=800, D2=32), etc.
Obviously the same methods can be applied to more than 2 PHYs with different data rates.
The ATM-TC receiver in ADSL systems is specified to discard ATM cells that are received with an incorrect cyclic redundancy check, e.g., (HEC). This means that if there are bit errors as the result of transmission over the ADSL channel, ATM cells will be discarded by the ATM-TC and not sent to the multi-pair multiplexing receiver. As a result of this type of error condition, ATM cells may be received out of order in the multi-pair multiplexing receiver.
The exemplary systems and methods of this invention utilize a multi-pair cell counter to operate in the condition where the ATM cells are discarded by DSL PHY when, for example, HEC errors occur. The multi-pair multiplexing transmitter can embed the multi-pair cell counter in the header of each ATM cell after receiving the ATM cell from the ATM layer. At the receiver, the multi-pair multiplexing receiver reads the multi-pair cell counter and removes it from the header of the ATM cell prior to sending the ATM cell to the ATM layer. The multi-pair cell counter is a value that indicates the position of a particular ATM cell in the ATM cell stream.
In its simplest form, the multi-pair cell counter can be a modulo L counter that starts at, for example, zero and increments by one for each consecutive ATM cell up to a value L−1. For example, if L equals 256, the value of the multi-pair cell counter could start at zero and increment by one up to a value of 255. After 255, the multi-pair counter could be started at zero again, and so on.
As previously discussed, the multi-pair cell counter can be embedded in the ATM cell header of all the ATM cells in the ATM stream.
The exemplary main multi-pair cell parameter is the value of L. The appropriate value of L depends on the number of bonded PHYs (N) and the maximum number (M) of consecutive ATM cells that may be discarded by the PHY. The design constraint on L is that it must be large enough so that the multi-pair multiplexing receiver can still detect cell lost even when the maximum number of consecutive ATM cells are discarded by a PHY. This places the constraint that L>N*M. For example, if there are N=4 bonded PHYs, and the maximum number of consecutive ATM cells that may discarded by the PHY is M=50, then L>200. If, for example L is chosen to be equal to 256, then even when 50 consecutive ATM cells are lost, the multi-pair multiplexing receiver can accurately detect the error event.
There are several exemplary methods to embedding the multi-pair cell counter into the ATM cell header including, but not limited to, using the GFC field in the UNI ATM header. The GFC field is currently not used and is typically set to zero. The GFC field is a four bit field therefore the maximum value of L is 16. This could pose an issue when the channel has, for example, impulse noise and the PHY data rate is high resulting in cases where multiple ATM cells are often discarded by the PHY.
Therefore, as an alternative, bits in the VPI/VCI field can be used. The VPI field occupies 8 bits in the UNI header and identifies the route taken by the ATM cell. The VCI field occupies 16 bits in the UNI header and it identifies the circuit or connection number on the path. In order use the VPI/VCI field for the multi-pair cell counter, the multi-pair multiplexing transmitter overwrites bits in the VPI/VCI field with the multi-pair cell counter value on a cell by cell bases. At the receiver, the multi-pair multiplexing receiver reads the multi-pair cell counter value and resets and overwrites the VPI/VCI back to the original value.
This method requires the multi-pair multiplexing receiver to have knowledge of the overwritten VPI/VCI bits. As an example, this can be accomplished by communicating the VPI/VCI fields of the ATM stream during initialization/configuration of the DSL connection or during configuration or re-configuration of the ATM connection. Since the VPI/VCI field has 24 bits, the L value for the multi-pair cell counter can be set to a very large number.
One exemplary method for embedding the multi-pair cell counter in the VPI/VCI field is to construct a table of all, or a portion of, possible VPI/VCI values that may be transported by the bonded DSL PHYs. This VPI/VCI table can, for example, be stored in the multi-pair multiplexing transmitters and receivers for all PHYs. The table maps a VPI/VCI value to a table index value that is also stored in the multi-pair multiplexing transmitters and receivers for all PHYs. If there are K VPI/VCI values being transported over the bonded DSL PHYs, the VPI/VCI value could be mapped to a number from zero to K−1. At the multi-pair multiplexing transmitter, the VPI/VCI value in the ATM header is replaced with the table index value. Since there are limited numbers of VPI/VCI going to a single subscriber, the table index value can utilize only a fraction of the 24 bits available in the VPI/VCI field. Therefore, the multi-pair multiplexing transmitter can use the remaining VPI/VCI bits to transport, for example, the multi-pair cell counter.
