BONE ANCHOR, INSTRUMENTS, AND METHODS FOR USE

Abstract
The bone anchor disclosed herein includes a tulip housing with a distal radially expandable portion, a threaded shank having a proximal ball head, a pressure cap, and a retaining ring that limits radial expansion of the distal radially expandable portion. During assembly, the pressure cap and the proximal ball head through the distal end of the radially expandable portion. The retaining ring is positioned around the distal radially expandable portion of the tulip housing to prevent distal movement of the pressure cap and the proximal ball head. The bone anchors disclosed herein are configured to be inserted without using tapping steps.
Description
FIELD

The bone anchor and methods of use disclosed herein pertain to the field of orthopedic surgery, and more specifically, spinal surgery.


BACKGROUND

Spinal fusion is a common surgical procedure used to correct numerous disease states including degenerative disorders, trauma, instability, and deformity. A frequent method of fusion entails the use of bone screws placed through various sections of the vertebral body including the body, pedicle, facets, lamina, lateral masses, and/or transverse processes. These screws are then linked rigidly with a spinal rod, plate or other fixation device to immobilize the vertebral segments.


Due to the variation in a patient's anatomy and differences in screw placement technique, screws are often not perfectly aligned which makes securement of a spinal rod more difficult. To solve this, many screws that have a threaded shank portion incorporate an articulating tulip housing or receiver connected to the proximal end of the shank portion, such as in a polyaxial or multi-axial bone screw. Polyaxial bone screws allow for a variation in the angulation of the tulip/receiver relative to the shank portion in order to allow the tulip/receiver to more closely align for receiving a fixation device such as a fixation rod within the tulip/receiver. Some bone screws allow for the lateral translation of the tulip/receiver relative to its point of fixation. Further alignment may be accomplished by contouring of the spinal rod itself to compensate for any remaining misalignment. For example, if a spinal rod is employed, the rod can be bent to conform to the patient anatomy and location of the tulip/receiver to securely attach thereto.


While developments to decrease the overall invasiveness of spinal surgical methods are desirable, conventional surgeries still utilize certain invasive steps, such as tapping or undertapping. A tapping procedure is performed as follows: a bone access needle is used to generate an access hole in the bone. The inner shaft of the bone access needle is removed, and a guidewire is inserted a guidewire thru the inner hole of the bone needle. The remaining portion of the bone access needle is removed while taking care to ensure the guidewire does not move within the bone. A small diameter tap is inserted by rotating the tap into the bone. The smallest diameter tap is removed by turning it outwardly, and a slightly larger size tap is inserted and removed in the same fashion to widen the hole. The taps get progressively larger until the hole is the appropriate for the bone anchor. Undertapping procedures are similar to tapping procedures, except that the last tap used is slightly smaller in diameter than the actual bone anchor. Tapping and undertapping procedures lengthen the duration of the surgery. Conventional spinal surgeries also utilize relatively bulky devices. Developments to decrease the overall invasiveness of spinal surgical methods are therefore needed.


SUMMARY

The aforementioned discrepancies in existing orthopedic technology are addressed herein. The bone anchors disclosed herein are smaller in overall diameter, which is less invasive to the patient. The small diameter requires less muscle splitting and results in a smaller incision. Having a smaller diameter tulip housing also allows the screw to be seated closer to the center of rotation of the vertebral body segment within the spinal column.


The bone anchors disclosed herein include a tulip housing comprising a through hole and a distal radially expandable portion, a shank comprising a proximal ball head positioned within the through hole of the distal radially expandable portion, and a pressure cap positioned within the through hole (proximally adjacent to the ball head). The pressure cap includes a bearing surface configured to interface with the ball head. The bone anchors include a retaining ring that limits radial expansion of the distal radially expandable portion when positioned around the distal radially expandable portion, thereby preventing distal movement of the pressure cap and the proximal ball head out of the through hole. In some embodiments, one or more components of the bone anchor can be formed of a metal, such as molybdenum rhenium (MoRe). For example, the tulip housing can be formed of MoRe.


The pressure cap of the bone anchor is positioned within the through hole of the tulip housing. In some embodiments, a proximal surface of the pressure cap comprises a saddle for interfacing with a spinal rod. The saddle can be substantially V-shaped in cross section. The distal bearing surface of the pressure cap can be conical or frustoconical for interfacing with a ball head.


The bone anchors disclosed herein can also include a compression mechanism for forcing the pressure cap into close contact with the ball head. The compression mechanism limits proximal movement of the pressure cap and the proximal ball head within the through hole. The compression mechanism can include a compressing component that exerts a distally oriented force on the pressure cap. In some embodiments, the compression mechanism functions as follows: the pressure cap has a ramped external surface, and a compressing component, such as a pin or screw, extends through a hole in the sidewall of the tulip housing to contact the ramped external surface of the pressure cap. The lateral force placed on the pressure cap by the compressing component is translated to a distally oriented force by the ramped surface.


