Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method

Abstract
A dynamic stabilization, motion preservation spinal implant system includes an anchor system, a horizontal rod system and a vertical rod system. The systems are modular so that various constructs and configurations can be created and customized to a patient.
Description
BACKGROUND OF INVENTION

The most dynamic segment of orthopedic and neurosurgical medical practice over the past decade has been spinal devices designed to fuse the spine to treat a broad range of degenerative spinal disorders. Back pain is a significant clinical problem and the annual costs to treat it, both surgical and medical, is estimated to be over $2 billion. Motion preserving devices to treat back and extremity pain has, however, created a treatment alternative to fusion for degenerative disc disease. These devices offer the possibility of eliminating the long term clinical consequences of fusing the spine that is associated with accelerated degenerative changes at adjacent disc levels.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of a dynamic spine stabilization system of the invention.



FIG. 1A is a posterior view of the embodiment of FIG. 1 implanted in a spine.



FIG. 2 is a top view of the embodiment of FIG. 1.



FIG. 3 is a perspective view of an embodiment of a horizontal rod system of the invention for use with a dynamic spine stabilization system such as depicted in FIG. 1.



FIG. 4 is a perspective view of an alternative embodiment of a horizontal rod system of the invention for use with a dynamic spine stabilization system such as depicted in FIG. 1.



FIG. 5 is a perspective view of an embodiment of an anchor system of the invention for use with a dynamic spine stabilization system such as depicted in FIG. 1.



FIG. 6 is a another perspective view of the embodiment of the anchor system of FIG. 5.



FIG. 7 is an exploded perspective view of an alternative embodiment of the anchor system of the invention for use with a dynamic spine stabilization system such as depicted in FIG. 1.



FIG. 8 is a sectioned view of a portion of embodiment of the alternative anchor system of FIG. 7 of the invention.



FIG. 9 is a side view of the anchor system of FIG. 7 depicting a degree of freedom of movement of the anchor system of FIG. 7.



FIG. 9A is an end view of the anchor system of FIG. 9.



FIG. 10 is a side view of the anchor system of FIG. 7 depicting another degree of freedom of movement of the anchor system of FIG. 7.



FIG. 10A is an end view of the anchor system of FIG. 10.



FIG. 11 is a side view of the anchor system of FIG. 7 depicting yet another degree of freedom of movement of the anchor system of FIG. 7.



FIG. 11A is an end view of the anchor system of FIG. 11.



FIG. 12 is a perspective view of yet another embodiment of the anchor system of the invention.



FIG. 13 is an exploded perspective view of the embodiment of the anchor system of the invention of FIG. 12.



FIG. 14 is a perspective view of yet another embodiment of the anchor system of the invention.



FIG. 15 is an exploded perspective view of the embodiment of the anchor system of the invention of FIG. 14.



FIG. 16 is another exploded perspective view of the embodiment of the anchor system of the invention of FIG. 14.



FIG. 17 is an exploded perspective view of another embodiment of the anchor system of the invention.



FIG. 18 is a perspective view of yet another embodiment of the anchor system of the invention.



FIG. 19 is a perspective view of another embodiment of a dynamic spine stabilization system of the invention with another horizontal rod system.



FIG. 19A is a perspective view of another horizontal rod system of the invention as depicted in FIG. 19 and partially shown in phantom form.



FIG. 19B is an exploded perspective view of the embodiment of FIG. 19.



FIG. 19C is a side view of the embodiment of FIG. 19.



FIG. 20 is a top view of the another embodiment of the dynamic spine stabilization of the system of the invention of FIG. 19.



FIG. 20A is a top side of the embodiment depicted in FIG. 19A.



FIG. 21 is another perspective view of the embodiment of the dynamic spine stabilization of the invention of FIG. 19.



FIG. 22 is a side view the embodiment of the horizontal rod system of the invention as depicted in FIG. 19 configured in a closed position for implantation.



FIG. 22A is an end view of the embodiment depicted in FIG. 22.



FIG. 23 is a side view partially in phantom form of the horizontal rod system of FIG. 22.



FIG. 24 is a side view of the embodiment of FIG. 22 in an open position as used when the embodiment is deployed in a spine.



FIG. 25 is an end view of the embodiment depicted in FIG. 24.



FIG. 26 is a perspective view of yet another embodiment of the horizontal rod system of the invention.



FIG. 27 is a side view of the embodiment of the horizontal rod system of the invention of FIG. 26.



FIG. 28 is a perspective view of still another embodiment of the horizontal rod system of the invention.



FIG. 29 is a side view of the embodiment of the horizontal rod system of the invention of FIG. 28.



FIG. 30 is a top view of another embodiment of the horizontal rod system of the invention as depicted in FIG. 1 with the horizontal rod system in an undeployed position ready for implantation.



FIG. 31 is a top view of the embodiment of the horizontal rod system of FIG. 30 in a deployed position after implantation.



FIG. 32 is a side view, partially in phantom of the embodiment depicted in FIG. 30.



FIG. 33 is a side view of an alternative embodiment of the horizontal rod system of the invention.



FIG. 33A is a side view of yet another embodiment of the horizontal rod system of the invention.



FIG. 34 is a side view of another alternative embodiment of the horizontal rod system of the invention.



FIG. 34A is a perspective view of yet another embodiment of the horizontal rod system of the invention.



FIG. 34B is a side view of the embodiment of FIG. 34A.



FIG. 34C is a top view of the embodiment of FIG. 34A.



FIG. 35 is a side view of still another alternative embodiment of the horizontal rod system of the invention.



FIG. 36 is a side view of yet another alternative embodiment of the horizontal rod system of the invention.



FIG. 37 is a side view of another alternative embodiment of the horizontal rod system of the invention.



FIG. 38 is a side view of another alternative embodiment of the horizontal rod system of the invention.



FIG. 39 is a side view of yet another alternative embodiment of the horizontal rod system of the invention.



FIG. 39A is still another embodiment of the horizontal rod system and the anchor system of the invention.



FIG. 39B is yet another embodiment of the horizontal rod system and the anchor system of the invention.



FIG. 40 is a perspective view of another embodiment of a dynamic spine stabilization system of the invention.



FIG. 41 is a perspective view of still another embodiment of a dynamic spine stabilization system of the invention.



FIG. 42 is a side view of an embodiment of a two level dynamic spine stabilization system of the invention.



FIG. 43 is a side view of yet another embodiment of a two level dynamic spine stabilization system of the invention.



FIG. 43A is a side view of an alternative embodiment of a dynamic spine stabilization system of the invention.



FIG. 44 is a side view of an embodiment of a fusion system of the invention.



FIG. 45 is a side view of an embodiment of a two level fusion system of the invention.



FIGS. 45A, 45B are perspective and side views of still another fusion system of an embodiment of the invention that has a transition level.



FIG. 46 is a flow chart of an embodiment of the method of the invention.



FIG. 47 is yet another embodiment of the horizontal rod system of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention include a system or implant and method that can dynamically stabilize the spine while providing for preservation of spinal motion. Alternative embodiments can be used for spine fusion.


Embodiments of the invention include a construct with an anchoring system, a horizontal rod system that is associated with the anchoring system and a vertical rod system that is associated with the anchoring system and the horizontal rod system.


An advantage and aspect of the system is that the anchoring system includes a head or saddle that allows for appropriate, efficient and convenient placement of the anchoring system relative to the spine in order to reduce the force that is placed on the anchoring system. The anchor system has enhanced degrees of freedom which contribute to the ease of implantation of the anchor system. Accordingly, the anchor system is designed to isolate the head and the screw from the rest of the dynamic stabilization system and the forces that the rest of the dynamic stabilization system can place on the anchor system and the anchor system/bone interface. Thus, the anchor system can provide a secure purchase in the spine.


Another advantage and aspect of the system is that the horizontal rod system is in part comprised of a super elastic material that allows for convenient positioning of the horizontal rod system relative to the anchor system and allows for isolation of the horizontal rod system from the anchor system so that less force is placed on the anchor system from the horizontal rod system and on the anchor system/bone interface. Accordingly, unlike prior devices the anchor system stays secure in the bone of the spine.


An aspect and advantage of the invention is the ability to maximize the range of motion of the spine after embodiments of the dynamic stabilization, motion preservation implant of the invention are implanted in a patient. While traditional solutions to back pain include fusion, discectomy, and artificial implants that replace spine structure, embodiments of the present invention preserve the bone and ligament structure of the spine and preserve a wide range of motion of the spine, while stabilizing spines that were heretofore unstable due to degenerative and other spinal diseases.


Still another aspect of the invention is the preservation of the natural motion of the spine and the maintenance of the quality of motion as well as the wide range of motion so that the spine motion is as close to that of the natural spine as possible. The present embodiments of the invention allow for the selection of a less stiff, yet dynamically stable implant for use in a non-fusion situation. A less stiff, yet dynamically stable implant relates directly to a positive patient outcome, including patient comfort and the quality of motion of the spine.


In another aspect of the invention, load sharing is provided by the embodiment, and, in particular, the deflection rod or loading rod of the embodiment. For embodiments of this invention, the terms “deflection rod” and “loading rod” can be used interchangeably. Accordingly this aspect of the invention is directed to restoring the normal motion of the spine. The embodiment provides stiffness and support where needed to support the loads exerted on the spine during normal spine motion, which loads, the soft tissues of the spine are no longer able to accommodate since these spine tissues are either degenerated or damaged. Load sharing is enhanced by the ability to select the appropriate stiffness of the deflection rod or loading rod in order to match the load sharing desired. By selecting the appropriate stiffness of the deflection rod or loading rod to match the physiology of the patient and the loads that the patient places on the spine, a better outcome is realized for the patient. Prior to implantation of the embodiment, the stiffness of the implant of the system can be selected among a number of loading rods. In other words, the stiffness is variable depending on the deflection rod or loading rod selected. In another aspect, the load sharing is between the spine and the embodiment of the invention.


In another aspect of the invention, the deflection rod or loading rod is cantilevered. In another aspect the deflection rod or loading rod is cantilevered from a horizontal rod. In yet another aspect the deflection rod or loading rod is cantilevered from a horizontal rod that is connected between two anchors that are affixed to the same vertebra. In yet another aspect the deflection rod or loading rod is about parallel to the horizontal rod in a resting position. In still a further, aspect the deflection rod or loading rod is cantilevered from a mount on the horizontal rod and said deflection rod or loading rod is about parallel to the horizontal rod in a resting position.


In another aspect of the invention the horizontal rod attached directly to opposite anchors is stiff and rigid, and the cantilevered deflection rod or cantilevered loading rod shares the load with the spine resulting from the motions of the body of the patient.


In another aspect of embodiments of the invention, the load being absorbed or carried by the embodiment is being distributed along at least part of the length of the deflection rod or loading rod. In another aspect of the invention, the load being absorbed or carried by the embodiment is distributed along at least part of the length of the horizontal cantilevered deflection rod or horizontal cantilevered loading rod.


As the load is carried horizontally along the deflection rod or loading rod, rather than vertically, the embodiments of the invention can be made smaller in order to fit in more spaces relative to the spine. Advantageously, the embodiments can fit in the L5-S1 space of the spine.


An aspect of the invention is to preserve and not restrict motion between the pedicles of the spine through the use of appropriately selected horizontal and vertical rods of embodiments of the invention.


An aspect of the invention is to provide for load bearing on horizontal elements such as horizontal rods instead of vertical elements or rods, and, in particular, vertical elements that are connected between bone anchoring systems.


An aspect of the invention is the use of horizontal rods in the embodiments of the invention in order to isolate each level of the implantation system from the other so as not to put undue force and/or torque on anchoring systems of embodiment of the invention and associated bone, and so as to allow customization of the implantation system to the need of the patient. Accordingly, an aspect of the invention is to provide for minimized loading on the bone/implantation system interface. Customization, in preferred embodiments, can be achieved by the selection of the horizontal rod with the desired stiffness and stiffness characteristics. Different materials and different implant configurations enable the selection of various stiffness characteristics.


Another aspect of the invention is the ability to control stiffness for extension, flexion, lateral bending and axial rotation, and to control stiffness for each of these motions independently of the other motions.


An aspect of the invention is to use the stiffness and load bearing characteristics of super elastic materials.


Another aspect of the invention is to use super elastic materials to customize the implant to the motion preservation and the dynamic stabilization needs of a patient. An aspect of such embodiments of the invention is to provide for a force plateau where motion of the implantation system continues without placement of additional force of the bone anchor system, or, in other words, the bone/implantation system interface.


Thus, an aspect of the invention is to use the horizontal bar to offset loading on the anchor system and on the implantation system in general.


Accordingly, an aspect of the invention is to be able to selectively vary the stiffness and selectively vary the orientation and direction that the stiffness is felt by varying the structure of the implantation system of the invention, and, in particular, to vary the stiffness of the horizontal rod system of the invention.


Another aspect of embodiments of the invention is to prevent any off-axis implantation by allowing the implantation system to have enhanced degrees of freedom of placement of the implant. Embodiments of the invention provide for off-axis placement of bone anchor or pedicle screw systems.


A further aspect of embodiments of the invention is to control stabilized motion from micro-motion to broad extension, flexion, axial rotation, and lateral bending motions of the spine.


Yet another aspect of the embodiments of the invention is to be able to revise a dynamic stabilization implant should a fusion implant be indicated. This procedure can be accomplished by, for example, the removal of the horizontal rods of the implantation system and replacement of such rods with stiffer rods. Accordingly, an aspect of the invention is to provide for a convenient path for a revision of the original implantation system, if needed.