At the receiver, the multi-pair multiplexing receiver is multi-pair cell counter that reconstructs the ATM stream as discussed above. Additionally, the multi-pair multiplexing receiver can read the table index value in the ATM header and write the VPI/VCI value corresponding to the table index value as stored in the VPI/VCI table back into the VPI/VCI header field.
As a simple example, where only one VPI/VCI is being sent over the bonded DSL connection, the VPI/VCI table will have only one value. Therefore, in this case, it is not necessary to insert the table index value at the transmitter. The transmitter may use the bits in the VPI/VCI field for the multi-pair cell counter. At the receiver, the multi-pair cell counter is read and used to reconstruct the ATM stream. Since only one VPI/VCI value is being used, the receiver can reset the VPI/VCI field to the appropriate value prior to sending the ATM stream into the ATM layer. This approach can work, for example, with many consumer based employments of a DSL, since in most cases a single VPI/VCI is used.
As an alternative, consider a four VPI/VCI situation.
Table 1 contains an exemplary VPI/VCI table with four VPI/VCI addresses. Additionally, for the purpose of this example, the multi-pair cell counter is specified to be an eight bit counter, i.e., a modulo 255 counter.
At the receiver, the multi-pair multiplexing receiver reads the multi-pair cell counter value from the header in order to properly reconstruct the ATM stream. The multi-pair multiplexing receiver also reads the TIV in the ATM header and writes the VPI/VCI corresponding to the table index value as stored in the VPI/VCI table back into the VPI/VCI header field. As a result, at the output of the multi-pair multiplexing receiver, the ATM header can be completely reconstructed into the standard UNI format comprising the original data contents.
In this illustrative example, there were four VPI/VCI addresses being used in cells being transported over the bonded ADSL system. However, in many deployments, the VP is determined in the DSLAM, which means that the VPI field is the same for all packets. Therefore, in the case of terminating the VP and the DSLAM, the VP field could, for example, be used in transporting the TIV.
In step S140, a receiver receives the cells. Next, in step S150, the ATM substreams are combined to reconstruct the ATM stream. In particular, in step S152, a determination is made whether there is a difference in latency between the DSL lines. If there are differential latency problems, control continues to step S154 where the differential latency is compensated for by, for example, buffering, or the like. Otherwise, control jumps to step S156.
In step S156, a determination is made whether other errors are present in one or more of the substreams. If other errors, such as dropped cells, channel bit errors, or the like are present, control continues to step S158 where the other errors are compensated for. Otherwise, control jumps to step S160 where the control sequence ends.
One exemplary aspect combines multiple DSL PHY's, i.e., multiple twisted wire pairs, to, for example, generate a high data rate connection for the transport of an ATM cell stream between the service provider and, for example, a DSL subscriber. The ATM cell stream may contain one or more payloads where each payload is channelized within the ATM data stream using different virtual paths (VP) and/or virtual channels (VC). At a transmitter, the ATM cell stream received from the ATM layer is distributed on a cell-by-cell bases across the multiple DSL PHY's. At the receiver, the cells from each DSL PHY are re-combined in the appropriate order to recreate the original ATM cell stream, which is then passed to the ATM layer.
In particular, the exemplary multi-pair multiplexing transmitter illustrated in
The configuration of the multi-pair multiplexing transmitter 300 can be varied to, for example, provide an equal or unequal data rate on the DSL PHYs.
In Step S230, an exemplary multi-pair multiplexing receiver 400 provides, but is not limited to, accepting multiple ATM cell substreams from different DSL PHYs and recombining the ATM cells from the different ATM cell substreams to recreate the original ATM stream, which is passed to the ATM layer. In particular, a plurality of ATM substreams are received by the multi-pair multiplexing receiver 400 and recombined into the original ATM stream. Specifically, as in the multi-pair multiplexing transmitter, the recombining of cells from the DSL PHYs depends on the data rates of the individual PHY connections. As in the embodiment discussed in relation to
Similarly, as illustrated in relation to the multi-pair multiplexing transmitter 300 illustrated in
The above-described ATM over DSL system can be implemented on a telecommunications device, such a modem, a DSL modem, an ADSL modem, a multicarrier transceiver, a VDSL modem, or the like, or on a separate programmed general purpose computer having a communications device. Additionally, the systems and methods of this invention can be implemented on a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device such as PLD, PLA, FPGA, PAL, modem, transmitter/receiver, or the like. In general, any device capable of implementing a state machine that is in turn capable of implementing the flowchart illustrated herein can be used to implement the various ATM over DSL methods according to this invention.