The radially expandable portion of bone anchor can flex outwardly to permit the passage of the pressure cap and the ball head. In some embodiments, the radially expandable portion can include at least two tabs separated by relief slots. The radially expandable portion can also include a lateral groove for retaining the retaining ring. In some embodiments, the retaining ring includes a first laterally extending locking feature that is configured to mate with a corresponding second laterally extending locking feature on the radially expandable portion.


The bone anchor is configured for a bottom-up assembly, meaning that the pressure cap and the ball head are inserted through the distal end of the tulip housing. The smallest inner diameter of the radially expandable portion is larger than the largest outer diameter of the ball head and pressure cap when the radially expandable portion is in an expanded state, and the same smallest inner diameter is smaller than the largest outer diameter of the ball head and pressure cap when the radially expandable portion is in a contracted state. Furthermore, the smallest inner diameter of the proximal portion of tulip housing is smaller than the largest diameter of the distal threaded portion of the shank, which prevents the shank from being inserted proximally through the through hole of the tulip housing.


One or more attachment features can be located on the tulip housing to facilitate engagement with other devices, such as surgical instruments. In some embodiments, one or more longitudinally extending indentations or protrusions can be included as an attachment feature. The longitudinally extending indentation or protrusion can include angled surfaces. In some embodiments, one or more laterally extending indentations or protrusions can be included as an attachment feature. The laterally extending indentation or protrusion can include angled surfaces.


The shank of the bone anchor can include a threaded region comprising proximal and distal threaded portions for engaging with the bone. The distal threaded portion can, in some embodiments, include a distal set of threads that extends to meet the distal end of the shank. A channel depth of the distal set of threads at the distal end of shank can be greater than zero. In some embodiments, the distal set of threads terminates with cutting edges. Some embodiments include a proximal set of threads with a pitch that is smaller than the pitch of the distal set of threads. The proximal set of threads can be quad lead, and the distal set of threads can be dual lead. In some embodiments, the proximal set of threads extend distally for at least 10 millimeters. In some embodiments, the pitch and lead of the threads is constant throughout the threaded region. In some embodiments, the entire threaded region is dual lead.


Methods of assembling a bone anchor are disclosed herein. The methods include: inserting a pressure cap into a through hole at a distal end of a tulip housing, inserting a proximal ball head of a bone anchor into the through hole at the distal end of the tulip housing, and positioning a retaining ring around a distal radially expandable portion of the tulip housing, thereby preventing distal movement of the pressure cap and the proximal ball head out of the through hole. Inserting the pressure cap and/or inserting the proximal ball head into the through hole can include radially expanding the distal radially expandable portion of the tulip housing. Positioning the retaining ring around the distal radially expandable portion can include limiting the radial expansion of the distal radially expandable portion. Some embodiments of the method further include activating a compression mechanism and forcing the pressure cap into close contact with the ball head. Activating the compression mechanism can include inserting a compressing component through a sidewall of the metal tulip housing.


Methods of inserting bone anchors are also disclosed herein. The methods include inserting a bone access needle into a bone, thereby creating a needle hole space, inserting a guidewire through the bone access needle, removing the bone access needle, screwing a bone anchor into the needle hole space over the guidewire, and removing the guidewire. The method is performed without tapping the bone anchor into the bone. In some embodiments, the bone anchor is screwed into the needle hole space without first widening the needle hole space. In other embodiments, the needle hole space is widened to create a pilot hole prior to screwing a bone anchor into the needle hole space. The bone may be a pedicle, and the bone access needle is a pedicle access needle or a Jamshidi needle. In some embodiments, a minor diameter of the bone anchor approximately matches the outer diameter of the bone access needle. The method can further include inserting a spinal rod into a tulip housing of the bone anchor and locking the spinal rod into place using a set screw.





DESCRIPTION OF DRAWINGS


FIG. 1 is an exploded perspective view of one embodiment of a bone anchor and spinal rod.



FIG. 2 is a side cross-sectional view of the bone anchor of FIG. 1.



FIG. 3 is an enlarged view of the proximal region of the bone anchor and tulip housing of FIG. 1.



FIG. 4 is an enlarged exploded perspective view of the proximal region of the bone anchor of FIG. 1.



FIG. 5 is an enlarged exploded perspective view of the proximal region of the bone anchor of FIG. 1, rotated to show the attachment features on the external surface of the tulip housing.



FIG. 6 is a side view of a threaded shank.



FIG. 7 is a perspective view of the threaded shank shown in FIG. 6.



FIG. 8 is a perspective view of a bone anchor and a pair of blades.



FIG. 9 is a perspective view of a bone anchor and the distal region of a blade.