A further aspect of the invention, due to the ease of implanting the anchoring system and the ease of affixing vertical rods to the horizontal rods of the invention, is the ability to accommodate the bone structure of the spine, even if adjacent vertebra are misaligned with respect to each other.


A further aspect of the invention is that the implant is constructed around features of the spine such as the spinous processes and, thus, such features do not need to be removed and the implant does not get in the way of the normal motion of the spine features and the spine features do not get in the way of the operation of the implant.


Another aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate embodiments and components of embodiments of the invention for implantation in a patient. Further embodiments of the invention allow for fused levels (in conjunction with, if desired, bone graphs) to be placed next to dynamically stabilized levels with the same implantation system. Such embodiments of the invention enable vertebral levels adjacent to fusion levels to be shielded by avoiding an abrupt change from a rigid fusion level to a dynamically stable, motion preserved, and more mobile level.


Accordingly, another aspect of the embodiments of the invention is to provide a modular system that can be customized to the needs of the patient. Horizontal rods can be selectively chosen for the particular patient as well the particular levels of the vertebrae of the spine that are treated. Further, the positioning of the various selected horizontal rods can be selected to control stiffness and stability.


Another aspect of embodiments of the invention is that embodiments can be constructed to provide for higher stiffness and fusion at one level while allowing for lower stiffness and dynamic stabilization at another adjacent level.


Yet a further aspect of the invention is to provide for dynamic stabilization and motion preservation while preserving the bone and tissues of the spine in order to lessen trauma to the patient and to use the existing functional bone and tissue of the patient as optimally as possible in cooperation with embodiments of the invention.


Another object of the invention is to implant the embodiments of the invention in order to unload force from the spinal facets and other posterior spinal structures and also the intervertebral disk.


A further aspect of the invention is to implant the embodiment of the invention with a procedure that does not remove or alter bone or tear or sever tissue. In an aspect of the invention the muscle and other tissue can be urged out of the way during the inventive implantation procedure.


Accordingly, an aspect of the invention is to provide for a novel implantation procedure that is minimally invasive.


Dynamic Stabilization, Motion Preservation System for the Spine:


A dynamic stabilization, motion preservation system 100 embodiment of the invention is depicted in FIG. 1 and includes an anchor system 102, a horizontal rod system 104, and a vertical rod system 106. For these embodiments horizontal refers to a horizontal orientation with respect to a human patient that is standing and vertical refers to a vertical orientation with respect to a patient that is standing (FIG. 1A). As will be more fully disclosed herein below, one embodiment for the anchor system 102 includes a bone screw 108 which is mounted to a head or saddle 110. Alternatively, the bone screw 108 can be replaced by a bone hook as more fully described in U.S. Provisional Patent Application No. 60/801,871, entitled “An Implant Position Between the Lamina to Treat Degenerative Disorders of the Spine,” which was filed on Jun. 14, 2006, and is incorporated herein by reference and in its entirety. The mounting of the head or saddle 110 to the bone screw 108 allows for multiple degrees of freedom in order that the bone screw 108 may be appropriately, conveniently, and easily placed in the bone of the spine and in order to assist in isolating the bone screw 108 from the remainder of the system 100 so that less force is placed on the anchor system 102 and on the bone screw/bone interface. Some prior art devices, which use such bone screws, have, on occasion, had the bone screws loosen from the spine, and the present embodiment is designed to reduce the force on the bone screw and on the bone screw/bone interface. Preferably, the anchor system 102 is comprised of titanium. However, other biocompatible materials such as stainless steal and/or PEEK can be used.


In the embodiment of FIG. 1, the horizontal bar system 104 is preferably secured through the head 110 of the anchor system 102 with a locking set screw 112. This embodiment includes a first horizontal rod 114 and a second horizontal rod 116. The first horizontal rod 114 has first and second deflection rods or loading rods 118 and 120 secured thereto. In a preferred embodiment, the first horizontal rod can be comprised of titanium, stainless steel or PEEK or another biocompatible material, and the first and second deflection rods or loading rods can be comprised of a super elastic material. Preferably, the super elastic material is comprised on Nitinol (NiTi). In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However, for biocompatibility, the nickel-titanium is the preferred material.


Such an arrangement allows for the horizontal rod system 104 to isolate forces placed thereon from the anchor system 102 and, thus, isolate forces that could be placed on the bone screw 108 and the bone screw/bone interface of the spine, and, thus, prevent the loosening of the bone screw 108 in the spine. As shown in FIG. 1 the deflection rods or loading rods 118 and 120, in this preferred embodiment, are mounted in the center of the first horizontal rod 114 to a mount 122. Preferably, the deflection rods or loading rods 118 and 120 are force fit into the mount 122. Alternatively, the deflection rods or loading rods may be screwed, glued, or laser welded to the mount 122 and to bores placed in the mount 122. Other fastening techniques are within the scope and spirit of the invention. As can be seen in FIGS. 1, 3, and 4, the first horizontal rod 114 includes first and second ridges 124, 126 located on either side of the mount 122 and extend at least partially along the length of the first horizontal rod 114 toward the respective ends of the horizontal rod 114. These ridges 124, 126 add rigidity to the mount 122 relative to the rest of the horizontal rod system 104.


As seen in FIG. 1, the deflection rods or loading rods 118, 120 have a constant diameter extending outwardly toward the respective ends 128, 130 of the deflection rods or loading rods 118, 120. Alternatively, the deflection rods or loading rods 118, 120 can have a varying diameter as the rods 118, 120 approach their respective ends 128, 130. Preferably, as depicted and discussed below, the rods 118 and 120 can have a decreasing diameter as the rods approach the respective ends 128, 130. The decreasing diameter allows the super elastic rods 118, 120 to be more flexible and bendable along the length of the rods as the rods approach the ends 128, 130 and to more evenly distribute the load placed on the system 100 by the spine. Preferably, the diameter of the deflection rods or loading rods continuously decreases in diameter. However, it can be understood that the diameter can decrease in discrete steps along the length, with the diameter of one step not being continuous with the diameter of the next adjacent step. Alternatively, for different force and load carrying criteria the diameters of the deflection rods or loading rods can continuously increase in diameter or can have discreet step increases in diameter along the length of the deflection rods or loading rods as the rods extent toward the respective ends 128, 130. Still further, the rods can have at least one step of decreasing diameter and at least one step of increasing diameter in any order along the length of the deflection rods or loading rods as the rods approach the respective ends 128, 130, as desired for the force and load carrying characteristics of the deflection rods or loading rods 118, 120.


With respect to FIG. 3, for example, the horizontal rod system 104, and, in particular, the deflection rods 118, 120, share the load carried by the spine. This load sharing is directed to restoring the normal motion of the spine. This embodiment, and, in particular, the deflection rods or loading rods 118, 120, provide stiffness and support where needed to support the loads exerted on the spine during spine motion, which loads, the soft tissues of the spine are no longer able to accommodate since these spine tissues are either degenerated or damaged. Such load sharing is enhanced by the ability to select the appropriate stiffness of the deflection rods or loading rods 118, 120 in order to match the load sharing desired. By selecting the appropriate stiffness of the deflection or loading rods, to match the physiology of the patient, and the loads that the patient places on the spine, a better outcome is realized by the patient. Prior to implantation, the stiffness of the deflection or loading rods can be selected from a number of deflection or loading rods. The stiffness is variable depending on the deflection or load rod selected. As indicated herein, the stiffness of the deflection or loading rod can be varied by the shape of the rod and the selection of the material. Shape variations can include diameter, taper, direction of taper, stepped tapering, and material variation can include composition of material, just to name a few variations.


It is to be understood that the load carried by the deflection or loading rods is distributed along at least part of the length of the deflection or loading rods. Preferably, the load is distributed along the entire length of the deflection or loading rods. Further, as the load is carried horizontally and the stiffness can be varied along a horizontal member, rather than vertically, the embodiments of the invention can be made smaller in order to fit in more spaces relative to the spine. Advantageously, embodiments can fit, for example, in the L5-S1 space of the spine in addition to generally less constrained spaces such as the L4-L5 space of the spine.


With respect to the embodiment of the horizontal rod system of the invention as depicted for example in FIG. 3, the deflection rods or loading rods 118, 120 are cantilevered from mount 122. Thus, these deflection rods 118, 120 have a free end and an end fixed by the mount 112, which mount is located on the horizontal rod 114. As is evident in FIG. 3, the cantilevered deflection rods 118, 120 are about parallel in a rested position to the horizontal rod 114, and, in this embodiment, the horizontal rod is directly connected to the anchor systems and, in particular, to the heads or saddles of the anchor system. Preferably, the horizontal rod 114 is stiff and rigid and, particularly, in comparison to the deflection rods. In this arrangement, the horizontal rod system and, in particular, the deflection rods 118, 120 share the load resulting from the motions of the body of the patient.


As an alternate embodiment, the second horizontal rod 116 could be replaced with a horizontal rod 114 which has deflection rods or loading rods (FIG. 43A). Thus, both horizontal rods would have deflection rods or loading rods. The deflection rods or loading rods mounted on one horizontal rod would be connected to vertical rods and the vertical rods would be connected to deflection rods or loading rods mounted on the other horizontal rod. Such an embodiment provides for more flexibility. Further, the deflection rods or loading rods 118, 120 can have other configurations and be within the spirit and scope of the invention.


Further, as can be seen in FIG. 1, the vertical rod system is comprised of, in this embodiment, first and second vertical rods 132, 134 which are secured to first and second connectors 136, 138 located at the ends 128, 130 of the first and second deflection rods or loading rods 118, 120. As will be described below, the vertical rods 132, 134 are preferably connected in such a way as to be pivotal for purposes of implantation in a patient and for purposes of adding flexibility and dynamic stability to the system as a whole. These vertical rods 132, 134 are preferably made of titanium. However, other bio-compatible materials can be used. The vertical rods 132, 134 are also connected to the second horizontal rod 116 by being received in C-shaped mounts 140, 142 located on the second horizontal rods and in this embodiment, held in place by set screws 144,146. It is to be understood by one of ordinary skill in the art that other structures can be used to connect the vertical rods to the horizontal rods.


Preferably, the vertical rods are only connected to the horizontal rods and not to the anchoring system 102 in order to isolate the anchor system 102 and, in particular, the heads 110 from stress and forces that could be placed on the heads, and from forces transferred to the heads where the vertical rods connect to the heads. Thus, the system 100 through the vertical and horizontal rods allow for dynamic stability, and a wide range of motion without causing undue force to be placed on the heads of the anchor systems. These embodiments also allow for each level of the spine to move as freely as possible without being unduly restrictively tied to another level.


More lateral placement of the vertical rods toward the heads of the anchor system provides for more stiffness in lateral bending and an easier implant approach by, for example, a Wiltse approach as described in “The Paraspinal Sacraspinalis-Splitting Approach to the Lumber Spine,” by Leon L. Wiltse et al., The Journal of Bone & Joint Surgery, Vol. 50-A, No. 5, July 1968, which is incorporated herein by reference.


The stiffness of the system 100 can preferably be adjusted by the selection of the materials and placement and diameters of the horizontal and vertical rods and also the deflection rods or loading rods. Larger diameter rods would increase the resistance of the system 100 to flexion, extension rotation, and bending of the spine, while smaller diameter rods would decrease the resistance of the system 100 to flexion, extension, rotation and bending of the spine. Further, continually or discretely changing the diameter of the rods such as the deflection rods or loading rods along the length of the rods changes the stiffness characteristics. Thus, with the deflection rods or loading rods 118, 120 tapered from the mount 122 toward the ends 128, 130, the system can have more flexibility in flexion and extension of the spine. Further, using a super elastic material for the horizontal rods and the vertical rods in addition to the horizontal deflection rods or loading rods adds to the flexibility of the system 100. Further, all of the horizontal and vertical rods, in addition to the deflection rods or loading rods, can be made of titanium or stainless steel or PEEK should a stiffer system 100 be required. Thus, it can be appreciated that the system 100 can easily accommodate the desired stiffness for the patient depending on the materials uses, and the diameter of the materials, and the placement of the elements of the system 100.


Should an implanted system 100 need to be revised, that can be accomplished by removing and replacing the horizontal and/or vertical rods to obtain the desired stiffness. By way of example only, should a stiffer revised system be desired, more akin to a fusion, or, in fact, a fusion, then the horizontal rods having the deflection rods or loading rods can be removed and replaced by horizontal rods having deflection rods or loading rods made of titanium, or stainless steel, or non-super elastic rods to increase the stiffness of the system. This can be accomplished by leaving the anchor system 102 in place and removing the existing horizontal rods from the heads 110 and replacing the horizontal rods with stiffer horizontal rods and associated vertical rods.



FIG. 3 depicts a view of the horizontal rod 104 as previously described. In this embodiment the connectors 136, 138 are shown on the ends of the deflection rods or loading rods 118, 120. The connectors can be forced-fitted to the deflection rods or fastened in other methods known in the art for this material and as further disclosed below. The connectors 136, 138 have slits 148, 150 to aid in placing the connectors onto the ends of the deflection rods. As is evident from FIG. 3, the connectors 136, 138 each include upper and lower arms 160, 162 which can capture there between the vertical rods 132, 134. The arms each include an aperture 168, 170 that can accept a pin or screw 176, 178 (FIG. 1) for either fixedly or pivotally securing the vertical rods 132, 134. In this embodiment the vertical rods include a head 162, 164 that can be force fit or screwed onto the rest of the vertical rods. The heads include apertures 172, 174 for accepting the pins or screws 176, 178.