Furthermore, the disclosed methods may be readily implemented in software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed ATM over DSL system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this invention is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized. The ATM over DSL systems and methods illustrated herein however can be readily implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the functional description provided herein and with a general basic knowledge of the computer and telecommunications arts.
Moreover, the disclosed methods may be readily implemented in software executed on programmed general purpose computer, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this invention can be implemented as program embedded on personal computer such as JAVA® or CGI script, as a resource residing on a server or graphics workstation, as a routine embedded in a dedicated ATM over DSL system, or the like. The ATM over DSL system can also be implemented by physically incorporating the system and method into a software and/or hardware system, such as the hardware and software systems of a communications transceiver.
It is, therefore, apparent that there has been provided, in accordance with the present invention, systems and methods for ATM over DSL. While this invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, it is intended to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this invention.
This application is a continuation of U.S. patent application Ser. No. 14/465,502, filed Aug. 21, 2014, now U.S. Pat. No. 9,014,193, which is a continuation of U.S. patent application Ser. No. 13/863,058, filed Apr. 15, 2013, now U.S. Pat. No. 8,831,031, which is a continuation of U.S. patent application Ser. No. 12/783,777, filed May 20, 2010, now U.S. Pat. No. 8,422,511, which is a continuation of U.S. patent application Ser. No. 12/769,277, filed Apr. 28, 2010, now U.S. Pat. No. 7,978,706, which is a continuation of U.S. patent application Ser. No. 12/247,741, filed Oct. 8, 2008, now U.S. Pat. No. 7,809,028, which is a continuation of U.S. patent application Ser. No. 10/264,258, filed Oct. 4, 2002, now U.S. Pat. No. 7,453,881, which claims the benefit of and priority under 35 U.S.C. §119(e) to U.S. Patent Application Ser. No. 60/327,440, filed Oct. 5, 2001, entitled “Multi-Pair ATM Over DSL,” each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4979174 | Cheng et al. | Dec 1990 | A |
5214501 | Cavallerano et al. | May 1993 | A |
5287384 | Avery et al. | Feb 1994 | A |
5287513 | Ferguson | Feb 1994 | A |
5351016 | Dent | Sep 1994 | A |
5420640 | Munich et al. | May 1995 | A |
5422913 | Wilkinson | Jun 1995 | A |
5596604 | Cioffi et al. | Jan 1997 | A |
5608733 | Vallee et al. | Mar 1997 | A |
5617417 | Sathe et al. | Apr 1997 | A |
5635864 | Jones | Jun 1997 | A |
5675585 | Bonnot et al. | Oct 1997 | A |
5684958 | Adachi et al. | Nov 1997 | A |
5727051 | Holender | Mar 1998 | A |
5745275 | Giles et al. | Apr 1998 | A |
5751338 | Ludwig, Jr. | May 1998 | A |
5764649 | Tong | Jun 1998 | A |
5764693 | Taylor et al. | Jun 1998 | A |
5793759 | Rakib et al. | Aug 1998 | A |
5835527 | Lomp | Nov 1998 | A |
5875192 | Cam et al. | Feb 1999 | A |
5903612 | Van Der Puttent et al. | May 1999 | A |
5905874 | Johnson | May 1999 | A |
5917340 | Manohar et al. | Jun 1999 | A |
5995539 | Miller | Nov 1999 | A |
6002670 | Rahman et al. | Dec 1999 | A |
6041057 | Stone | Mar 2000 | A |
6081291 | Ludwig, Jr. | Jun 2000 | A |
6134246 | Cai et al. | Oct 2000 | A |
6178448 | Gray et al. | Jan 2001 | B1 |
6205142 | Vallee | Mar 2001 | B1 |
6222858 | Counterman | Apr 2001 | B1 |
6226322 | Mukherjee | May 2001 | B1 |
6246695 | Seazholtz et al. | Jun 2001 | B1 |
6252878 | Locklear, Jr. et al. | Jun 2001 | B1 |
6258878 | Bahadur et al. | Jul 2001 | B1 |
6286049 | Rajakarunanayake et al. | Sep 2001 | B1 |
