Bone anchors may be used in orthopedic surgery to fix bone during the healing or fusion process. In spinal surgery, bone anchors may be used with spinal fixation elements, such as spinal rods, to stabilize multiple vertebrae either rigidly, in which no relative motion between the vertebrae is desired, and dynamically, in which limited, controlled motion between the vertebrae is desired. A closure mechanism is typically used to secure the spinal fixation element to the bone anchor. While various types of closure mechanisms have been developed, the most commonly used closure mechanisms engage the bone anchor through a threaded connection. Conventional threaded connections attempt to minimize the lateral transfer of the axial tightening force in an effort to minimize deformation of the bone anchor and splaying of the bone anchor. Such threaded connections can be difficult and expensive to manufacture. Accordingly, there is a need for improved threaded connections between the closure mechanism and the bone anchor.
Disclosed herein are improved bone anchor assemblies and, in particular, improved bone anchor assemblies used in connection with spinal fixation elements to fix multiple vertebrae.
In accordance with one aspect, a bone anchor assembly may include a bone anchor having a proximal head and a distal shaft configured to engage bone, a receiver member for receiving a spinal fixation element to be coupled to the bone anchor, and a closure mechanism. The receiver member may have a proximal end having a pair of spaced apart arms defining a recess therebetween and a distal end having a distal end surface defining opening through which at least a portion of the bone anchor extends. The closure mechanism may be positionable between the arms to capture a spinal fixation element within the receiver member and fix the spinal fixation element with respect to the receiver member. The closure mechanism may include an outer thread for engaging an inner thread on the arms of the receiver member. The inner thread and the outer thread may have a thread angle between 5° and 25°.
These and other features and advantages of the devices and methods disclosed herein will be more fully understood by reference to the following detailed description in conjunction with the attached drawings in which like reference numerals refer to like elements through the different views. The drawings illustrate principles of the devices and methods disclosed herein and, although not to scale, show relative dimensions.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The terms “comprise,” “include,” and “have,” and the derivatives thereof, are used herein interchangeably as comprehensive, open-ended terms. For example, use of “comprising,” “including,” or “having” means that whatever element is comprised, had, or included, is not the only element encompassed by the subject of the clause that contains the verb.
Continuing to refer to
The distal shaft 20 of the bone anchor 12 may be configured to engage bone and, in the illustrated embodiment, includes an external bone engaging thread 40. The thread form for the distal shaft 20, including the number of threads, the pitch, major and minor diameter, and thread shape, may be selected to facilitate connection with bone. Examples of exemplary thread forms are disclosed in U.S. patent application Ser. No. 13/110,378, filed May 18, 2011, and U.S. Provisional Patent Application Ser. No. 61/527,389, filed Aug. 25, 2011, both of which are incorporated herein by reference. Alternatively, the distal shaft 20 may include other structures for engaging bone, including a hook. The distal shaft 20 of the bone anchor 12 may be cannulated, having a central passage or cannula extending the length of the bone anchor to facilitate delivery of the bone anchor over a guide wire in, for example, minimally invasive procedures. The other components of the bone anchor assembly, including the closure member 16, the receiver member 14, and the compression member 60 (discussed below) may be cannulated or otherwise have an opening to permit the respective component to be delivered over a guide wire. The distal shaft 20 may also include one or more side wall openings or fenestrations that communicate with the cannula to permit bone in-growth or to permit the dispensing of bone cement or other materials through the bone anchor 10. The side wall openings may extend radially from the cannula through the side wall of the distal shaft 20. Exemplary systems for delivering bone cement to the bone anchor assembly 10 and alternative bone anchor configurations for facilitating cement delivery are described in U.S. Patent Application Publication No. 2010/0114174, which is hereby incorporated herein by reference. The distal shaft 20 of the bone anchor 12 may also be coated with materials to permit bone growth, such as, for example, hydroxyl apatite, and the bone anchor assembly 10 may be coated all or in-part with anti-infective materials, such as, for example, tryclosan.
Continuing to refer to
The distal end 32 of the receiver member 14 includes a distal end surface 34 which is generally annular in shape defining a circular opening through which at least a portion of the bone anchor 12 extends. For example, the distal shaft 20 of the bone anchor 12 may extend through the opening. At least a portion of the distal end surface 34 defines a plane X.
The exemplary bone anchor assembly is a rigid polyaxial screw in which the bone anchor 12 can be selectively fixed relative to the receiver member 14. Prior to fixation, the bone anchor 12 is movable relative to the receiver member 14 within a cone of angulation generally defined by the geometry of the distal end 32 of the receiver member and the proximal head 18 of the bone anchor 12. The exemplary bone anchor is a favored-angle polyaxial screw in which the cone of angulation is biased in one direction. In this manner, the bone anchor 12 is movable relative to the receiver member 14 in at least a first direction, indicated by arrow A in
The spinal fixation element, e.g., spinal rod 22, may either directly contact the proximal head 18 of the bone anchor 12 or may contact an intermediate element, e.g., a compression member 60, positioned within the receiver member 14 and interposed between the spinal rod 22 and the proximal head 18 of the bone anchor 12 to compress the distal outer surface 38 of the proximal head 18 into direct, fixed engagement with the distal inner surface of the receiver member 18. In the exemplary embodiment, the compression member 60 includes a pair of spaced apart arms 62A and 62B defining a U-shaped seat 64 for receiving the spinal rod 22 and a distal surface 66 for engaging the proximal head 18 of the bone anchor 12.