FIG. 10 is a side view of an assembled blade and bone anchor.



FIG. 11 is a side cross sectional view of an assembled blade and bone anchor.





DETAILED DESCRIPTION

The following description of certain examples of the inventive concepts should not be used to limit the scope of the claims. Other examples, features, aspects, embodiments, and advantages will become apparent to those skilled in the art from the following description. As will be realized, the device and/or methods are capable of other different and obvious aspects, all without departing from the spirit of the inventive concepts. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The described methods, systems, and apparatus should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed methods, systems, and apparatus are not limited to any specific aspect, feature, or combination thereof, nor do the disclosed methods, systems, and apparatus require that any one or more specific advantages be present or problems be solved.


Features, integers, characteristics, compounds, chemical moieties, or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal aspect. “Such as” is not used in a restrictive sense, but for explanatory purposes.


The terms “proximal” and “distal” are orientations that indicate the positioning of a surgical device. As used herein, the terms “distal” and “distally” indicate a direction farther from a practitioner performing a surgical procedure. “Proximal” and “proximally” indicate a direction closer to a practitioner performing the procedure. For example, the shank of a bone anchor is distal to the ball head of an anchor.



FIG. 1 shows an exploded perspective view of one embodiment of a bone anchor 2. FIG. 2 shows a side cross sectional view of the embodiment shown in FIG. 1. The bone anchor 2 includes a tulip housing 4 having a through hole 8 and a distal radially expandable portion 6. The tulip housing 4 captures the ball head 14 of threaded shank 10, creating a polyaxial feature. Particularly, the ball head 14 is positioned within through hole 8 of the distal radially expandable portion 6 of the tulip housing 4. The bone anchor 2 further includes a pressure cap 16. The pressure cap 16 is also positioned within the through hole 8, proximally adjacent to the ball head 14. The distal end of the pressure cap 16 includes a bearing surface 18 for interfacing with the ball head 14, creating a ball and socket device. Bone anchor 2 further includes a retaining ring 20 which limits radial expansion of the radially expandable portion 6. This limitation of radial expansion prevents movement of the pressure cap 16 and the proximal ball head 14 out of the through hole 8. The bone anchor 2 is used in conjunction with a spinal rod 3, which is placed between the sidewalls 30 of the tulip housing 4 and locked into place with a set screw/locking cap 5. The set screw/locking cap 5 forces the spinal rod 3 against the pressure cap 16 and the pressure cap 16 against the ball head 14, which is prevented from being pushed out of the bottom of the tulip housing 4 by the retaining ring 20 positioned around the distal radially expandable portion 6. The shank 10 also includes a distal threaded portion 12 for inserting into the bone.



FIG. 3 shows an enlarged cross-sectional view of a proximal portion of one embodiment of a bone anchor 2. The bone anchor 2 includes a compression mechanism for bringing the pressure cap 16 into close contact with ball head 14, creating a friction fit that increases the amount of force needed to manipulate the tulip housing 4. The compression mechanism can include a compressing component 24 that exerts a distally oriented force onto the pressure cap 16. In the embodiment shown in FIG. 3, the compressing component 24 is a pin that extends through a hole 28 in the sidewall 30 of the tulip housing 4. The compressing component 24 exerts a lateral force onto a ramped surface 26 of pressure cap 16. The lateral force is translated to a distally oriented force by the ramped surface 26, limiting proximal movement of the pressure cap 16 and the proximal ball head 14 within the through hole 8. The compression mechanism is not limited to the embodiment shown. For example, the compression mechanism could include other types of compressing components, including, but not limited to, screws, springs, or wedges.



FIG. 4 shows an enlarged exploded view of the proximal tulip housing 4 seen first in FIG. 1. As shown in FIGS. 3 and 4, the proximal surface 32 of the pressure cap 16 narrows to create a saddle 34 for spinal rod 3. The saddle 34 shown in the embodiment of FIGS. 3 and 4 is substantially V-shaped in cross section, widening as it extends in a proximal direction. The V-shape advantageously enables the bone anchor 2 to accept spinal rods 3 of different diameters. For example, the saddle 34 can accept spinal rods 3 that range from about 3.5 millimeters to about 4.5 millimeters in diameter, including about 3.5 millimeters, about 3.6 millimeters, about 3.7 millimeters, about 3.8 millimeters, about 3.9 millimeters, about 4.0 millimeters, about 4.1 millimeters, about 4.2 millimeters, about 4.3 millimeters, about 4.4 millimeters, and about 4.5 millimeters. Other sizes of spinal rods 3 are also contemplated. The substantially V-shaped saddle 34 can be rounded at its narrowest, distal-most location 38, or it can narrow to a point at its distal-most location 38. The concave bearing surface 18 of pressure cap 16 can be shaped to center ball head 14. For example, in the embodiment shown in FIG. 3, bearing surface 18 takes a frustoconical shape. In other embodiments, bearing surface 18 could be, for example, conical or semispherical.