6308278 | Khouli et al. | Oct 2001 | B1 |
6396837 | Wang et al. | May 2002 | B1 |
6408005 | Fan et al. | Jun 2002 | B1 |
6421323 | Nelson et al. | Jul 2002 | B1 |
6473418 | Laroia et al. | Oct 2002 | B1 |
6578162 | Yung | Jun 2003 | B1 |
6633545 | Milbrandt | Oct 2003 | B1 |
6640239 | Gidwani | Oct 2003 | B1 |
6657949 | Jones, IV et al. | Dec 2003 | B1 |
6678375 | Henderson et al. | Jan 2004 | B1 |
6680954 | Cam et al. | Jan 2004 | B1 |
6690666 | Norrell et al. | Feb 2004 | B1 |
6731678 | White et al. | May 2004 | B1 |
6747964 | Bender | Jun 2004 | B1 |
6754290 | Halter | Jun 2004 | B1 |
6771671 | Fields et al. | Aug 2004 | B1 |
6772388 | Cooper et al. | Aug 2004 | B2 |
6775268 | Wang et al. | Aug 2004 | B1 |
6775305 | Delvaux | Aug 2004 | B1 |
6775320 | Tzannes et al. | Aug 2004 | B1 |
6822960 | Manchester et al. | Nov 2004 | B1 |
6904537 | Gorman | Jun 2005 | B1 |
6941252 | Nelson et al. | Sep 2005 | B2 |
6956872 | Djokovic et al. | Oct 2005 | B1 |
6967952 | Akers et al. | Nov 2005 | B1 |
7023829 | Holmquist et al. | Apr 2006 | B1 |
7024592 | Voas et al. | Apr 2006 | B1 |
7035323 | Arato et al. | Apr 2006 | B1 |
7068657 | Keller-Tuberg | Jun 2006 | B2 |
7154895 | Bornemisza et al. | Dec 2006 | B1 |
7200138 | Liu | Apr 2007 | B2 |
7203206 | Amidan et al. | Apr 2007 | B2 |
7343543 | Mantha et al. | Mar 2008 | B2 |
7400688 | Garrett | Jul 2008 | B2 |
7453881 | Tzannes et al. | Nov 2008 | B2 |
7809028 | Tzannes et al. | Oct 2010 | B2 |
7978706 | Tzannes et al. | Jul 2011 | B2 |
8422511 | Tzannes et al. | Apr 2013 | B2 |
8831031 | Tzannes et al. | Sep 2014 | B2 |
9014193 | Tzannes et al. | Apr 2015 | B2 |
20020006128 | Yehuda et al. | Jan 2002 | A1 |
20020015401 | Subramanian et al. | Feb 2002 | A1 |
20020034220 | Duxbury | Mar 2002 | A1 |
20020154637 | Keller-Tuberg | Oct 2002 | A1 |
20020181458 | Amidan et al. | Dec 2002 | A1 |
20030131209 | Lee | Jul 2003 | A1 |
20040120435 | Yang et al. | Jun 2004 | A1 |
20050047497 | Rubinstain et al. | Mar 2005 | A1 |
20050079889 | Vaglica et al. | Apr 2005 | A1 |
20130290558 | Mapp et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1009154 | Jun 2000 | EP |
WO 9729559 | Aug 1997 | WO |
WO 9847238 | Oct 1998 | WO |
WO 9939468 | Aug 1999 | WO |
WO 0041395 | Jul 2000 | WO |
WO 0048408 | Aug 2000 | WO |
WO 0111833 | Feb 2001 | WO |
WO 0163859 | Aug 2001 | WO |
Entry |
---|
ITU-T Recommendation G.992.3, “Asymmetric digital subscriber line transceivers 2 (ADSL2),” Telecommunication Standardization Sector of ITU, Jul. 2002, 312 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US02/31649, Date of Mailing Mar. 24, 2003. |
Written Opinion for International (PCT) Patent Application No. PCT/US02/31649, mailed Nov. 7, 2003. |
International Preliminary Examination Report for International (PCT) Patent Application No. PCT/US02/31649, Date of Mailing Mar. 5, 2004. |
Official Action for Canadian Patent Application No. 2,461,320, dated Jun. 10, 2008. |
Official Action for Canadian Patent Application No. 2,461,320, dated Sep. 28, 2009. |
Notice of Allowance for Canadian Patent Application No. 2,461,320, dated Feb. 18, 2011. |
Supplementary European Search Report for European Patent Application No. 02778433, dated Nov. 14, 2005. |
Official Action for European Patent Application No. EP02778433, dated Apr. 13, 2010. |
Notice of Intent to Grant European patent for European Patent Application No. 02778433.9, dated Feb. 6, 2012. |
Decision to Grant a European Patent Pursuant to Article 97(1) EPC for European Patent Application No. 027784339., mailed Jun. 28, 2012. |
Extended European Search Report for European Application No. 12002728.9 mailed Sep. 14, 2012. |
Communication Pursuant to Rule 69 EPC and Rule 70a(1) EPC for European Application No. 12002728.9 mailed Oct. 22, 2012. |
Official Action for U.S. Appl. No. 10/264,258, mailed Oct. 18, 2006. |
Official Action for U.S. Appl. No. 10/264,258, mailed Apr. 27, 2007. |