The proximal end 26 of the receiving member 14 may be configured to receive a closure mechanism 16 positionable between and engaging the arms 28A and 28B of the receiver member to capture a spinal fixation element, e.g., a spinal rod 22, within the receiver member 14, to fix the spinal rod 22 relative to the receiver member 14, and to fix the bone anchor 12 relative to the receiver member 14. In certain exemplary embodiments, the closure mechanism 16 may be a single set screw having an outer thread for engaging an inner thread 42 provided on the arms 28A and 28B of the receiver member 14. In the exemplary embodiment, the closure mechanism 16 comprises an outer set screw 70 positionable between and engaging the arms 28A and 28B of the receiver member 14 and an inner set screw 72 positionable within the outer set screw 70. The outer set screw 70 is operable to act on the compression member 60 to fix the bone anchor 12 relative to the receiver member 14. The inner set screw 72 is operable to act on the spinal rod 22 to fix the spinal rod 22 relative to the receiver member 14. In this manner, the closure mechanism 16 permits the bone anchor 12 to be fixed relative to the receiver member 14 independently of the spinal rod 22 being fixed to the receiver member 14. In particular, the outer set screw 70 can engage the proximal end surfaces of the arms 62A and 62B of the compression member 60 to force the distal surface 66 of the compression member 60 into contact with the proximal head 18 of bone anchor 12, which in turn forces the distal surface 38 of the proximal head 18 into the fixed engagement with the distal inner surface of the receiver member 14. The inner set screw 72 can engage the spinal rod 22 to force the spinal rod 22 into fixed engagement with the rod seat 64 of the compression member 60.
The outer set screw 70 of the exemplary closure mechanism 16 includes a first outer thread 74 for engaging the complementary inner thread 42 on the arms 28A and 28B of the receiver member 14. As illustrated in
The outer thread 74 comprises a plurality of uniform thread ridges 76 separated from one another by a root 78. Each thread ridge includes a first flank 80 extending from a root 78, a second flank 82 extending from a root 78, a crest 84 connecting the first flank 80 and second flank 82. A root 78 and the crest 84 of an adjacent thread ridge 76 may be planar and may be oriented parallel to a central axis of the outer set screw 70. The first flank 80 and the second flank 82 may also be planar. The inner thread 42 comprises a plurality of uniform thread ridges 86 separated from one another by a root 88. Each thread ridge includes a first flank 90 extending from a root 88, a second flank 92 extending from a root 88, a crest 94 connecting the first flank 90 and second flank 92. A root 88 and the crest 94 of an adjacent thread ridge 86 may be planar and may be oriented parallel to the longitudinal axis L of the receiver member 14. The first flank 90 and the second flank 92 may also be planar. For both the inner thread 42 and the outer thread 74, the number of threads, the pitch, and the major and minor diameter may be selected to facilitate the connection between the outer set screw 70 and the receiver member 14 and transfer of the desired axial tightening force.
The outer set screw 74 may have a central passage 96 from a top surface 98 of the outer set screw 74 to a bottom surface 100 of the outer set screw 74 for receiving the inner set screw 72. The central passage 96 may have an inner thread 102 for engaging a complementary outer thread 104 on the inner set screw 72. The thread form for the inner thread 102 and the outer thread 104, including the number of threads, the pitch, major and minor diameter, and thread shape, may be selected to facilitate connection between the components and transfer of the desired axial tightening force. In the illustrated embodiment, for example, the inner thread 102 and the outer thread 104 are M7×1 metric threads. The top surface 98 of the outer set screw 74 may have one or more drive features to facilitate rotation and advancement of the outer set screw 74 relative to the receiver member 14. In the exemplary embodiment, the drive features are a plurality of cut-outs 106 spaced-apart about the perimeter of the top surface 98. In the inner set screw 104 may include drive feature for receiving an instrument to rotate and advance the inner set screw 72 relative to the outer set screw 74. In the illustrated embodiment, for example, the inner set screw 104 includes a central passage 108 having a plurality of spaced apart, longitudinally oriented cut-outs for engaging complementary features on an instrument.
The exemplary bone anchor assembly 10 may be used with a spinal fixation element such as rigid spinal rod 22. The spinal rod 22 may be constructed from titanium, titanium alloys, stainless steel, cobalt chrome, PEEK, or other materials suitable for rigid fixation. Alternatively, the spinal fixation element may be a dynamic stabilization member that allows controlled mobility between the instrumented vertebrae.
The closure mechanism 115 may include an inner set screw, such as inner set screw 72 described above, for positioning within the central passage 121.
In use, an outer set screw 221 with an internally threaded central passage is connected to the proximal end 205 of the inner shaft 203 by rotational, threaded engagement of the first outer thread 209 with the internally thread central passage of the outer set screw 221, as illustrated in
While the devices and methods of the present invention have been particularly shown and described with reference to the exemplary embodiments thereof, those of ordinary skill in the art will understand that various changes may be made in the form and details herein without departing from the spirit and scope of the present invention. Those of ordinary skill in the art will recognize or be able to ascertain many equivalents to the exemplary embodiments described specifically herein by using no more than routine experimentation. Such equivalents are intended to be encompassed by the scope of the present invention and the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/547,274, filed Oct. 14, 2011, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61547274 | Oct 2011 | US |