Tulip housing 4 includes a distally located radially expandable portion 6. The radially expandable portion 6 expands to enable the insertion of the pressure cap 16 and the ball head 14 into the through hole 8, despite their larger diameters (discussed in greater detail below). The embodiment shown in FIG. 4, for example, includes multiple tabs 40 separated by relief slots 42. The tabs 40 flex outwardly to allow pressure cap 16 and ball head 14 to be pushed proximally through the distal end of the radially expandable portion 6. The pressure cap 16 and ball head 14 are then translated proximally within the through hole 8, creating a space at the distal end of the through hole 8. The external retaining ring 20 is then positioned over the outside of radially expandable portion 6, causing it to radially contract. With the external retaining ring 20 in place within the lateral groove 44 around the outside of the radially expandable portion 6 (see FIG. 3), the pressure cap 16 and ball head 14 are translated distally to their final position. Lateral groove 44 is bounded at its distal end by a laterally extending locking feature 46 positioned near the distal end of radially expandable portion 6. The laterally extending locking feature 46 of radially expandable portion 6 mates with a corresponding laterally extending locking feature 48 on the retaining ring 20 to prevent its displacement.


When the radially expandable portion 6 is in an expanded state, the smallest inner diameter of the radially expandable portion 6 is larger than the largest outer diameter of the ball head 14, enabling passage of the ball head 14 for a bottom-up assembly. However, when radially expandable portion 6 is in a contracted state (due to the constriction by the retaining ring 20), the same smallest inner diameter is smaller than the largest outer diameter of the ball head 14, which prevents it from being expelled distally from the tulip housing 4. In other words, retaining ring 20 prevents the radially expandable portion 6 from expanding, and the assembly remains intact. With the ball head 14 captured, for example, having from about a 0.0001 inch to about a 0.04 inch lateral interference, maximum angulation of the threaded shank 10 is achieved. The conical angulation can be, for example, up to 75 degrees (from about 0 degrees to about 75 degrees). Angulation is dependent on the diameter of the ball head 14, the diameter of the neck 50, the diameter of the through hole 8, and the amount of material on the underside of the tulip housing (adjacent the through hole 8).


The proximal portion 52 of the tulip housing 4 has a smallest inner diameter that is smaller than the largest outer diameters of the ball head 14, the pressure cap 16, and the threads of the threaded shank 10, preventing these items from being proximally translated within the through hole 8. The bottom-up assembly (wherein the pressure cap 16 and ball head 14 are inserted into the tulip housing 4 through the distal end of the through hole 8) is advantageous because it allows the tulip housing 4 to be smaller and therefore less invasive. In some embodiments, the tulip housing 4 can be from about 5% to about 15% smaller than conventionally used tulip housings. The diameter of ball head 14 (as well as most major diameter sizes of the bone anchor) is larger than the narrowest path through the tulip housing 4, so it is not possible to assemble from the top as with conventional bone anchors and polyaxial screws. In one embodiment, the largest outer diameter of the tulip housing 4 is from about 9.9 millimeters to about 11.9 millimeters.


The tulip housing 4 can include attachment features that assist with engagement to other devices, such as one or more blades (e.g., blades 66, 68 shown in FIG. 8) and/or other surgical instruments (such as, for example, rod reduction instruments, instruments to compress the screws/vertebral body onto an interbody device, and/or instruments to distract the screws/vertebral body for nerve decompression prior to locking the rod in place). The tulip housing 4 can include a plurality of longitudinally extending indentations 54. For example, the tulip housing 4 can include four longitudinally extending indentations 54, with two indentations 54 being arranged on each sidewall 30 of the tulip housing 54 (as in the embodiment shown in FIG. 5). The longitudinally extending indentations 54 can be silo-shaped, and can limit rotational and translational forces when mated to longitudinally extending protrusions on an engaged instrument. This disclosure contemplates that the tulip housing 4 can include more or less than four longitudinally extending indentations 54, which are provided only as an example in some of the figures. Alternatively, the tulip housing 4 could include one or more longitudinally extending protrusions that limit rotational forces when mated to longitudinally extending indentations on an engaged instrument. The longitudinally extending protrusions can be positioned circumferentially around the external surface of the tulip housing. In the embodiment shown in FIG. 5, each longitudinally extending indentation 54 has a curved longitudinally extending surface. The indentations 54 break through the external surface of the tulip housing 4 such that in a cross-sectional view, less than a 360-degree circle is formed by the external surface of tulip housing 4. In other embodiments, a longitudinally extending indentation 54 can have multiple longitudinally extending surfaces that meet each other at angles. The tulip housing 4 can also include attachment features that resist axial forces, such as the laterally extending indentation 56, or undercut lip, shown in FIG. 5. The laterally extending indentation 56 is positioned distally from the proximal-most surface 58 of the tulip housing 4, and is configured to mate with laterally extending protrusions on an engaged instrument. Alternatively, the tulip housing 4 could include laterally extending protrusions that limit axial forces when mated to laterally extending indentations on an engaged instrument. The surfaces of the laterally extending indentations or protrusions can be rounded or angled.