In order that the system 100 has as low a profile as possible and extends from the spine as little as possible, it is advantageous to place the deflection rods or loading rods 118, 120 as close to the first horizontal rod 114 as possible. In order to accomplish this low profile, preferably notches 152, 154 are placed in horizontal rod 114 to accommodate the connectors 136, 138.


Accordingly, the purpose for the notches is to provide for a horizontal rod with a low profile when implanted relative to the bones and tissues of the spine so that there is, for example, clearance for implant and the motion of the implant, and to keep the deflection rods or loading rods as close as possible to the horizontal rods in order to reduce any potential moment arm relative to the mounts on the horizontal rod.



FIG. 4 depicts another embodiment of the horizontal rod 114 with deflection rods or loading rods 118, 120 and with difference connectors 156, 158. Connectors 156, 158 each include two pairs of upper and lower arms 160, 162 extending in opposite directions in order for each connector 156, 158 to mount an upper and a lower vertical rod as presented with respect to FIG. 46. This configuration allows for a three level system as will be described below.


Embodiments of the Anchor System of the Invention:


A preferred embodiment of the anchor system 102 invention can be seen in FIG. 5. This is similar to the anchor system 102 depicted in FIG. 1. In particular, this anchor system 102 includes a bone screw 108 with a head 110 in the form of a U-shaped yoke 180 with arms 182, 184. As will be discussed further, a hook, preferably with bone engaging barbs or projections, can be substituted for the bone screw 108. The hook embodiment is further described in the above referenced and incorporated provisional application. The hooks are used to hook to the bone, such as the vertebra instead of having screws anchored into the bone. Each of the arms 182, 814 of yoke 180 includes an aperture 186, 188 through which a pin 190 can be placed. The pin 190 can be laser welded or force fit or glued into the yoke 180, as desired. The pin 190 can be smooth or roughened as discussed below. Further, the pin 190 can be cylindrical or be comprised of a multiple sides as shown in FIG. 7. In FIG. 7, pin 190 has six sides and one or more of the accommodating apertures 186, 188 can also include mating sides in order to fix the position of the pin 190 in the yoke 180. A compression sphere 200 is placed over the pin 190. The compression sphere 200 can have a roughened surface if desired to assist in locking the sphere in place as described below. The compression sphere 200 can include one or more slits 202 to assist in compressing the sphere 200 about the pin 190. The compression sphere 200 can have an inner bore that is cylindrical or with multiple sides in order conform to and be received over the pin 190. As can be seen in FIG. 8, one or more spacer rings 204 can be used to space the compression ring from the yoke 180 in order to assist in providing the range of motion and degrees of freedom that are advantageous to the embodiments of the invention.


Mounted about the compression sphere 200 is the head or saddle 110. Head 110 in FIGS. 7, 8 is somewhat different from head 110 in FIG. 1 as will be described below. Head 110 in FIGS. 7, 8 includes a cylindrical body 206 with a lower end having an aperture 208 that can receive the compression sphere 200. The aperture 208 can have a concave surface as depicted in FIGS. 7, 8. Accordingly, the compression sphere 200 fits inside of the concave surface of aperture 208 and is free to move therein until restrained as described below. As is evident from the figures, the lower end of the cylindrical body 206 about the aperture 208 has some of the material that comprised wall 224 removed in order to accommodate the motion of the yoke 180 of the bone screw 108. Essentially, the portion of the wall 224 adjacent to the arms 182, 184 of the yoke 180 has been removed to accommodate the yoke 180 and the range of motion of the yoke.


The head 110 of the anchor system 102 includes an internal cylindrical bore 210 which is preferably substantially parallel to a longitudinal axis of the head 110. This bore 210 is open to the aperture 208 and is open and preferably substantially perpendicular to the distal end 212 of the head 110. At the distal end 212 of the head 110, the bore 210 is threaded and can accept the set screw 112. Along the side of the head 110 are defined aligned U-shaped slots that extend through the head 110 from the outer surface to the bore 210. These U-shaped slots are also open to the distal end 212 of the head 110 in order to have the set screw 112 accepted by the threads of the bore 210. Located in the bore 210 between the set screw 112 and the compression sphere 200 is a compressor element or cradle 220. The compressor element or cradle 220 can slide somewhat in the bore 210, but the compressor element or cradle 220 is restrained by a pin 222 (FIG. 7) received through the wall 224 of the head 110 and into the compressor element or cradle 220. Thus, the compressor element or cradle 220, until locked into position, can move somewhat in the bore 210.


The compressor element or cradle 220 has a generally cylindrical body so that the compressor element 220 can fit into bore 210. An upper end 226 of the compressor element 220 includes a concave surface 228. This surface 228 is shaped to fit the horizontal rod system 104 and, in particular, a horizontal rod 114, 116. The lower end of the compressor element 220 includes a concave surface 230 which can accommodate the compression sphere 200. The lower end of the compressor element 220 adjacent to the concave surface 230 has an additional concave surface 232 (FIG. 8) which is used to accommodate the motion of the upper end of the yoke 180 as the head 110 is moved relative to the bone screw 108. The concave surfaces 228 and 230 can be roughened, if desired, to assist in locking the head 110 relative to the bone screw 108. In this embodiment (FIGS. 5, 6) there is no top compression element or cradle (see, for example, FIGS. 7, 13) in order to reduce the profile of the head of the anchor system.


As is evident from the figures, with the anchor system 102 assembled and with a horizontal rod 114, 116 received in the U-shaped slot 216, the set screw can press against the horizontal rod 114, 116, which horizontal rod 114, 116, can press against the compressor element or cradle 220, which compressor element or cradle 220 can press against the compression sphere 220, which compression sphere can press against the pin 190 in order to lock the horizontal rod 114, 116 relative to the head 110 and to lock the head 110 relative to the bone screw 108. It is to be understood that all of the surfaces that are in contact, can be roughened to enable this locking, if desired. Alternatively, the surfaces may be smooth with the force of the set screw 112 urging of the elements together and the resultant locking


As can be seen in FIGS. 5, 6 an alternative horizontal rod 114, 116 is depicted. This alternative horizontal rod 114, 116 includes first and second concave openings 234, 236 which can receive vertical rods such as vertical rods 132, 134 (FIG. 1). The horizontal rod 114, 116 is substantially cylindrical with the areas around the concave openings 234, 236 bulked up or reinforced as desired to support the forces. Additionally, threaded bores are provided adjacent to the concave openings 234, 236 and these bores can receive screws that have heads that can be used to lock vertical rods in place. Alternatively, the screws can retain short bars that project over the concave openings 234, 236 in order to hold the vertical rods in place (FIG. 34). If desired, the short retaining bars can also have concave openings that conform to the shape of, and receive at least part of, the vertical rods in order to retain the vertical rods in place with the system 100 implanted in a patient.


Turning again to FIGS. 1, 2, 5, 6, the head 110 depicted is a preferred embodiment and is somewhat different from the head 110 as seen in FIG. 8. In particular the head body 206, the outer surface 218 of the head and the head wall 224, have been configured in order to prevent splaying of the head 110 when the set screw 112 locks the anchor system 102 as explained above. As seen in FIGS. 1, 2, the head 110 and, in particular, the wall 224 is reinforced about the U-shaped slot 216 that received the horizontal bar system 104. By reinforcing or bulking up the area of the wall about the U-shaped slot 216, splaying of the head 110 when force is applied to the set screw 214, in order to lock the anchor system 102, is avoided. The head 110 can use a number of shapes to be reinforced in order to prevent splaying. The exemplary embodiment of FIGS. 1, 2, includes a pitched roof shape as seen in the top view looking down on distal end 212 of the head 110. In particular, the wall about the U-shaped slot 216 is thickened, while the portion of the head distal from the U-shaped slot can be less thick if desired in order to reduce the bulk and size of the head 110 and, thus, give the head 110 a smaller profile relative to the bone and tissue structures when implanted in a patient. Further, the small profile allows greater freedom of motion of the system 100 as described below. Also, it is to be understood that due to the design of the anchor system 102, as described above, the head 110 can be shorter and, thus, stand less prominently out of the bone when the bone screw 108 in implanted in a spine of a patient for example.


Freedom of Motion of the Embodiments of the Anchor System of the Invention:


In order to accommodate embodiments of the horizontal rod systems 104 of the invention, to allow greater freedom in placing the horizontal rod systems and the anchor systems 102 relative to, for example, the spine of a patient, and to provide for a smaller implanted profile in a patient, the anchor system 102 includes a number of degrees of freedom of motion. These degrees of freedom of motion are depicted in FIGS. 9, 9A, 10, 10A, and 11, 11A.



FIG. 9 establishes a frame of reference including a longitudinal axis x which is along the longitudinal length of the bone screw 108, a y axis that extends perpendicular to the x axis, and a lateral axis z which is perpendicular to both the x axis and the y axis and extends outwardly from and parallel to the pin 190 of the yoke 180 of the anchor system 102. As depicted in the figures and, in particular, FIGS. 9, 9A, the system 100 due to the embodiments as disclosed herein is able to have the head 110 rotate about the z axis from about 80 degrees to about zero degrees and, thus, in line with the x axis and from the zero degree position to about 80 degrees on the other side of the x axis. Accordingly, the head is able to rotate about 160 degrees about the z axis relative to the bone screw 108. As seen in FIGS. 10, 10A the head 110 is able to tilt about 0.08 inches (2 mm) relative to and on both sides of the x axis. Accordingly, the head 110 can tilt from about 12 degrees to zero degrees where the head 110 is about parallel to the x axis and from zero degrees to 12 degrees about the y axis and on the other side of the x axis. Thus, the head can tilt through about 24 degrees about the y axis. As can be seen in FIGS. 11, 11A, the head 110 can swivel for a total of about 40 degrees about the x axis. With respect FIG. 11A, the head 110 can swivel about the x axis from about 20 degrees to one side of the z axis to zero degrees and from zero degrees to about 20 degrees on the other side of the z axis. The head is able to substantially exercise all of these degrees of freedom at once and, thus, can have a compound position relative to the bone screw by simultaneously moving the head within the ranges of about 160 degrees about the z axis (FIG. 9), about 24 degrees from the y axis (FIG. 10) and about 40 degrees about the x axis (FIG. 11A).


Thus, with respect to FIGS. 9, 9A the range of motion in the axial plane is about 180 degrees or about 90 degrees on each side of the centerline. In FIGS. 10, 10A the range of motion in the Caudal/Cephalad orientation is about 4 mm or about 2 mm on each side of the centerline or about 24 degrees or about 12 degrees on each side of the centerline. In FIGS. 11, 11A the range of motion in the coronal plane is about 40 degrees or about 20 degrees on each side of the centerline.



FIGS. 12, 13 depict yet another embodiment of the anchor system 102 of the invention where elements that are similar to elements of other embodiments and have similar reference numbers.


As can be seen in FIG. 13, this embodiment includes a lower cradle or compressor element 220 that is similar to the cradle or compressor element 220 of the embodiment of FIG. 7 with the head 110 similar to the head 110 as seen in FIG. 7. The compression sphere 200 is similar to the compression sphere 200 in FIG. 7 with the compression sphere including a plurality of slits provided about the axis of rotation 238 of the sphere 200. In this embodiment, the slits 202 have openings that alternate between facing the north pole of the axis of rotation of the sphere 200 and facing the south pole of the axis of rotation of the sphere 200. Alternatively, the slits can be provided in the sphere and have no opening relative to the north or south pole of the axis of rotation of the sphere 200. Still further, the slits can open relative to only one of the north or south poles.


In the embodiment of FIGS. 12, 13, there is also an upper cradle or compressor element 240 which is positioned adjacent to the set screw 214 (see also FIG. 7). The upper cradle or compressor element 240 has a generally cylindrical body which can slide in the cylindrical bore of the head 110 with an upper end having fingers 242 extending therefrom. The fingers 242 can spring over a bore formed in the lower surface of the set screw 214 in order to retain the cradle 240 relative to the set screw 214 and to allow the cradle 240 to rotate relative to the set screw 214. The lower surface of the cradle 240 includes a concave surface 244 which can mate with a horizontal rod 114, 116 in order to lock the rod relative the head 110 and the head 110 relative to the bone screw 108. If desired, the concave surface 244 can be roughened to assist in locking the system 100.


Further, in FIGS. 12, 13, a retaining ring 246 is depicted. The retaining ring can be force fit over the outer surface 218 of the head 110, or pop over and snap under a ridge 248 at the distal end 212 of the head 110, or can have internal threads that mate with external threads located on the outer surface of the 218 of the head 110. With the anchor system 102 in place in a patient and with the horizontal rod 114, 116 received in the anchor system, before the set screw 214 is tightened in order to lock the horizontal rod and the anchor system, the retaining ring 246 can be attached to the head 110 in order to prevent splaying of the head 110 as the set screw 214 locks the system 110.


Further embodiments of the anchor system 102 which can side load the horizontal rods 114, 116 are seen in FIGS. 14, 15, and 16, where similar elements from other embodiments of the anchor system are given similar numeral references. With respect to the embodiment in FIG. 15, the head side wall 224 includes a lateral or side opening 250 which communicates with the cylindrical bore 210 which is located in head 110. The lateral or side opening preferably extends more than 180 degrees about the outer surface of the head. The side opening 250 includes a lip 252 and the side opening extends down below the lip into communication with the cylindrical bore 210 and follows the outline of the concave surface 228 of the cradle 220. Accordingly, a horizontal rod 114, 116, can be positioned through the side opening 250 and urged downwardly into contact with the concave surface 228 of the cradle 220. In this embodiment the cradle 220 includes a downward projecting post 254. Also, this embodiment does not include a compression sphere, and instead the pin 190, which can have a larger diameter than a pin 190 in other embodiments, comes in direct contact with the post 254 when the set screw 112 locks the anchor system 100. If desired the pin 190 can have a roughened surface 256 to assist in the locking of the anchor system 100. As is evident from FIGS. 14, 15, 16, as this embodiment has a side loading head 110, the distal end of the head is a fully cylindrical without communicating with any lateral U-shaped slots of the other embodiments. Accordingly, this embodiment does not include any retaining ring or reinforced areas that can be used to prevent splaying.