Official Action for U.S. Appl. No. 10/264,258, mailed Jan. 28, 2008. |
Notice of Allowance for U.S. Appl. No. 10/264,258, mailed Sep. 23, 2008. |
Official Action for U.S. Appl. No. 12/247,741, mailed Nov. 20, 2009. |
Official Action for U.S. Appl. No. 12/247,741, mailed Apr. 14, 2010. |
Notice of Allowability for U.S. Appl. No. 12/247,741, mailed Jul. 29, 2010. |
Supplemental Notice of Allowability for U.S. Appl. No. 12/247,741, mailed Aug. 3, 2010. |
Notice of Allowability for U.S. Appl. No. 12/247,741, mailed Aug. 27, 2010. |
Official Action for U.S. Appl. No. 12/769,277, mailed Jan. 10, 2011. |
Official Action for U.S. Appl. No. 12/769,277, mailed Apr. 13, 2011. |
Notice of Allowance for U.S. Appl. No. 12/769,277, mailed May 19, 2011. |
Official Action for U.S. Appl. No. 12/783,777, mailed Feb. 15, 2011. |
Official Action for U.S. Appl. No. 12/783,777, mailed Nov. 18, 2011. |
Official Action for U.S. Appl. No. 12/783,777, mailed Jun. 6, 2012. |
Official Action for U.S. Appl. No. 12/783,777, mailed Aug. 16, 2012. |
Notice of Allowance for U.S. Appl. No. 12/783,777, mailed Jan. 4, 2013. |
Official Action for U.S. Appl. No. 13/863,058, mailed Feb. 10, 2014. |
Official Action for U.S. Appl. No. 13/863,058, mailed Jun. 9, 2014. |
Notice of Allowance for U.S. Appl. No. 13/863,058, mailed Jun. 24, 2014. |
Official Action for U.S. Appl. No. 14/465,502 mailed Nov. 20, 2014. |
Notice of Allowance for U.S. Appl. No. 14/465,502 mailed Feb. 11, 2015. |
U.S. Appl. No. 60/078,549, filed Mar. 19, 1998, Jacobsen et al. |
Bauer, Rainer et al, “Iterative Source/Channel-Decoding Using Reversible Variable Length Codes” Munich University of Technology, 2000 (10 pages). |
Broadband Forum—Technical Report “TR-042: ATM Transport Over ADSL Recommendation (Updated to TR-017)” Aug. 2001 (34 pages). |
Business Wire “New FatPipe T1 Speed Product Produces Speeds up to 4.5Mbps and Redundancy for a Fraction of the Cost of a Fractional T3!” Business Wire, Oct. 16, 1998 (2 pages). |
Cisco Systems, Inc, “Alternatives for High Bandwidth Connections Using Parallel T1/E1 Links” 1998 (8 pages). |
DSL Forum Technical Report TR-042 “ATM Transport over ADSL Recommendation” Aug. 2001 (32 pages). |
Goodman, David et al. “Maximizing the Throughput to CDMA Data Communications” Polytechnic University, Brooklyn, NY (5 pages). |
“Inverse Multiplexing for ATM (IMA) Specification Version 1.0” The ATM Forum—Technical Committee, AF-PHY-0086.001, Jul. 1997 (135 pages). |
“Inverse Multiplexing for ATM (IMA) Specificat on Version 1. ” The ATM Forum—Technical Committee, AF-PHY-0086.001, Mar. 1999 (185 pages). |
ITU-T Recommendation G.992.1, “Asymmetric digital subscriber line (ADSL) transceivers,” Telecommunication Standardization Sector of ITU, Jun. 1999, 256 pages. |
ITU-T Recommendation G.992.3, “Asymmetric Digital Subscriber Line Transceivers 2 (ADSL2)” International Telecommunication Union, Apr. 2009, 404 pages. |
ITU-T Recommendation G.992.3 Annex C, “Annex C: Specific Requirements for an ADSL System Operating in the Same Cable as ISDN as Defined in Appendix III of Recommendation ITU-T G.961” International Telecommunication Union, Apr. 2009, 296 pages. |
Johns, David A., et al. “Integrated Circuits for Data Transmission Over Twisted-Pair Channels” IEEE Journal of Solid-State Circuits, vol. 32, Nov. 3, Mar. 1997 (9 pages). |
Petzold, Mark C. et al “Multicarrier Spread Spectrum Performance in Fading Channels with Serial Concatenated Convolutional Coding” IEEE 1998 (4 pages). |
Sklower, K. et al. “The PPP Multilink Protocol (MP)” Network Working Group, Nov. 1994 (15 pages). |
Wolman, Alec et al. “Latency Analysis of TCP on an ATM Network” University of Washington, Printed Sep. 19, 2014 (14 pages). |
Documents filed with District Court Proceedings for TQ Delta, LLC v. 2WIRE, Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-01835-RGA; Includes documents filed from Nov. 4, 2013-Oct. 19, 2015—Docket Nos. 1-122; (3,844 pages). |