Some or all of the components of the bone anchor 2 can be formed of a metal material. For example, in some embodiments the tulip housing 4, shank 10, pressure cap 16, retaining ring 20, and/or pins 24 are formed of molybdenum rhenium (MoRe). The use of MoRe in surgical implants is described elsewhere, for example, in International Patent Application Publication No. WO 2017/003926, published Jan. 5, 2017, and entitled “Molybdenum alloys for medical devices”, U.S. Patent Application Publication No. 2016/0237541, published Aug. 18, 2016, and entitled “Improved Metal Alloy For Medical Devices”, and U.S. Pat. No. 7,488,444 to Furst et al., issued Feb. 10, 2009, and entitled “Metal alloys for medical devices”, which are incorporated by reference in its entirety and for all purposes.


The use of MoRe enables the design of smaller, less invasive components. MoRe as a material is highly resistant to fatigue, which enables the design of thinner walls. MoRe is not notch sensitive, which enables the design of notches and angled surfaces. The notches enable, for example, the inclusion of tabs 40 that lend flexibility of the radially expanding portion 6. Angled surfaces can be advantageous, for example, to prevent sliding between interlocking mechanisms (such as sliding between the interlocking features 46, 48 on the radially expanding portion 6 and retaining ring 20, or sliding between the indentations 56, 58 on tulip housing 4 and their counterparts on engaged instruments). Angled corners also take up less space than rounded corners, which again enables the design of smaller devices.


Various embodiments of the shank 10 are shown in FIGS. 1 and 6. FIG. 7 shows a perspective view of the shank 10 shown in FIG. 6. The embodiments shown in FIGS. 1 and 6 include a distal threaded portion 12 having a distal set of threads 60 that cut into bone as the screw is rotated. The distal set of threads 60 extends to meet the distal end 64 of the shank 10 (i.e., the channel depth of the distal set of threads 60 at the distal end 64 of shank 10 is greater than zero), and can terminate with a cutting edge. In the embodiment shown in FIG. 1, the distal threaded portion 12 includes a proximal set of threads 62 with a pitch that is smaller than the pitch of the distal set of threads 60. The proximal set of threads 62 are a quad lead and the distal set of threads 60 are a dual lead. The proximal set of threads 62 can extend distally for at least 10 millimeters. In the embodiment shown in FIG. 6, the distal and proximal sets of threads 60, 62 have equivalent pitch and lead. The pitch is therefore constant throughout the threaded region. The threaded region is dual lead. The major and minor diameters of the threaded region of the threaded shank 10 narrow as they approach distal end 64 of the shank 10. This narrowing maintains an equal distance between the major and minor diameter of the screw thread, which improves thread pull-out and provides consistent bone engagement for the entirety of the screw thread. The minor diameter of the distal threaded portion 12 can be sized to create the greatest flank overlap and surface area in order to maximize purchase and pullout strength. In some embodiments, the minor diameter is cylindrical in cross-section. The minor diameter, depending on major diameter, can be sized to match standard gauge needle diameters (which is often the first step of a spinal procedure). Alternatively, a drill, awl, or probe could be used to create the initial hole. In doing so, the bone anchor is capable of being used without the need to tap or undertap, a common procedural step. In one embodiment, only a pilot hole, which matches the minor diameter of the threaded shank, is necessary for bone anchor insertion.


Instruments for use with a bone anchor are also disclosed herein. FIG. 8 shows an exploded perspective view of bone anchor 2 with first and second blades 66, 68. Blades 66, 68 are partially curved, thin walled members. The blades are configured to be attached to the bone anchor 2 before or during a surgical procedure, and detached at the end of the surgical procedure. FIG. 8 shows the use of a pair of blades, but in some embodiments, a single blade can be joined to a bone anchor 2, or more than two blades can be joined to a bone anchor 2. During a procedure, blades attach to tulip housing 4 and extend proximally away from the spine and above the surface of the skin, providing a channel for surgical access and enabling manipulation of tulip housing 4. A pair of blades, such as the pair 66, 68, can be joined at a proximal region 71 via a permanent or non-permanent connection positioned between the two blades (not shown).