FIG. 17 depicts yet another embodiment of the anchor system 102 that has a lateral or side loading head 110. In this embodiment, a compression cylinder 258 is placed over the pin 190. Such a compression cylinder 258 may offer less freedom of motion of the anchor system 100 with added stability. The compression cylinder 258 can slide along the longitudinal axis 260 of the pin 190, if desired. The head 110 can rotate about the pin 190 and the compression cylinder 258. The head 110 can also slide or translate along the longitudinal axis 260 of the pin as well as the longitudinal axis of the compression cylinder 258. Compression cylinder 258 has slits 262 that can be configured similarly as the slits 202 of the other embodiments of the anchor system 100 described and depicted herein.



FIG. 18 depicts still another embodiment of the anchor system 100 that has a lateral or side loading head 110. This embodiment includes a compression sphere 200 provided over a pin 190 which is similar to the other compression spheres 200 depicted and described herein. Accordingly, this embodiment has the freedom of motion described with respect to the other embodiments which use a compression sphere.


It is to be understood that although each embodiment of the anchor system does not necessarily depict all the elements of another embodiment of the anchor system, that one of ordinary skill in the art would be able to use elements of one embodiment of the anchor system in another embodiment of the anchor system.


Embodiments of the Horizontal Rod System of the Invention:


Embodiments of the horizontal rod system 104 of the invention include the embodiments describes above, in addition to the embodiments that follow. An aspect of the horizontal rod system 104 is to isolate the anchor system 102 and reduce the stress and forces on the anchor system. This aspect is accomplished by not transmitting such stresses and forces placed on the horizontal rod system by, for example, flexion, extension, rotation or bending of the spine to the anchor system. This aspect thus maintains the integrity of the placement of the anchor system in, for example, the spine and prevents loosening of the bone screw or bone hook of the anchor system. In addition, various horizontal rod systems can be used to control the rigidity, stiffness and/or springiness of the dynamic stabilization system 100 by the various elements that comprise the horizontal rod system. Further the horizontal rod system can be used to have one level of rigidity, stiffness and/or springiness in one direction and another level in a different direction. For example, the horizontal rod system can offer one level of stiffness in flexion of the spine and a different level of stiffness in extension of the spine. Additionally, the resistance to lateral bending can be controlled by the horizontal rod system. Select horizontal rod systems allow for more resistance to lateral bending with other select horizontal rod systems allow for less lateral bending. As discussed below, placement of the vertical rods also effects lateral bending. The more laterally the vertical rods are placed, the more stiff the embodiment is to lateral bending.


As is evident from the figures, the horizontal rod system connects to the heads of the anchor system without the vertical rod system connecting to the heads. Generally, two anchor systems are secured to each vertebral level with a horizontal rod system connected between the two anchor systems. This further ensures that less stress and force is placed on the anchor systems secured to each level and also enables dynamic stability of the vertebra of the spine. Accordingly, movement of the vertebra relative to each other vertebra, as the spine extends, flexes, rotates and bends, is stabilized by the horizontal rods and the entire system 100 without placing excessive force or stress on the anchor system as there are no vertical rods that connect the anchor systems of one vertebra level with the anchor system of another vertebra.


With respect to FIG. 19 through FIG. 25 another embodiment of the horizontal rod system 304 of the dynamic stabilization system 300 is depicted as used with an anchor system 102 of the embodiment depicted in FIG. 1. Also shown in FIGS. 19, 19A, is the vertical rod system 306. The horizontal rod system 304 includes first and second horizontal rods 308, 310. It is to be understood that FIG. 19A shows a second image of only the horizontal rod 308 in a first undeployed position and that FIG. 19 shows a deployed position with the horizontal rod 308 connected with vertical rods 306 and, thus, the entire system 300.


The horizontal rod 308 includes first and second aligned end rods 312, 314 which are connected together with an offset rod 316 located between the first and second end rods 312, 314. In this embodiment, the horizontal rod 308 looks much like a yoke with the offset rod joining each of the end rods 312, 314 with a curved section 318, 320. At the junction of the first end rod 312 and the offset rod 316 is a first bore 322 which is aligned with the first end rod 312, and at the junction of the second end rod 314 and the offset rod 316 is a second bore 324 which is aligned with the second end rod 314 and, thus, aligned with the first end rod 312. Positioned in and extending from the first bore 322 is a first deflection rod or loading rod 326 and positioned in and extending from the second bore 324 is a second deflection rod or loading rod 328. As with the other deflection rods or loading rods, preferably deflection rods or loading rods 324, 328 are made of a super elastic material such as, for example, Nitinol (NiTi) and the rest of system 300 is comprised of titanium, stainless steel, a biocompatible polymer such as PEEK or other biocompatible material. In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However, for biocompatibility the nickel-titanium is the desired material. The super elastic material has been selected for the deflection rods as the stress or force/deflection chart for a super elastic material has a plateau where the force is relatively constant as the deflection increases. Stated differently, a super elastic rod has a load (y) axis/deflection (x) axis curve which has a plateau at a certain level where the load plateaus or flattens out with increased deflection. In other words, the rod continues to deflect with the load staying constant at the plateau. In one embodiment, the load plateau is about 250 Newtons to about 300 Newtons. It is to be understood that the plateau can be customized to the needs of the patient by the selection of the type and composition of the super elastic material. For some patients, the plateau should be lower, and, for others, the plateau should be higher. Accordingly, and, for example, at the plateau, additional force is not put on the anchor system 102 and, thus, additional force is not put on the area of implantation of the bone screw 108 and the surrounding bone of the spine where the bone screw 108 is implanted. The deflection rods or loading rods 326, 328 are force fit, screwed, welded, or glued into the bores 322, 324 as desired.


The first and second deflection rods or loading rods 326, 328 extend from the respective bores 322, 324 toward each other and are joined by a Y-shaped connector 330. The Y-shaped connector 330 includes a base 332 which has opposed and aligned bores 334, 336 that can receive the deflection rods or loading rods 326, 328 in a manner that preferably allows the Y-shaped connector to pivot about the longitudinal axis defined by the aligned first and second deflection rods or loading rods 326, 328. The Y-shaped connector 330 includes first and second arms that preferably end in threaded bores 342, 344 that can receive the threaded ends of the vertical bar system 306 as described below. Just behind the threaded bores 342, 344 are recesses 346, 348 (FIG. 24) which are shaped to accept the offset rod 316 with the horizontal rod 308 in the undeployed configuration depicted in FIG. 19A. In the undeployed configuration, the horizontal rod 308 can be more easily implanted between the tissues and bones of the spine and, in particular, guided between the spinous processes. Once the first horizontal rod 308 is implanted, the Y-shaped connector 330 can be deployed by rotating it about 90 degrees or as required by the anatomy of the spine of the patient and connected with the vertical rod system 306.


The second horizontal rod 310 is similar to the second horizontal rod 116 of the embodiment of FIG. 1. This second horizontal rod 310 is preferably comprised of titanium or other biocompatible material and includes first and second mounts 350, 352 which can receive the ends of the vertical rod system 306. The mounts 350, 352 include respective recesses 354, 356 which can receive the vertical rods 358, 360 of the vertical rod system 306. The mounts 350, 352 also include tabs 362, 364 which can capture the vertical rods 358, 360 in the respective recesses 354, 356. The tabs 362, 364 can be secured to the mounts 350, 352 with screws or other appropriate fastening devices.


The first and second vertical rods 358, 360 are preferably comprised of titanium or other biocompatible material and include a threaded end and a non-threaded end. The threaded end can be formed on the end of the rod or threaded elements can be force fit or glued to the end of the vertical rods 358, 360. Once the first and second horizontal rods are deployed in the patient, the first and second vertical rods can be screwed into or otherwise captured by the Y-shaped connector 330 of the first horizontal bar 308 and the first and second vertical rods can be captured or otherwise secured to the second horizontal bar 310.



FIGS. 26, 27, and FIGS. 28, 29 depict yet more alternative embodiments of the horizontal rod systems of the invention. The horizontal rod 370 in FIG. 26, 27 is similar to the horizontal rod 118 in FIG. 1. Horizontal rod 370 includes a mount 372 which has bores that can receive first and second deflection rods or loading rods 374, 376 which are preferably made of a super elastic material. At the ends of the first and second deflection rods or loading rods 374, 376 are connectors which include a tab having a threaded bore therethrough. The connectors can be used to connect vertical rods to the deflection rods or loading rods.



FIGS. 28, 29 depict a horizontal rod 380 with first mount 382 and second mount 384. Each of the mounts 382, 884, includes a bore that is substantially parallel to the horizontal rod 380. First and second deflection rods or loading rods 386, 388 extend respectively from the bores of the first and second mounts 382, 382. In the embodiment depicted the deflection rods or loading rods 386, 388 are parallel to the horizontal rod 380 and are directed toward each other. Alternatively, the deflection rods or loading rods 386, 388 can be directed away from each other. In that configuration, the mounts 382, 384 would be spaced apart and the deflection rods or loading rods would be shorter as the deflection rods or loading rods extended parallel to and toward the ends of the horizontal rod 380.



FIGS. 30, 31, 32 depict yet another embodiment of the horizontal rod system 390 of the invention which is similar to the horizontal bar system 104 as depicted in FIG. 1. Horizontal bar system 390 includes tapered deflection rods or loading rods 392, 394. The deflection rods or loading rods are tapered and reduce in diameter from the mount 396 toward the ends of the horizontal rod 390. As previously discussed the deflection rods or loading rods can taper continuously or in discrete steps and can also have an decreasing diameter from the ends of the deflection rods or loading rods towards the mount 396. In other words, a reverse taper than what is depicted in FIG. 30. Connected to the deflection rod or loading rods 392, 394 are the vertical rods 402, 404. The vertical rods 402, 404 are connected to the deflection rods or loading rods 392, 394 as explained above.


The conically shaped or tapered deflection rods or loading rods can be formed by drawing or grinding the material which is preferably a super elastic material. The tapered shape of the deflection rods or loading rods distributes the load or forces placed by the spine on the system evenly over the relatively short length of the deflection rods or loading rods as the rods extend from the central mount outwardly toward the ends of the horizontal rod. In this embodiment, in order to be operatively positioned relative to the spine and between the anchor systems, the deflection rods or loading rods are less than half the length of the horizontal rods.



FIG. 30 depicts the vertical rods 402, 404 in undeployed positions that are about parallel to the horizontal rod 390 and with the vertical rods 402, 404 directed away from each other and toward the respective ends of the horizontal rod 390. In this position the horizontal rod 390 can be more conveniently directed through the bone and tissue of the spine and, for example, directed between the spinous processes to the implant position. Once in position, the vertical rods 402, 404 can be deployed so that the vertical rods are parallel to each other and about parallel to the horizontal rod 390 as depicted in FIG. 31. Accordingly, this embodiment can be inserted from the side of the spine in the undeployed configuration depicted in FIG. 30 and then the vertical rods can be rotated or deployed by about 90 degrees (from FIG. 30 to FIG. 31) each into the coronal plane of the patient. The vertical rods are also free to rotate about 180 degrees about the deflection rods and in the sagittal plane of patient. This allows this embodiment to conform to the different sagittal contours that may be encountered relative to the spine of a patient. The deflection rods or loading rods are rigidly connected to the horizontal rod allowing for an easier surgical technique as sections of the spine and, in particular, the spinous processes and associated ligaments and tissues do not have to be removed in order to accommodate the implantation system 100. The moving action of the system, and, in particular, the flexing of the deflection rods and the motion of the vertical rods connected to the deflection rods or loading rods, takes place about the spinous processes and associated tissues and ligaments, and, thus, the spinous processes do not interfere with this motion. Further, having the horizontal rods more lateral than central also allows for a more simple surgical technique through, for example, a Wiltse approach.


To assist in implantation, a cone 406 can be slipped over the end of the horizontal rod 390 and the vertical rod 402 to assist in urging the tissues and bone associated with the spine out of the way. Once the horizontal rod is implanted the cone 406 can be removed. The cone 406 includes an end 408 which can be pointed or bulbous and the cone 406 has an increasing diameter in the direction to the sleeve 410 portion of the cone 406. The sleeve can be cylindrical and receive the end of the horizontal rod and the end of the deflection rod or loading rod 402.



FIG. 32 depicts how the connectors 412, 414 are secured to the respective deflection rods 392, 394. The deflection rods have flanges, such as spaced apart flange 416, 418 on the deflection rod 392. The connectors 412, 414 can snap over and be retained between respective pairs of flanges.