Defendant 2WIRE, Inc.'s Preliminary Invalidity Contentions with Regard to Representative Asserted Claims for TQ Delta, LLC v. 2WIRE, Inc.—Including Claim Chart for FAMILY 2, Exhibits E-1 to E-5; In the United States District Court for the District of Delaware; Civil Action No. 13-01835-RGA; filed Sep. 24, 2015 (115 pages). |
Documents filed with District Court Proceedings for TQ Delta, LLC v. Zhone Technologies Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-01836-RGA; Includes documents filed from Nov. 4, 2013-Nov. 30, 2015—Docket Nos. 1-100; (1722 pages). |
Defendant Zhone Technologies, Inc.'s Invalidity Contentions with Regard to Representative Asserted Claims for TQ Delta, LLC v. Zhone Technologies, Inc.—Including Claim Charts for FAMILY 2 with Exhibits 31-42; In the United States District Court for the District of Delaware; Civil Action No. 13-01836-RGA; filed Sep. 25, 2015 (224 pages). |
Documents filed with District Court Proceedings for TQ Delta, LLC v. Zyxel Communications Inc. et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-02013-RGA; Includes documents filed from Dec. 9, 2013-Nov. 30, 2015—Docket Nos. 1-117; (1996 pages). |
Defendant Zyxel's Initial Invalidity Contentions with Respect to Representative Asserted Claims for TQ Delta, LLC v. Zyxel Communications, Inc. and Zyxel Communications Corporation—Including Claim Chart for FAMILY 2, Exhibits B1-B12; In the United States District Court for the District of Delaware; Civil Action No. 13-02013-RGA; filed Sep. 25, 2015 (227pages). |
Documents filed with District Court Proceedings for TQ Delta, LLC v. Adtran Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:14-cv-00954-RGA; Includes documents filed from Jul. 17, 2014-Oct. 19, 2015—Docket Nos. 1-65; (2,489 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. 2WIRE, INC.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-01835-RGA; Includes documents filed from Nov. 10, 2015-Jan. 5, 2016; (102 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. 2WIRE, INC.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-01835-RGA; Includes documents filed from Jan. 20, 2016-Feb. 2, 2016; (104 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. ZHONE TECHNOLOGIES INC.: U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-01836-RGA; Includes documents filed from Dec. 16, 2015-Jan. 6, 2016; (193 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. ZHONE TECHNOLOGIES INC.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No, 1:13-cv-01836- RGA; Includes documents filed from Jan. 20, 2016-Feb. 8, 2016; (252 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. ZYXEL COMMUNICATIONS INC, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-02013-RGA; Includes documents filed from Dec. 16, 2015-Dec. 16, 2015; (48 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. ZYXEL COMMUNICATIONS INC. et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:13-cv-02013-RGA: Includes documents filed from Jan. 20, 2016-Feb. 8, 2016; (349 pages). |
Documents filed with District Court Proceedings for TQ DELTA, LLC v. ADTRAN INC.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:14-cv-00954-RGA; Includes documents filed from Jan. 20, 2016-Feb. 8, 2016; (81 pages). |
Number | Date | Country | |
---|---|---|---|
20150215239 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
60327440 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14465502 | Aug 2014 | US |
Child | 14682435 | US | |
Parent | 13863058 | Apr 2013 | US |
Child | 14465502 | US | |
Parent | 12783777 | May 2010 | US |
Child | 13863058 | US | |
Parent | 12769277 | Apr 2010 | US |
Child | 12783777 | US | |
Parent | 12247741 | Oct 2008 | US |
Child | 12769277 | US | |
Parent | 10264258 | Oct 2002 | US |
Child | 12247741 | US |