Adjacent pairs of blades define a path between adjacent bone anchors 2 along the spine of the patient during the surgery (not shown). A longitudinal member, such as a spinal rod 3, can be passed or threaded between one pair of blades 66, 68 and an adjacent pair of blades along the spine. The proximal regions 71 of the blades 66, 68 can include fixation features 73, such as through-holes, through-slots, notches, grooves, or cut-outs, for attachment to other surgical instruments. The blades can be made of disposable or reusable materials. Materials used to make blades 66, 68 can include but are not limited to: MoRe, stainless steel, polypropylene, polycarbonate, titanium or a titanium alloy, carbon fiber, and aluminum. In some embodiments, the walls of the blades range from about 1 millimeter to about 4 millimeters.



FIG. 9 shows an enlarged view of distal region 70 of the embodiment of blade 66 seen in FIG. 8. Distal region 70 has a curved internal surface 72 that is configured to mate with the curved external surface 74 of tulip housing 4. For example, the curved internal surface 72 includes rotational locking features 76 (which limit rotational movement of the blade with respect to the bone anchor) and an axial locking feature 78 (that limits axial movement of the blade with respect to the surgical device). The rotational locking features 76 can be, for example, one or more longitudinally extending protrusions, or silos, configured to mate with the longitudinally extending indentations 54 on the proximal region 52 of tulip housing 4, described above. During a procedure, the blade 66 slides distally around the external surface 74 of tulip housing 4 such that longitudinally extending protrusions 76 slide into the longitudinally extending indentations 54 of the tulip housing 4. The longitudinally extending protrusions 76, which are located around the diameter, prevent the blade 66 from rotating relative to the tulip housing 4 about all three axes and from translating about all three axes except proximally. Proximal translation is addressed by the axial locking feature discussed below. The longitudinally extending protrusions 76 can be substantially cylindrical, as shown in FIG. 9, or they can have angled longitudinally extending surfaces. In some embodiments, the longitudinally extending protrusions 76 can include at least one flat proximal or distal surface 80 for further restricting axial movement of the blade 66 with respect to the tulip housing 4.


The curved internal surface 72 can also include an axial locking feature 78, which limits axial movement of the blade with respect to the bone anchor 2. In the embodiment shown in FIG. 9, the axial locking feature is a laterally extending ridge with angled surfaces. The laterally extending ridge 78 is positioned on the inside of distal portion of a living hinge 82, which is an elongated tab cut into the sidewall 84 of blade 66. Living hinge 82 can be seen in totality from the side view of blade 66 shown in FIG. 10, which shows the outer surface 86 of the distal region 70 of blade 66. Living hinge 82 can flex outwardly as blade 66 slides distally over the tulip housing 4, enabling angled surfaces of the laterally extending ridge 78 to catch within the laterally extending indentation 56 of the tulip housing 4 as living hinge 82 returns to its original position (see cross-sectional view in FIG. 11). The proximal surface 88 of the laterally extending ridge 78 creates an acute angle with a sidewall of the living hinge 82. The distal surface 90 of the laterally extending ridge 78 creates an obtuse angle with a sidewall of the living hinge 82. The interaction of the angled surfaces of ridge 78 with the angled surfaces of indentation 56 (the axial locking feature of bone anchor 2) enable the blade 66 to slide over the tulip housing 4 as a distally exerted force is applied (i.e., when blade 66 is pushed inward). However, when the blade is pulled back toward the practitioner, the proximal surface 88 of ridge 78 catches on the distal surface of indentation 56, such that the ridge 78 must be disengaged manually from indentation 56 using a separate disengagement instrument.


In some embodiments, a disengagement instrument can, for example, have two handles with two extensions protruding distally from the handles. The handles and both extensions can be held in an open position by springs, for example. One distally protruding extension contains a pin member which mates with a hole located in the sidewall 84 of blade 66, positioned above the skin of the patient during the procedure. The second distally protruding extension is inserted down the length of the interior portion of the elongated blade 66, and has a projecting member. Compressing the handles thrusts the projecting member outward, thus disengaging the elongated member from the bone anchor (for example, by pushing flexing living hinge 82 outwardly and thereby pushing axial locking feature 78 away from the bone anchor 2). With the handles still compressed, the disengagement instrument holds onto the elongated blade 66 during removal from the surgical site to ensure the elongated blade does not fall back into the surgical site for safety to the patient.


Methods of assembling bone anchors are disclosed herein. The bone anchors disclosed herein are assembled by inserting pressure cap 16 into a through hole 8 at a distal end of a tulip housing 4, inserting a proximal ball head 14 of a bone anchor 2 into the through hole 8 at the distal end of the tulip housing 4, and positioning a retaining ring 20 around a distal radially expandable portion 6 of the tulip housing 4 (thereby preventing distal movement of the pressure cap 16 and the proximal ball head 14 out of the through hole 8). The radially expandable distal portion 6 expands to allow for the passage of pressure cap 16 and ball head 14 as they are inserted into the through hole 8. The expansion is possible because tabs 40 of the radially expandable portion 6 flex outwardly during the passage of the ball head 14 and pressure cap 16, which have larger diameters. Positioning the retaining ring 20 limits further expansion of the distal radially expandable portion 6 of tulip housing 4, preventing distal movement of the ball head 14 out of through hole 8. The method of assembling the bone anchor 2 further comprises activating a compression mechanism that forces the pressure cap 16 into close contact with the ball head 14. In some embodiments, activating a compression mechanism includes inserting a compressing component 24 through a sidewall 28 of the metal tulip housing 4.