FIG. 33 depicts yet another embodiment of the horizontal rod system 430 of the invention. The horizontal rod system 430 includes horizontal rod 432 which is preferably comprised of a super elastic material such as Nitinol. The horizontal rod 432 includes a generally central platform 434, and on each side of the central platform 434 are first and second upwardly facing scallops or recesses 436, 438. On each side of the upwardly facing scallop or recess 436 are downwardly facing scallops or recesses 440, 442. On each side of the upwardly facing scallop or recess 438 are downwardly facing scallops or recesses 444, 446. The platform 434 accepts a connector for connecting the horizontal rod to vertical rods (FIG. 40) as will be explained below, and the scallops 436, 440, 442 on one side of the platform 434 act as a spring and the scallop 438, 444, 446 on the other side of the platform 434 acts as a spring. These springs assist the platform in carrying the load that the spine can place on the horizontal rod and isolate the anchor systems 102 from that load. That isolation has the advantage of preventing loosening of the anchor system as implanted in the patient. It is to be understood that by varying the pattern of the scallops, that the stiffness or rigidity of the horizontal bar can be varied and customized for each patient. Fewer scallops will generally result in a more stiff horizontal bar and more scallops will generally result in a less rigid horizontal bar. Additionally, the stiffness can be different depending on the direction of the force that is placed on the horizontal bar depending on the orientation and location of the scallops. For the embodiment depicted in FIG. 33, with the scallops 436, 438 pointed upward to the head of a patient and the scallops 440, 442, 444, 446 pointed downward toward the feet of a patient, the horizontal bar is stiffer in extension and less stiff in flexion. It is noted that in this embodiment the rod is of a uniform diameter, although the diameter can be non-uniform as, for example, being larger where the platform 434 is and tapering to the ends of the horizontal rod 432, or having a large diameter at the ends of the horizontal rod 432, tapering to a smaller diameter at the platform 434. In this embodiment with a substantially uniform diameter, the scallops are formed within the uniform diameter. In other forms, the scallops are molded into the horizontal rod or machined out of the preformed horizontal rod. With this configuration, the horizontal rod is more easily inserted into the spine and between bones and tissues of the spine. Further, this horizontal rod can be more easily delivered to the spine through a cannula due to the substantially uniform diameter. For purposes of forming the scallops a machining technique known as wire electric discharge machining or wire EDM can be used. Thus, an approach for shaping the super elastic material is through wire EDM followed by electro-polishing. Additionally, the super elastic material in this and the other embodiments can be cold rolled, drawn or worked in order to increase the super elastic property of the material.


In this embodiment, the deflection takes place almost exclusively in the middle portion of the horizontal rod and principally at the platform and spring thus relieving the load or force on the ends of the horizontal rod and on the anchor system/bone interface.


Accordingly, in this preferred embodiment, there are two superior scallops pointing upwardly having a relatively gentler radius compared to the tighter radii of the inferior scallops pointing downwardly. It is to be understood that in this preferred embodiment, the inferior scallops are not symmetrical the way the superior scallops are. The lateral most cuts in both of the most lateral inferior scallops are steep and not radiused. These cuts allow the rod to bend at these points enhancing the spring effect. The ratio of the radii of the superior scallop to the inferior scallop in this preferred embodiment is two to one. The result is to create two curved and flat (in cross-section) sections, one on each side of the platform and these two flat sections in this preferred embodiment have about the same uniform thickness. Again, in this embodiment, the scallops and the platform is formed into an otherwise uniformly diametered cylindrical rod. Accordingly, none of these formed elements in this preferred embodiment extend beyond the diameter of the rod. In this preferred embodiment, the diameter of the horizontal rod is about 4 mm.


If desired, the rod could be bent in such a way that the platform and/or the scallops extend outside of the diameter of the cylindrical rod. However that configuration would not be as suitable for implantation through a cannula or percutaneously as would the horizontal rod as shown in FIG. 33 and described above.


It is to be understood that to have enhanced flexibility, that the torsion rod and connector elements used in the horizontal rod embodiment of FIG. 1 can be used with the horizontal rod of FIG. 33. In this embodiment (FIG. 47), the connector is secured to the platform of the horizontal rod of FIG. 33 with the two deflection rods or loading rods extending toward the ends of the horizontal rod of FIG. 33 and about parallel to that horizontal rod.


Another embodiment of the horizontal rod 433 is depicted in FIG. 33A. In this embodiment the horizontal rod 433 is similar to the horizontal rod in FIG. 33 with the exception that the platform and scallops are replaced with a reduced diameter central potion 448. Each end of the central portion 448 gradually increases in diameter until the diameter is the full diameter of the ends of the horizontal rod 433. This embodiment can be formed of a super elastic material and ground to the reduced diameter shape from a rod stock of the super elastic material. The rod stock could also be drawn to this shape. Generally after such operations the horizontal rod would be electro polished. In this embodiment, a connector such as the connector shown in FIG. 40 could be used to connect vertical rods to preferably the middle of the central portion 448.



FIGS. 34A, 34B, 34C depict yet an alternative embodiment of a horizontal rod 280 such as horizontal rod 116 as shown in FIG. 1 that is meant to rigidly hold the vertical rods secured thereto. The mounts 282, 284 formed in this horizontal rod 280 include a body that can be formed with the rod 280. The mounts are then provided with a movable capture arm 286, 288 that have recesses, which capture arms are formed out of the mount preferably using a wire EDM process that leaves the capture arm still connected to the horizontal rod with a living hinge. Eccentric headed set screws 290, 292 are mounted on the horizontal bar. With vertical rods captured in the recesses of the capture arms, the eccentric set screws can be turned to urge the capture arms against the living hinge, and thereby capturing the vertical rods in the recesses of the capture arms.



FIG. 40 depicts a dynamic stabilization system 450 that uses the horizontal rod system 454 of the invention. The system 450 additionally uses the anchor system 102 as depicted in FIG. 1 and the other horizontal rod 310 as depicted in FIGS. 19, 34. A connector 452 is secured to the platform 434 of the horizontal rod 454 and vertical rods are connected to the connector and to the other horizontal rod 310. In FIG. 40 for the horizontal rod 454, the scallops are formed by bending a bar and not by forming the scallops in a straight horizontal bar as depicted in the horizontal bar 432 of FIG. 33. The horizontal rod 430 of FIG. 33 could also be used in the embodiment of FIG. 40.



FIG. 35 depicts an alternative embodiment of a horizontal rod system 460 of the invention. Horizontal rod system 460 includes a horizontal rod 462 with a central platform 464 and first and second spring regions 466, 468 located on either side of the platform 464. Extending outwardly from each spring region are respective ends of the horizontal rod 462. The spring regions include coils that are wound about the longitudinal axis of the horizontal rod 462. If desired, the entire horizontal rod 462 can be comprised of a rod wound around a longitudinal axis with the platform 464 and the ends of the horizontal rod being more tightly wound and/or with a smaller diameter and the spring regions 466, 468 more loosely wound and/or with a larger diameter. Such a horizontal rod 462 can preferably be comprised of super elastic material such as Nitinol or alternatively titanium or other biocompatible material which demonstrates the ability to flex repeatedly.



FIG. 36 depicts yet another alternative embodiment of a horizontal rod system 480 which includes first and second horizontal rods 482, 484 which can be flat rods if desired. The horizontal rods 482, 484, include spring region 494, 496. In the spring region the horizontal rod is formed into an arc, much like a leaf spring. Located at the ends and at the central platform 486 and between the horizontal rods 482, 484 are spacers 488, 490, 492. The spacers are glued, bonded, welded or otherwise secured between the first and second horizontal rods 482, 484 in order to form the horizontal rod system 480. This system 480 can be comprised of super elastic materials or other materials that are biocompatible with the patient.



FIG. 37 depicts another embodiment of the horizontal rod system 500 including a horizontal rod 502. In this embodiment, recesses 504 are formed in the horizontal rod in order to define the stiffness of the horizontal rod 502. This system can be formed of a super elastic material or other biocompatible material.



FIG. 38 depicts still another embodiment of the horizontal rod system 520 of the invention with a horizontal rod 522. The horizontal rod 522 includes dimples 524 distributed around and along the horizontal rod 522. As this other embodiment, depending on the distribution of the dimples, the stiffness of the horizontal rod 522 can be determined. Further is more dimples are placed on the lower surface than on the upper surface, when placed in a patient, the horizontal rod 522 would tend to be stiffer in extension and less stiff in flexion. This horizontal rod 522 can also be made of a super elastic material or other biocompatible material.



FIG. 39 depicts another embodiment of the horizontal rod system 530 of the invention which has a horizontal rod 532 which is similar to the horizontal rod 432 of FIG. 33 and, thus, similar elements will number with similar numbers. In addition, the ends 534, 536 of the horizontal rod 532 are curved so as to create hooks that can fit around portions of the vertebra so as to secure the horizontal rod 532 to the vertebra. In this embodiment, preferably the rod is comprised of super elastic material or other biocompatible material. In order to implant the rod, the hooks at ends 534, 536 are sprung open and allowed to spring closed around the vertebra. An anchor system which includes a hook (as discussed above) could be used with this system.



FIGS. 39A, 39B are similar to FIG. 39. In FIGS. 39A, 39B, a horizontal rod 532 is held in place relative to the spine by two anchor systems 102. The anchor systems are similar to the anchor systems depicted in FIG. 1. The anchor systems 102 include an anchor or bone screw 108 or bone hook 109 with spikes 111 (FIG. 39B), as well as the head 110 into which the horizontal rod is received. A set screw 112 secures the horizontal rod relative to the anchor systems.



FIG. 41 depicts another embodiment of the dynamic stabilization system 540 of the invention. This embodiment includes side loading anchor systems 542 as described above, although top loading anchor systems would also be appropriate for this embodiment. In this embodiment the horizontal rods 544, 546 are preferably comprised of a polymer such as PEEK and mounted on the horizontal rods 544, 546 are first and second connectors 548, 550. Vertical rods 552 and 554 are connected to the first and second connectors 548, 550 at points 556 with screws, rivets or other devices so that the connection is rigid or, alternatively, so that the vertical rods 552, 554 can pivot or rotate about the points. As the horizontal rods are comprised of PEEK, the system tends to be more rigid than if the rods were comprised of a super elastic material. Rigidity also depends on the diameter of the rod.


Embodiments of the Vertical Rod System of the Invention:


Embodiments of vertical rod systems of the invention such as vertical rod system 106 are presented throughout this description of the invention. Generally, the vertical rod systems are comprised of vertical rods that can be pivoted or inserted into position after the horizontal rods are deployed in the patient. The vertical rods are preferably connected to the horizontal rods and not to the anchor systems in order to reduce the forces and stress on the anchor systems. The vertical rods are connected to the horizontal rod systems, which horizontal rod systems include mechanisms as described herein that reduce the forces and stresses on the anchor systems. The vertical rods can generally be comprised of titanium, stainless steel, PEEK or other biocompatible material. Should more flexibility be desired, the vertical rods can be comprised of a super elastic material.


Embodiments of Alternative Multi-Level Dynamic Stabilization Systems for the Spine:



FIGS. 42 and 43 depict multi-level dynamic stabilization systems 560, 580. Each of these systems 560, 580 are two level systems. All of these systems use anchor systems as described herein. In system 560 of FIG. 42 the middle level horizontal rod 562 is secured to a vertebra and includes a horizontal rod system 104 having first and second deflection rods or loading rods such as that depicted in FIG. 4, whereby a first pair of vertical rods 564 can extend upwardly from horizontal rod system and a second pair of vertical rods 566 can extend downwardly from the horizontal rod system. The vertical rods that extend upwardly are connected to an upper horizontal rod 568 such as depicted in FIG. 34 and the vertical rods that extend downward are connected to a lower horizontal rod 568 such as depicted in FIG. 34. The upper horizontal rod 568 is secured with anchor systems to a vertebra located above the vertebra to which the middle level horizontal rod 562 is secured. The lower horizontal rod 570 is secured with anchor systems to a vertebra located below the vertebra to which the middle level horizontal rod 562 is secured. This embodiment offers more stability for the middle level vertebra relative to the upper and lower vertebra while allowing for extension, flexion, rotation and bending relative to the middle level vertebra.



FIG. 43 depicts another multi-level dynamic stabilization system 580. All of these systems use anchor systems as described herein. In system 580 of FIG. 43, the middle level horizontal rod 582 is secured to a vertebra and includes a horizontal rod such as that depicted in FIG. 34. The upper and lower horizontal rods 586, 590 can be similar to the horizontal rod 114 including the deflection rods or loading rods and deflection rod or loading rod mount depicted in FIG. 3. Vertical rods are pivotally and rotationally mounted to the upper and lower horizontal rods 586, 590 and, respectively, to the deflection or loading rods thereof and are also rigidly mounted to the middle level horizontal rod 582. The upper horizontal rod 586 is secured with anchor systems to a vertebra located above the vertebra to which the middle level horizontal rod 582 is secured. The lower horizontal rod 590 is secured with anchor systems to a vertebra located below the vertebra to which the middle level horizontal rod 582 is secured. This embodiment offers more dynamic stability for the upper and lower vertebra relative to the middle level vertebra while allowing for extension, flexion, rotation and bending relative to the middle level vertebra. Alternatively, the middle level horizontal rod 582 has four mounts instead of the two mounts depicted in FIG. 34 or FIG. 34A so that a first pair of vertical rods 588 can extend upwardly from a lower horizontal rod 590 and a second pair of vertical rods 566 extending downwardly from the upper horizontal rod 586, can be secured to the middle level horizontal rod 582.