The bone anchors described herein can be inserted without tapping or undertapping. Methods of inserting the bone anchors include inserting a bone access needle into a bone to create a needle hole space, inserting a guidewire through the bone access needle within the needle hole space, removing the bone access needle, screwing a cannulated bone anchor into the needle hole space over the guidewire, and removing the guidewire. No tapping or undertapping steps are performed, reducing the duration and the invasiveness of the procedure. In some embodiments of the method, the bone anchor is screwed into the needle hole space without first widening the needle hole space. In other embodiments, the needle hole space is widened to create a pilot hole prior to screwing in the bone anchor. The bone can be a pedicle in some embodiments. The bone access needle can be a pedicle access needle, or, in some embodiments, a Jamshidi needle. The minor diameter of the distal threaded portion 12 of the bone anchor 2 can be chosen to approximately match the outer diameter of the bone access needle (and therefore, the needle hole space). The method of inserting the bone anchor can also include inserting a spinal rod 3 between the sidewalls 30 of two adjacent tulip housings 4, and locking the spinal rod 3 into place using set screws 5 (an exploded perspective view of these components is shown in FIG. 1).

Claims
  • 1. A bone anchor comprising; a tulip housing comprising a through hole and a distal radially expandable portion,a shank comprising a ball head positioned within the through hole of the distal radially expandable portion,a pressure cap positioned within the through hole proximally adjacent to the ball head, the pressure cap comprising a bearing surface configured to interface with the ball head,a retaining ring positioned around the distal radially expandable portion, the retaining ring limiting radial expansion of the distal radially expandable portion, thereby preventing distal movement of the pressure cap and the ball head out of the through hole.
  • 2. The bone anchor of claim 1, further comprising a compression mechanism configured to force the pressure cap into close contact with the ball head.
  • 3. The bone anchor of claim 2, wherein the compression mechanism limits proximal movement of the pressure cap and the ball head within the through hole.
  • 4. The bone anchor of claim 2, wherein the compression mechanism comprises a compressing component that exerts a distally oriented force on the pressure cap.
  • 5. The bone anchor of claim 4, wherein the compression mechanism further comprises a ramped external surface of the pressure cap and a hole in a sidewall of the tulip housing, and wherein the compressing component is a pin that extends through the hole in the sidewall of the tulip housing to contact the ramped external surface of the pressure cap.
  • 6. The bone anchor of claim 1, wherein a proximal surface of the pressure cap comprises a saddle.
  • 7. The bone anchor of claim 6, wherein the saddle is substantially V-shaped in cross section.
  • 8. The bone anchor of claim 1, wherein the bearing surface of the pressure cap is conical or frustoconical.
  • 9. The bone anchor of claim 1, wherein the distal radially expandable portion comprises at least two tabs separated by a relief slot.
  • 10. The bone anchor of claim 1, wherein the distal radially expandable portion comprises a lateral groove, and wherein the retaining ring is configured to be retained within the lateral groove.
  • 11. The bone anchor of claim 10, wherein the retaining ring comprises a first laterally extending locking feature configured to mate with a corresponding second laterally extending locking feature on the distal radially expandable portion.
  • 12. The bone anchor of any one of claim 1, wherein an inner diameter of the distal radially expandable portion is smaller than a largest outer diameter of the ball head when the distal radially expandable portion is in a contracted state, and wherein the same inner diameter of the distal radially expandable portion is larger than the largest outer diameter of the ball head when the distal radially expandable portion is in an expanded state.
  • 13. The bone anchor of claim 1, wherein a proximal portion of the tulip housing comprises a smallest inner diameter that is smaller than a largest outer diameter of the ball head.
  • 14. The bone anchor of claim 1, wherein the shank further comprises a distal threaded portion, and wherein a proximal portion of the tulip housing comprises a smallest inner diameter that is smaller than a major diameter of the distal threaded portion.
  • 15. The bone anchor of claim 1, wherein an external surface of a proximal portion of the tulip housing comprises at least one attachment feature configured to mate with other devices.
  • 16. The bone anchor of claim 15, wherein the at least one attachment feature is a longitudinally extending indentation or protrusion.
  • 17. The bone anchor of claim 16, wherein the longitudinally extending indentation or protrusion comprises angled surfaces.
  • 18. The bone anchor of claim 15, wherein the at least one attachment feature is a laterally extending indentation or protrusion.
  • 19. The bone anchor of claim 18, wherein the laterally extending indentation or protrusion comprises angled surfaces.
  • 20. The bone anchor of any one of claim 1, wherein the tulip housing is formed of a metal.
  • 21. The bone anchor of claim 20, wherein the metal is molybdenum rhenium.
  • 22. The bone anchor of claim 1, wherein the shank further comprises a distal threaded portion, and wherein the distal threaded portion comprises a distal set of threads that extends to meet a distal end of the shank.
  • 23. The bone anchor of claim 22, wherein a channel depth of the distal set of threads at the distal end of shank is greater than zero.
  • 24. The bone anchor of claim 22, wherein the distal set of threads terminates with cutting edges.
  • 25. The bone anchor of claim 1, wherein the shank further comprises a distal threaded portion, and wherein the distal threaded portion comprises a proximal set of threads and a distal set of threads, and wherein the pitch of the proximal set of threads is smaller than the pitch of the distal set of threads.
  • 26. The bone anchor of claim 1, wherein the shank further comprises a distal threaded portion, and wherein the distal threaded portion comprises a proximal set of threads and a distal set of threads, and wherein the proximal set of threads are a quad lead and the distal set of threads are a dual lead.
  • 27. The bone anchor of claim 1, wherein the shank further comprises a distal threaded portion, and wherein the distal threaded portion comprises a proximal set of thread that extend distally for at least 10 millimeters.
  • 28. The bone anchor of claim 1, wherein the shank comprises a threaded region having a major diameter and a minor diameter, and wherein the major and minor diameters of the threaded region narrow approaching a distal end of the shank.
  • 29. The bone anchor of claim 28, wherein the pitch is constant throughout the threaded region.
  • 30. The bone anchor of claim 28, wherein the threaded region is dual lead.
  • 31. A method of assembling a bone anchor comprising: inserting a pressure cap into a through hole at a distal end of a tulip housing,inserting a ball head of a bone anchor into the through hole at the distal end of the tulip housing,positioning a retaining ring around a distal radially expandable portion of the tulip housing, thereby preventing distal movement of the pressure cap and the ball head out of the through hole.
  • 32. The method of claim 31, wherein inserting the pressure cap into the through hole comprises radially expanding the distal radially expandable portion of tulip housing.
  • 33. The method of claim 31, wherein inserting the ball head into the through hole comprises radially expanding the distal radially expandable portion of tulip housing.
  • 34. The method of claim 31, wherein positioning a retaining ring around the distal radially expandable portion further comprises limiting radial expansion of the distal radially expandable portion.
  • 35. The method of claim 31, further comprising activating a compression mechanism and forcing the pressure cap into close contact with the ball head.
  • 36. The method of claim 35, wherein activating a compression mechanism comprises inserting a compressing component through a sidewall of the metal tulip housing.
  • 37. A method of inserting a bone anchor without tapping or undertapping, the method comprising: inserting a bone access needle into a bone, thereby creating a needle hole space,inserting a guidewire through the bone access needle,removing the bone access needle,screwing a bone anchor into the needle hole space over the guidewire, andremoving the guidewire.
  • 38. The method of claim 37, wherein the bone anchor is screwed into the needle hole space without first widening the needle hole space.
  • 39. The method of claim 37, further comprising widening the needle hole space to create a pilot hole prior to screwing a bone anchor into the needle hole space.
  • 40. The method of claim 37, wherein the method is performed without a tapping step.
  • 41. The method of claim 37, wherein the bone is a pedicle.
  • 42. The method of claim 37, wherein the bone access needle is a pedicle access needle.
  • 43. The method of claim 37, wherein the bone access needle is a Jamshidi needle.
  • 44. The method of claim 37 wherein a minor diameter of the bone anchor approximately matches the outer diameter of the bone access needle.
  • 45. The method of claim 37, wherein the method further comprises inserting a spinal rod into a tulip housing of the bone anchor and locking the spinal rod into place using a set screw.
  • 46. The method of claim 37, wherein screwing a bone anchor into the needle hole space comprises cutting the bone with a cutting edge of a distal set of threads of the bone anchor.
  • 47. The method of claim 37, wherein a shank of the bone anchor comprises a threaded region having a major diameter and a minor diameter, and wherein the major and minor diameters of the threaded region narrow approaching a distal end of the shank.
  • 48. The method of claim 47, wherein the pitch is constant throughout the threaded region.
  • 49. The method of claim 47, wherein the threaded region is dual lead.
RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/395,613, filed Sep. 16, 2016, which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US17/51983 9/18/2017 WO 00
Provisional Applications (1)
Number Date Country
62395613 Sep 2016 US