Embodiments of Spine Fusion Systems of the Invention:



FIGS. 44, 45 depict one and two level systems that are more preferably used for fusion. The system 600 depicted in FIG. 44 resembles the system depicted in FIG. 41. When PEEK is used for the horizontal rods 602, 604, the system is substantially rigid and can be used in conjunction with spine fusion. For example, this system can be used with the placement of bone or a fusion cage between vertebra to which this system is attached. In fusion, bone can be placed between the vertebral bodies or, alternatively, fusion can be accomplished by placing bone in the valleys on each side of the spinous processes. The horizontal rods 602, 604 an also be comprised of titanium, or other biocompatible material and be used for spine fusion. For this embodiment, the vertical rods 606 can be rigidly attached to the horizontal rods through the use of a horizontal rod with mounts, as depicted in FIG. 34, so that the vertical rods 606 do not move or pivot with respect to the horizontal rods.



FIG. 45 depicts a two level system 620 that is more preferably used for a two level fusion. Each level can use an anchor system for example described with respect to anchor system 102 of FIG. 1. The horizontal rods 622, 624, 626 are can be similar to the horizontal rod in FIG. 34 with either two vertical rod mounts for the upper and lower horizontal rods 622, 626 or four vertical rod mounts for the middle level horizontal rod 624. For this embodiment, the vertical rods 628, 630 can be rigidly attached to the horizontal rods through the use of a horizontal rod with mounts as depicted in FIG. 34 so that the vertical rods 628, 630 do not move or pivot with respect to the horizontal rods. Vertical rods 628 extend between the upper and middle horizontal rods 622, 624, and vertical rods 630 extend between the middle and lower horizontal rods 624, 626. The system 620 depicted in FIG. 44 resembles the system depicted in FIG. 41, but with respect to three levels. When PEEK is used for the horizontal rods 622, 624, 626, the system is substantially rigid and can be used in conjunction with spine fusion. For example, this system can be used with the placement of bone or a fusion cage between vertebra to which this system is attached. Bone can also be placed along the valleys on either side of the spinous processes for this system. The horizontal rods 622, 624, 626 can also be comprised of titanium, PEEK or other biocompatible material and be used for spine fusion.


With respect to FIG. 45, to ease the transition to a one level fused area of the spine this two level system can be modified by replacing the horizontal rod 622 with a horizontal rod 115 (FIGS. 45A, 45B), which is much like horizontal rod 104 with deflection or loading rods 118, 120 of FIG. 1. This embodiment is depicted in FIG. 45A. Thus, fusion is accomplished between the two lower horizontal rods 117 which rods are like those depicted in FIG. 34, or like horizontal rods 116 in FIG. 1, and made of, preferably, titanium, and flexibility is provided by the upper horizontal rod 115 that is like horizontal rod 114 with deflection or loading rods that are shown in FIG. 1. Accordingly, there is more gradual transition from a healthier portion of the spine located above horizontal rod 115 through horizontal rod 115 to the fused part of the spine located between horizontal rod 624 and horizontal rod 606 of FIG. 45 or between the horizontal rods 117 (FIG. 45A).


Method of Implantation and Revised Implantation:


A method of implantation of the system in the spine of a human patient is as follows.


First the vertebral levels that are to receive the system are identified. Then the anchor systems are implanted, generally two anchor systems for each level. The anchor systems can be implanted using a cannula and under guidance imaging such as x-ray imaging. Alternatively, the anchor system can be implanted using traditional spinal surgery techniques. Then the horizontal rods are inserted and secured to the anchor systems. The horizontal rods can be inserted laterally through a cannula or with an incision and the use of, for example, a lead-in cone. Alternatively, the horizontal rods can be inserted using traditional techniques when the anchor systems are implanted. Thereafter, the vertical rods can be pivoted, rotated or placed into communication with and secured to the appropriate horizontal rod.


Should a dynamic stabilization system such as system 100 be initially implanted and then should there be a desire to make the system more rigid or to accomplish a fusion, the system 100 can be revised by removing the horizontal rod 104 that includes the deflection rods or loading rods and replace it with a horizontal rod 106 which has the vertical rod mounts (FIG. 34) and is thus substantially more rigid. Thus a revision to a fusion configuration can be accomplished with minimal trauma to the bone and tissue structures of the spine.


Materials of Embodiments of the Invention:


In addition to Nitinol or nickel-titanium (NiTi) other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However for biocompatibility the nickel-titanium is the preferred material.


As desired, implant 100 can be made of titanium or stainless steel. Other suitable material includes by way of example only polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK). Still, more specifically, the material can be PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).


As will be appreciated by those of skill in the art, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention.


Reference to appropriate polymers that can be used in the spacer can be made to the following documents. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials;” and PCT Publication WO 02/00270 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials.”


The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.

Claims
  • 1. An anchor assembly comprising: an anchor body with an anchor;an anchor head including a U-shaped yoke having two arms;a first aperture in the first arm and a second aperture in the second arm; anda shaft spanning a gap between the two arms of the yoke;a saddle mounting element mounted about said shaft;a saddle having a transverse bore and a longitudinal bore which intersects the transverse bore;the saddle mounting element being received in the transverse bore of the saddle such that a portion of the saddle extends around the saddle mounting element between the saddle mounting element and the anchor head such that the saddle is secured to the anchor head and can move relative to the anchor head;said saddle having a slot adapted to hold a member;a set that is received in said saddle and can be selectively advanced into the slot;whereby, with a member received in the slot, advancing the set into the slot forces the member against the saddle mounting element thereby securing the member to the saddle and fixing the saddle relative to the anchor head.
  • 2. The anchor assembly of claim 1 wherein said saddle mounting element comprises a ball having a bore through which the shaft is received.
  • 3. The anchor assembly of claim 1 wherein said saddle mounting element comprises a bore through which said shaft is received and at least one slot through the surface; and said slot is adapted so that when the member is forced against the saddle mounting element, a dimension of the bore is changed such that the saddle mounting element is prevented from rotating about the shaft.
  • 4. The anchor assembly of claim 1 wherein said saddle-mounting element has a textured surface to enhance fixing the saddle relative to the anchor head.
  • 5. The anchor assembly of claim 1 wherein said saddle mounting element is spherical.
  • 6. The anchor assembly of claim 1 wherein the saddle can move with three degrees of freedom about said saddle mounting element prior to locking the saddle relative to the anchor head.
  • 7. The anchor assembly of claim 1 wherein the saddle mounting element is cylindrical.
  • 8. An anchor assembly comprising: an anchor body with an anchor;an anchor head including a U-shaped yoke extending from the anchor body and a shaft spanning the yoke;a sphere mounted on the shaft in the yoke;a saddle mounted about the sphere such that a portion of the saddle extends around the sphere between the sphere and the anchor head;said saddle having a slot adapted to hold a member;a set received in said saddle and can selectively be advanced into the slot;whereby the anchor assembly is configured such that, with a member positioned in the slot, advancing the set into the slot applies force against the member and thereby applies force through the member to said sphere and there through to said shaft thereby securing the member to the saddle and securing the saddle relative to the anchor head.
  • 9. The anchor assembly of claim 8 wherein said sphere comprises a bore through which said shaft is received and wherein the bore is adapted to engage the shaft to prevent rotation of the sphere about the shaft.
  • 10. The anchor assembly of claim 8 wherein the saddle can move with three degrees of freedom about said sphere prior to locking the saddle relative to the anchor head.
  • 11. An anchor assembly comprising: an anchor body having a longitudinal axis;an anchor head fixed to the anchor body;the anchor head including a U-shaped yoke;a shaft spanning the U-shaped-yoke;a ball mounted on the shaft inside the U-shaped yoke;a saddle having a transverse bore and a longitudinal bore which intersects the transverse bore;the ball and shaft being received through the transverse bore of the saddle such that a portion of the saddle extends around the ball between the ball and the anchor head such that the saddle is secured to the anchor head and can move relative to the anchor head;said saddle having a slot intersecting the longitudinal bore;a set that is received in said saddle and can be selectively advanced into the slot;said slot adapted to receive a rod;a compression unit and adapted to be located between the rod and the ball;whereby, with the rod received in the slot, advancement of the set into the slot forces the rod against the compression unit and forces the compression unit against the ball thereby securing the rod to the saddle and locking the saddle relative to the anchor head.
  • 12. The anchor assembly of claim 11 wherein the saddle can move with three degrees of freedom about said saddle mounting element prior to locking the saddle relative to the anchor head.
  • 13. An anchor assembly comprising: an anchor body with an anchor;an anchor head including a U-shaped yoke having two arms extending from the anchor body and a shaft spanning a gap between the two arms of the yoke;a saddle having a transverse bore and a longitudinal bore which intersects the transverse bore;the shaft being received in the transverse bore of the saddle such that a portion of the saddle extends around the shaft between the shaft and the anchor head such that the saddle is secured to the anchor head and can move relative to the anchor head;said saddle having a slot adapted to hold a member;a set that is received in said saddle and can be selectively advanced into the slot;whereby, with a member received in the slot, advancing the set into the slot forces the member against the shaft thereby securing the member to the saddle and fixing the saddle relative to the anchor head.
  • 14. The anchor assembly of claim 13 wherein said shaft comprises a ball shaped element.
  • 15. The anchor assembly of claim 13 wherein the saddle can move with three degrees of freedom about said shaft prior to locking the saddle relative to the anchor head.
  • 16. An anchor assembly comprising: an anchor body with an anchor;an anchor head including a U-shaped yoke extending from the anchor body and a shaft spanning the yoke;a saddle mounted about the shaft such that a portion of the saddle extends around the shaft between the shaft and the anchor head;said saddle having a slot adapted to hold a member;a set received in said saddle and can selectively be advanced into the slot;whereby the anchor assembly is configured such that, when a member is positioned in the slot, advancing the set into the slot applies force against the member and thereby applies force through the member to said shaft thereby securing the member to the saddle and securing the saddle relative to the anchor head.
  • 17. The anchor assembly of claim 16 wherein the saddle can move with three degrees of freedom about said shaft prior to locking the saddle relative to the anchor head.
  • 18. An anchor assembly comprising: an anchor body having a longitudinal axis;an anchor head fixed to the anchor body;the anchor head including a U-shaped yoke;a shaft spanning the U-shaped-yoke;a saddle having a transverse bore and a longitudinal bore which intersects the transverse bore;the shaft being received through the transverse bore of the saddle such that a portion of the saddle extends around the shaft between the shaft and the anchor head such that the saddle is secured to the anchor head and can move relative to the anchor head;said saddle having a slot intersecting the longitudinal bore;a set that is received in said saddle and can be selectively advanced into the slot;said slot adapted to receive a rodwhereby, with the rod received in the slot, advancement of the set into the slot forces the rod against the shaft thereby securing the rod to the saddle and locking the saddle relative to the anchor head.
  • 19. The anchor assembly of claim 18 wherein the saddle can move with three degrees of freedom about said shaft prior to locking the saddle relative to the anchor head.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 11/832,400, filed Aug. 1, 2007, entitled “A Bone Anchor with a Compressor Element for Receiving a Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, which claims benefit to U.S. Provisional Patent Application No. 60/942,162, filed Jun. 5, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method” which is incorporated herein by reference and in its entirety. This application is related to all of the afore-mentioned patent applications. This application is also related to all of the following applications including: U.S. patent application Ser. No. 12/615,367, filed Nov. 10, 2009, entitled “A Bone Anchor for Receiving a Rod for a Stabilization and Motion Preservation Spinal Implantation System and Method”; and U.S. Patent Application No. 60/801,871, filed Jun. 14, 2006, entitled “Implant Positioned Between the Lamina to Treat Degenerative Disorders of the Spine,”; U.S. patent application Ser. No. 11/761,006, filed Jun. 11, 2007, entitled “Implant System and Method to Treat Degenerative Disorders of the Spine”; U.S. patent application Ser. No. 11/761,100, filed Jun. 11, 2007, entitled “Implant System and Method to Treat Degenerative Disorders of the Spine”; and U.S. patent application Ser. No. 11/761,116, filed Jun. 11, 2007, entitled “Implant System and Method to Treat Degenerative Disorders of the Spine”.

US Referenced Citations (660)
Number Name Date Kind
4041939 Hall Aug 1977 A
4065817 Branemark et al. Jan 1978 A
4274401 Miskew Jun 1981 A
4347845 Mayfield Sep 1982 A
4369770 Bacal et al. Jan 1983 A
4382438 Jacobs May 1983 A
4409968 Drummond Oct 1983 A
4411259 Drummond Oct 1983 A
4422451 Kalamchi Dec 1983 A
4479491 Martin Oct 1984 A
4567885 Androphy Feb 1986 A
4573454 Hoffman Mar 1986 A
4604995 Stephens et al. Aug 1986 A
4611580 Wu Sep 1986 A
4611581 Steffee Sep 1986 A
4611582 Duff Sep 1986 A
4641636 Cotrel Feb 1987 A
4648388 Steffee Mar 1987 A
4653481 Howland et al. Mar 1987 A
4653489 Tronzo Mar 1987 A
4655199 Steffee Apr 1987 A
4658809 Ulrich et al. Apr 1987 A
4696290 Steffee Sep 1987 A
4719905 Steffee Jan 1988 A
4763644 Webb Aug 1988 A
4773402 Asher et al. Sep 1988 A
4805602 Puno et al. Feb 1989 A
4815453 Cotrel Mar 1989 A
4887595 Heinig et al. Dec 1989 A
4913134 Luque Apr 1990 A
4946458 Harms et al. Aug 1990 A
4950269 Gaines, Jr. Aug 1990 A
4955885 Meyers Sep 1990 A
4987892 Krag et al. Jan 1991 A
5005562 Cotrel Apr 1991 A
5024213 Asher et al. Jun 1991 A
5030220 Howland Jul 1991 A
5042982 Harms et al. Aug 1991 A
5047029 Aebi et al. Sep 1991 A
5067955 Cotrel Nov 1991 A
5074864 Cozad et al. Dec 1991 A
5084049 Asher et al. Jan 1992 A
5092866 Breard et al. Mar 1992 A
5102412 Rogozinski Apr 1992 A
5112332 Cozad et al. May 1992 A
5113685 Asher et al. May 1992 A
5116334 Cozad et al. May 1992 A
5127912 Ray et al. Jul 1992 A
5129388 Vignaud et al. Jul 1992 A
5129900 Asher et al. Jul 1992 A
5147359 Cozad et al. Sep 1992 A
5154718 Cozad et al. Oct 1992 A
5176680 Vignaud et al. Jan 1993 A
5180393 Commarmond Jan 1993 A
5190543 Schläpfer Mar 1993 A
5201734 Cozad et al. Apr 1993 A
5207678 Harms et al. May 1993 A
5258031 Salib et al. Nov 1993 A
5261911 Carl Nov 1993 A
5261912 Frigg Nov 1993 A
5261913 Marnay Nov 1993 A
5281222 Allard et al. Jan 1994 A
5282801 Sherman Feb 1994 A
5282863 Burton Feb 1994 A
5290289 Sanders et al. Mar 1994 A
5294227 Forster et al. Mar 1994 A
5312402 Schläpfer et al. May 1994 A
5312404 Asher et al. May 1994 A
5344422 Frigg Sep 1994 A
5346493 Stahurski et al. Sep 1994 A
5360429 Jeanson et al. Nov 1994 A
5360431 Puno et al. Nov 1994 A
5374267 Siegal Dec 1994 A
5380325 Lahille et al. Jan 1995 A
5380326 Lin Jan 1995 A
5382248 Jacobson et al. Jan 1995 A
5385583 Cotrel Jan 1995 A
5387213 Breard et al. Feb 1995 A
5415661 Holmes May 1995 A
5429639 Judet Jul 1995 A
5437672 Alleyne Aug 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5474555 Puno et al. Dec 1995 A
5480442 Bertanoli Jan 1996 A
5487742 Cotrel Jan 1996 A
5496321 Puno et al. Mar 1996 A
5498264 Schlapfer et al. Mar 1996 A
5499983 Hughes Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5520689 Schläpfer et al. May 1996 A
5534001 Schlapfer et al. Jul 1996 A
5536268 Griss Jul 1996 A
5540688 Navas Jul 1996 A
5545167 Lin Aug 1996 A
5549607 Olson et al. Aug 1996 A
5562737 Graf Oct 1996 A
5569248 Mathews Oct 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601552 Cotrel Feb 1997 A
5609592 Brumfield et al. Mar 1997 A
5609593 Errico et al. Mar 1997 A
5611800 Davis et al. Mar 1997 A
5624441 Sherman et al. Apr 1997 A
5628740 Mullane May 1997 A
5630816 Kambin May 1997 A
5643260 Doherty Jul 1997 A
5645599 Samani Jul 1997 A
5651789 Cotrel Jul 1997 A
5653708 Howland Aug 1997 A
5658284 Sebastian et al. Aug 1997 A
5658285 Marnay et al. Aug 1997 A
5667506 Sutterlin Sep 1997 A
5667507 Corin et al. Sep 1997 A
5669910 Korhonen et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5676665 Bryan Oct 1997 A
5676703 Gelbard Oct 1997 A
5681310 Yuan et al. Oct 1997 A
5681311 Foley et al. Oct 1997 A
5681319 Biedermann et al. Oct 1997 A
5683391 Boyd Nov 1997 A
5683392 Richelsoph et al. Nov 1997 A
5683393 Ralph Nov 1997 A
5688272 Montague et al. Nov 1997 A
5688273 Errico et al. Nov 1997 A
5690629 Asher et al. Nov 1997 A
5690632 Schwartz et al. Nov 1997 A
5690633 Taylor et al. Nov 1997 A
5693053 Estes Dec 1997 A
5697929 Mellinger Dec 1997 A
5700292 Margulies Dec 1997 A
5702392 Wu et al. Dec 1997 A
5702394 Henry et al. Dec 1997 A
5702395 Hopf Dec 1997 A
5702396 Hoenig et al. Dec 1997 A
5702399 Kilpela et al. Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5713900 Benzel et al. Feb 1998 A
5713904 Errico et al. Feb 1998 A
5716355 Jackson et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5716357 Rogozinski Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5716359 Ojima et al. Feb 1998 A
5720751 Jackson Feb 1998 A
5725528 Errico et al. Mar 1998 A
5725582 Bevan et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5735851 Errico et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5743907 Asher et al. Apr 1998 A
5743911 Cotrel Apr 1998 A
5752957 Ralph et al. May 1998 A
5766254 Gelbard Jun 1998 A
5776135 Errico et al. Jul 1998 A
5782833 Haider Jul 1998 A
5785711 Errico et al. Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5810819 Errico et al. Sep 1998 A
5863293 Richelsoph Jan 1999 A
5868745 Alleyne Feb 1999 A
5879350 Sherman et al. Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5899904 Errico et al. May 1999 A
RE36221 Breard et al. Jun 1999 E
5910142 Tatar Jun 1999 A
5925047 Errico et al. Jul 1999 A
5928231 Klein et al. Jul 1999 A
5928232 Howland et al. Jul 1999 A
5928233 Apfelbaum et al. Jul 1999 A
5947965 Bryan Sep 1999 A
5947969 Errico et al. Sep 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
5980521 Montague et al. Nov 1999 A
5980523 Jackson Nov 1999 A
5984922 McKay Nov 1999 A
5989251 Nichols Nov 1999 A
5989254 Katz Nov 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004322 Bernstein Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6015409 Jackson Jan 2000 A
6033410 McLean et al. Mar 2000 A
6036693 Yuan et al. Mar 2000 A
6050997 Mullane Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6063089 Errico et al. May 2000 A
6077262 Schläpfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090111 Nichols Jul 2000 A
6096039 Stoltenberg et al. Aug 2000 A
6113600 Drummond et al. Sep 2000 A
6113601 Tatar Sep 2000 A
6123706 Lange Sep 2000 A
6127597 Beyar et al. Oct 2000 A
6132430 Wagner Oct 2000 A
6132434 Sherman et al. Oct 2000 A
6132464 Martin Oct 2000 A
6136000 Louis et al. Oct 2000 A
6146383 Studer et al. Nov 2000 A
6171311 Richelsoph Jan 2001 B1
6193720 Yuan et al. Feb 2001 B1
6197028 Ray et al. Mar 2001 B1
6210413 Justis et al. Apr 2001 B1
6217578 Crozet et al. Apr 2001 B1
6248106 Ferree Jun 2001 B1
6254602 Justis Jul 2001 B1
6261287 Metz-Stavenhagen Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6273888 Justis Aug 2001 B1
6273914 Papas Aug 2001 B1
6280442 Barker et al. Aug 2001 B1
6280443 Gu et al. Aug 2001 B1
6287311 Sherman et al. Sep 2001 B1
6293949 Justis et al. Sep 2001 B1
6302882 Lin et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6325802 Frigg Dec 2001 B1
6328740 Richelsoph Dec 2001 B1
6344057 Rabbe et al. Feb 2002 B1
6355040 Richelsoph et al. Mar 2002 B1
6379354 Rogozinski Apr 2002 B1
6402749 Ashman Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6402752 Schäffler-Wachter et al. Jun 2002 B2
6413257 Lin et al. Jul 2002 B1
6416515 Wagner Jul 2002 B1
6423064 Kluger Jul 2002 B1
6440169 Elberg et al. Aug 2002 B1
6451021 Ralph et al. Sep 2002 B1
6454773 Sherman et al. Sep 2002 B1
6458131 Ray Oct 2002 B1
6458132 Choi Oct 2002 B2
6468276 McKay Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6475219 Shelokov Nov 2002 B1
6478797 Paul Nov 2002 B1
6478798 Howland Nov 2002 B1
6482207 Errico Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6520962 Taylor et al. Feb 2003 B1
6520990 Ray Feb 2003 B1
6537276 Metz-Stavenhagen Mar 2003 B2
6540748 Lombardo Apr 2003 B2
6540749 Schäfer et al. Apr 2003 B2
6547789 Ventre et al. Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6565565 Yuan et al. May 2003 B1
6565566 Wagner et al. May 2003 B1
6565567 Haider May 2003 B1
6565605 Goble et al. May 2003 B2
6572617 Senegas Jun 2003 B1
6572653 Simonson Jun 2003 B1
6579290 Hardcastle et al. Jun 2003 B1
6585737 Baccelli et al. Jul 2003 B1
6589243 Viart et al. Jul 2003 B1
6616669 Ogilvie et al. Sep 2003 B2
6623485 Doubler et al. Sep 2003 B2
6626905 Schmiel et al. Sep 2003 B1
6626908 Cooper et al. Sep 2003 B2
6645207 Dixon et al. Nov 2003 B2
6652526 Arafiles Nov 2003 B1
6656180 Stahurski Dec 2003 B2
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6660005 Toyama et al. Dec 2003 B2
6676661 Martin Benlloch et al. Jan 2004 B1
6695845 Dixon et al. Feb 2004 B2
6706045 Lin et al. Mar 2004 B2
6709434 Gournay et al. Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6726689 Jackson Apr 2004 B2
6736820 Biedermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6749614 Teitelbaum et al. Jun 2004 B2
6752807 Lin et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755835 Schultheiss et al. Jun 2004 B2
6761719 Justis et al. Jul 2004 B2
6770075 Howland Aug 2004 B2
6783526 Lin et al. Aug 2004 B1
6783527 Drewry et al. Aug 2004 B2
6786907 Lange Sep 2004 B2
6793656 Mathews Sep 2004 B1
6805695 Keith et al. Oct 2004 B2
6805714 Sutcliffe Oct 2004 B2
6811567 Reiley Nov 2004 B2
6827743 Eisermann et al. Dec 2004 B2
6832999 Ueyama et al. Dec 2004 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6852128 Lange Feb 2005 B2
6858029 Yeh Feb 2005 B2
6858030 Martin et al. Feb 2005 B2
6869433 Glascott Mar 2005 B2
6875211 Nichols et al. Apr 2005 B2
6881215 Assaker et al. Apr 2005 B2
6883520 Lambrecht Apr 2005 B2
6887242 Doubler et al. May 2005 B2
6899714 Vaughan May 2005 B2
6918911 Biedermann et al. Jul 2005 B2
6932817 Baynham et al. Aug 2005 B2
6945974 Dalton Sep 2005 B2
6951561 Warren et al. Oct 2005 B2
6964666 Jackson Nov 2005 B2
6966910 Ritland Nov 2005 B2
6986771 Paul et al. Jan 2006 B2
6991632 Ritland Jan 2006 B2
7008423 Assaker et al. Mar 2006 B2
7011685 Arnin et al. Mar 2006 B2
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
7022122 Amrein et al. Apr 2006 B2
7029475 Panjabi Apr 2006 B2
7033392 Schmiel Apr 2006 B2
7048736 Robinson et al. May 2006 B2
7051451 Augostino et al. May 2006 B2
7060066 Zhao et al. Jun 2006 B2
7066938 Slivka et al. Jun 2006 B2
7074237 Goble et al. Jul 2006 B2
7081117 Bono et al. Jul 2006 B2
7083621 Shaolian et al. Aug 2006 B2
7083622 Simonson Aug 2006 B2
7087056 Vaughan Aug 2006 B2
7087057 Konieczynski et al. Aug 2006 B2
7087084 Reiley Aug 2006 B2
7090698 Goble et al. Aug 2006 B2
7101398 Dooris et al. Sep 2006 B2
7104991 Dixon Sep 2006 B2
7104992 Bailey Sep 2006 B2
7107091 Jutras et al. Sep 2006 B2
7125410 Freudiger Oct 2006 B2
7125426 Moumene et al. Oct 2006 B2
7137985 Jahng Nov 2006 B2
7163538 Altarac et al. Jan 2007 B2
7189235 Cauthen Mar 2007 B2
7214227 Colleran et al. May 2007 B2
7250052 Landry et al. Jul 2007 B2
7270665 Morrison et al. Sep 2007 B2
7282064 Chin Oct 2007 B2
7294128 Alleyne et al. Nov 2007 B2
7294129 Hawkins et al. Nov 2007 B2
7306603 Boehm, Jr. et al. Dec 2007 B2
7306606 Sasing Dec 2007 B2
7309355 Donnelly et al. Dec 2007 B2
7326210 Jahng et al. Feb 2008 B2
7335201 Doubler et al. Feb 2008 B2
7338490 Ogilvie et al. Mar 2008 B2
7338491 Baker et al. Mar 2008 B2
7344539 Serhan et al. Mar 2008 B2
7361196 Fallin et al. Apr 2008 B2
7371238 Soboleski et al. May 2008 B2
7377923 Purcell et al. May 2008 B2
7445627 Hawkes et al. Nov 2008 B2
7455684 Gradel et al. Nov 2008 B2
7476238 Panjabi Jan 2009 B2
7479156 Lourdel et al. Jan 2009 B2
7481828 Mazda et al. Jan 2009 B2
7491218 Landry et al. Feb 2009 B2
7503924 Lee et al. Mar 2009 B2
7513905 Jackson Apr 2009 B2
7513911 Lambrecht et al. Apr 2009 B2
7520879 Justis Apr 2009 B2
7530992 Biedermann et al. May 2009 B2
7533672 Morgan et al. May 2009 B2
7553320 Molz, IV et al. Jun 2009 B2
7553329 Lambrecht et al. Jun 2009 B2
7559943 Mujwid Jul 2009 B2
7563274 Justis et al. Jul 2009 B2
7572279 Jackson Aug 2009 B2
7578833 Bray Aug 2009 B2
7585312 Rawlins et al. Sep 2009 B2
7588575 Colleran et al. Sep 2009 B2
7588588 Spitler et al. Sep 2009 B2
7594924 Albert et al. Sep 2009 B2
7597707 Freudiger Oct 2009 B2
7601166 Biedermann et al. Oct 2009 B2
7608095 Yuan et al. Oct 2009 B2
7608106 Reiley Oct 2009 B2
7611526 Carl et al. Nov 2009 B2
7615068 Timm et al. Nov 2009 B2
7618442 Spitler et al. Nov 2009 B2
7625394 Molz, IV et al. Dec 2009 B2
7625396 Jackson Dec 2009 B2
7635379 Callahan et al. Dec 2009 B2
7648520 Markworth Jan 2010 B2
7648522 David Jan 2010 B2
7662172 Warnick Feb 2010 B2
7662173 Cragg et al. Feb 2010 B2
7662175 Jackson Feb 2010 B2
7674293 Kuiper et al. Mar 2010 B2
7678136 Doubler et al. Mar 2010 B2
7678137 Butler et al. Mar 2010 B2
7682377 Konieczynski et al. Mar 2010 B2
7691129 Felix Apr 2010 B2
7691132 Landry et al. Apr 2010 B2
7699873 Stevenson et al. Apr 2010 B2
7699875 Timm et al. Apr 2010 B2
7704270 De Coninck Apr 2010 B2
7708762 McCarthy et al. May 2010 B2
7713287 Timm et al. May 2010 B2
7713288 Timm et al. May 2010 B2
7717939 Ludwig et al. May 2010 B2
7722646 Ralph et al. May 2010 B2
7722649 Biedermann et al. May 2010 B2
7722654 Taylor et al. May 2010 B2
7727259 Park Jun 2010 B2
7727261 Barker et al. Jun 2010 B2
7731734 Clement et al. Jun 2010 B2
7731736 Guenther et al. Jun 2010 B2
7763051 Labrom et al. Jul 2010 B2
7763052 Jahng Jul 2010 B2
7766944 Metz-Stavenhagen Aug 2010 B2
7766945 Nilsson et al. Aug 2010 B2
7776071 Fortin et al. Aug 2010 B2
7780706 Marino et al. Aug 2010 B2
7785350 Eckhardt et al. Aug 2010 B2
7785354 Biedermann et al. Aug 2010 B2
7789896 Jackson Sep 2010 B2
7794477 Melkent et al. Sep 2010 B2
7794481 Molz, IV et al. Sep 2010 B2
7799060 Lange et al. Sep 2010 B2
7803189 Koske Sep 2010 B2
7806913 Fanger et al. Oct 2010 B2
7806914 Boyd et al. Oct 2010 B2
7811288 Jones et al. Oct 2010 B2
7811309 Timm et al. Oct 2010 B2
7811311 Markworth et al. Oct 2010 B2
7815664 Sherman et al. Oct 2010 B2
7815665 Jahng et al. Oct 2010 B2
7819899 Lancial Oct 2010 B2
7819901 Yuan et al. Oct 2010 B2
7819902 Abdelgany et al. Oct 2010 B2
7824431 McCormack Nov 2010 B2
7828824 Kwak et al. Nov 2010 B2
7828825 Bruneau et al. Nov 2010 B2
7828826 Drewry et al. Nov 2010 B2
7828830 Thramann et al. Nov 2010 B2
7833250 Jackson Nov 2010 B2
7833256 Biedermann et al. Nov 2010 B2
7842072 Dawson Nov 2010 B2
7850715 Banouskou et al. Dec 2010 B2
7850718 Bette et al. Dec 2010 B2
7854752 Colleran et al. Dec 2010 B2
7857833 Abdou Dec 2010 B2
7857834 Boschert Dec 2010 B2
7862586 Malek Jan 2011 B2
7862587 Jackson Jan 2011 B2
7862588 Abdou Jan 2011 B2
7862591 Dewey et al. Jan 2011 B2
7862594 Abdelgany et al. Jan 2011 B2
7871413 Park et al. Jan 2011 B2
7875059 Patterson et al. Jan 2011 B2
7875060 Chin Jan 2011 B2
7879074 Kwak et al. Feb 2011 B2
7892266 Carli Feb 2011 B2
7909856 Yuan et al. Mar 2011 B2
7914558 Landry et al. Mar 2011 B2
7918792 Drzyzga et al. Apr 2011 B2
7927359 Trautwein Apr 2011 B2
7931675 Panjabi et al. Apr 2011 B2
7942900 Winslow et al. May 2011 B2
7942910 Doubler et al. May 2011 B2
7963978 Winslow et al. Jun 2011 B2
7985243 Winslow et al. Jul 2011 B2
7993372 Winslow et al. Aug 2011 B2
8002800 Winslow et al. Aug 2011 B2
8002803 Winslow et al. Aug 2011 B2
8007518 Winslow et al. Aug 2011 B2
8012175 Winslow et al. Sep 2011 B2
8012181 Winslow et al. Sep 2011 B2
8012183 Alain Sep 2011 B2
8016861 Mitchell et al. Sep 2011 B2
8021396 Winslow et al. Sep 2011 B2
8043337 Klyce et al. Oct 2011 B2
8048113 Winslow et al. Nov 2011 B2
8048115 Winslow et al. Nov 2011 B2
8048121 Mitchell et al. Nov 2011 B2
8048122 Mitchell et al. Nov 2011 B2
8048123 Mitchell et al. Nov 2011 B2
8048125 Mitchell et al. Nov 2011 B2
8048127 Moulin et al. Nov 2011 B2
8048128 Klyce et al. Nov 2011 B2
8052721 Winslow et al. Nov 2011 B2
8052722 Winslow et al. Nov 2011 B2
8057514 Winslow et al. Nov 2011 B2
8057515 Flynn et al. Nov 2011 B2
8057517 Flynn et al. Nov 2011 B2
8070774 Winslow et al. Dec 2011 B2
8070775 Winslow et al. Dec 2011 B2
8070776 Winslow et al. Dec 2011 B2
8070780 Winslow et al. Dec 2011 B2
8080039 Zucherman et al. Dec 2011 B2
20020143327 Shluzas Oct 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20030004511 Ferree Jan 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20040015166 Gorek Jan 2004 A1
20040034374 Zatzsch et al. Feb 2004 A1
20040049285 Haas Mar 2004 A1
20040054371 Dierks et al. Mar 2004 A1
20040097925 Boehm, Jr. et al. May 2004 A1
20040111088 Picetti et al. Jun 2004 A1
20040122425 Suzuki et al. Jun 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040153077 Biedermann et al. Aug 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040172024 Gorek Sep 2004 A1
20040215192 Justis et al. Oct 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040230192 Graf Nov 2004 A1
20040230304 Yuan et al. Nov 2004 A1
20050049589 Jackson Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050080486 Fallin et al. Apr 2005 A1
20050090822 DiPoto Apr 2005 A1
20050096652 Burton May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113923 Acker et al. May 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050171537 Mazel et al. Aug 2005 A1
20050171538 Sgier et al. Aug 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177156 Timm et al. Aug 2005 A1
20050177157 Jahng Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050182400 White Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050192569 Nichols et al. Sep 2005 A1
20050228378 Kalfas et al. Oct 2005 A1
20050228382 Richelsoph et al. Oct 2005 A1
20050228385 Iott et al. Oct 2005 A1
20050240180 Vienney et al. Oct 2005 A1
20050240265 Kuiper et al. Oct 2005 A1
20050261770 Kuiper et al. Nov 2005 A1
20050267470 McBride Dec 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050288670 Panjabi et al. Dec 2005 A1
20060025771 Jackson Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058787 David Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079896 Kwak et al. Apr 2006 A1
20060084978 Mokhtar Apr 2006 A1
20060084982 Kim Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084989 Dickinson et al. Apr 2006 A1
20060084990 Gournay et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089643 Mujwid Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060106383 Biedermann et al. May 2006 A1
20060111712 Jackson May 2006 A1
20060122620 Kim Jun 2006 A1
20060129148 Simmons et al. Jun 2006 A1
20060129149 Iott et al. Jun 2006 A1
20060142761 Landry et al. Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060149244 Amrein et al. Jul 2006 A1
20060149380 Lotz et al. Jul 2006 A1
20060161153 Hawkes et al. Jul 2006 A1
20060195093 Jahng Aug 2006 A1
20060200128 Mueller Sep 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060229607 Brumfield Oct 2006 A1
20060229613 Timm et al. Oct 2006 A1
20060235385 Whipple Oct 2006 A1
20060235389 Albert et al. Oct 2006 A1
20060235392 Hammer et al. Oct 2006 A1
20060235393 Bono et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247631 Ahn et al. Nov 2006 A1
20060247637 Colleran et al. Nov 2006 A1
20060253118 Bailey Nov 2006 A1
20060264935 White Nov 2006 A1
20060264937 White Nov 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20070016190 Martinez et al. Jan 2007 A1
20070016194 Shaolian et al. Jan 2007 A1
20070016201 Freudiger Jan 2007 A1
20070049936 Colleran et al. Mar 2007 A1
20070083200 Gittings et al. Apr 2007 A1
20070088359 Woods et al. Apr 2007 A1
20070093814 Callahan, II et al. Apr 2007 A1
20070093820 Freudiger Apr 2007 A1
20070093821 Freudiger Apr 2007 A1
20070118122 Butler et al. May 2007 A1
20070123871 Jahng May 2007 A1
20070161994 Lowery et al. Jul 2007 A1
20070162007 Shoham Jul 2007 A1
20070167946 Triplett et al. Jul 2007 A1
20070167947 Gittings Jul 2007 A1
20070198014 Graf et al. Aug 2007 A1
20070213719 Hudgins et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233072 Dickinson et al. Oct 2007 A1
20070233090 Naifeh et al. Oct 2007 A1
20070233091 Naifeh et al. Oct 2007 A1
20070233092 Falahee Oct 2007 A1
20070233093 Falahee Oct 2007 A1
20070233094 Colleran et al. Oct 2007 A1
20070250061 Chin et al. Oct 2007 A1
20070270836 Bruneau et al. Nov 2007 A1
20070270838 Bruneau et al. Nov 2007 A1
20070276380 Jahng et al. Nov 2007 A1
20070288009 Brown et al. Dec 2007 A1
20070288012 Colleran et al. Dec 2007 A1
20080009864 Forton et al. Jan 2008 A1
20080021459 Lim Jan 2008 A1
20080021461 Barker et al. Jan 2008 A1
20080033433 Implicito Feb 2008 A1
20080039838 Landry et al. Feb 2008 A1
20080051787 Remington et al. Feb 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065075 Dant et al. Mar 2008 A1
20080065079 Bruneau et al. Mar 2008 A1
20080071273 Hawkes et al. Mar 2008 A1
20080077139 Landry et al. Mar 2008 A1
20080183215 Altarac et al. Jul 2008 A1
20080195208 Castellvi et al. Aug 2008 A1
20080262554 Hayes et al. Oct 2008 A1
20080312693 Trautwein et al. Dec 2008 A1
20090062868 Casutt Mar 2009 A1
20100042156 Harms et al. Feb 2010 A1
20100174317 Timm et al. Jul 2010 A1
20100198270 Barker et al. Aug 2010 A1
20100222819 Timm et al. Sep 2010 A1
20100286732 Biedermann et al. Nov 2010 A1
Foreign Referenced Citations (45)
Number Date Country
2649042 Oct 1976 DE
3639810 May 1988 DE
0128058 Apr 1988 EP
0669109 Aug 1995 EP
0905389 Mar 1999 EP
0982007 Mar 2000 EP
1281362 Feb 2003 EP
1330987 Jul 2003 EP
1737368 Dec 2009 EP
2277465 Jan 2011 EP
2612070 Sep 1988 FR
2615095 Nov 1988 FR
2844180 Mar 2004 FR
2880256 Jul 2006 FR
780652 Aug 1957 GB
2173104 Oct 1986 GB
2382304 May 2003 GB
20080072848 Aug 2008 KR
20080084997 Sep 2008 KR
WO 8707134 Dec 1987 WO
WO 9421185 Sep 1994 WO
WO 9827884 Jul 1998 WO
WO 0145576 Jun 2001 WO
WO 0191656 Dec 2001 WO
WO 0207621 Jan 2002 WO
WO 0207622 Jan 2002 WO
WO 0217803 Mar 2002 WO
WO 0239921 May 2002 WO
WO 0243603 Jun 2002 WO
WO 02102259 Dec 2002 WO
WO 03007828 Jan 2003 WO
WO 03009737 Feb 2003 WO
WO 03015647 Feb 2003 WO
WO 03037216 May 2003 WO
WO 03077806 Sep 2003 WO
WO2004024011 Mar 2004 WO
WO2004034916 Apr 2004 WO
WO 2004107997 Dec 2004 WO
WO2006033503 Mar 2006 WO
WO2006066685 Jun 2006 WO
WO2006105935 Oct 2006 WO
WO2007064324 Jun 2007 WO
WO2007080317 Jul 2007 WO
WO2008034130 Mar 2008 WO
WO2008073544 Jun 2008 WO
Related Publications (1)
Number Date Country
20100057140 A1 Mar 2010 US
Provisional Applications (1)
Number Date Country
60942162 Jun 2007 US
Continuations (1)
Number Date Country
Parent 11832400 Aug 2007 US
Child 12615380 US