The invention relates to a device for taking a liquid bone marrow sample (aspiration) and a solid bone sample (biopsy) in the same procedure, which uses a needle, a guide, a handle and a mechanism for the movement of the guide. With this invention we intend to avoid using one needle to aspirate the bone marrow and then using another needle to perform the bone biopsy, thus avoiding penetrating the patient twice and changing the equipment for the procedure.
Currently, the conventional procedure for bone marrow aspiration and bone biopsy is conducted separately, in a manner that uses specialized needles exclusively for bone marrow liquid aspiration and needles exclusively for performing the bone biopsy. The instruments used for these procedures have the same mechanical structure, their difference lies in the dimensions: the bone needle biopsy needle is much longer and has a larger diameter, while the marrow needle is thinner and has a bevel with a greater pitch.
Some similar devices are:
The Coaxial Bone Marrow Biopsy Coring and Aspirating Needle Assembly and Method of Use Thereof (U.S. Pat. No. 5,257,632) (1993) describes an invention which obtains a solid sample of bone marrow and a liquid sample of bone marrow by aspiration. It consists of an aspiration assembly which surrounds the interior orifice of the needle and a trocar which extends around the needle. It has a handle which allows the insertion of the stylet, the needle and the assembly, one within the other, into the bone, which enables manipulation. After the insertion of the combined system, the trocar is withdrawn. By pushing and turning, a piece of bone is inserted into the needle. Then, the needle is withdrawn and the bone marrow sample is pushed out. An aspiration system is then attached to an aspiration channel attached to the handle of the exterior sheath, and the liquid bone marrow sample is taken. The device presented in this document is simpler, the needle is inserted with the guide into the patient, when the bone is reached, the needle is raised and the aspiration is performed, without having to withdraw it and is then inserted more deeply in order for the needle to penetrate into the bone and the biopsy is successfully performed.
More recent patents are the patent submitted in the document Bone marrow biopsy needle (U.S. Pat. No. 5,522,398) (1997) which has the trade name Snarecoil. The invention consists of an exterior cannula, an internal tube, and a guide. The far end of the interior tube is provided with a trap in the form of a coil extending from the interior tube. The free side of the interior tube is adhered to the internal surface of the exterior cannula. To the extent that there is rotation of the interior tube with respect to the exterior cannula, the coil will decrease in diameter to take the piece of the biopsy with the exterior needle. After the removal of the needle from the patient, rotating the interior tube in the opposite direction will cause the tube to expand to its original diameter and will allow removal of the piece of the biopsy from the needle.
The tool that is the subject of this invention is a needle with special characteristics capable of performing separate procedures of puncturing and aspiration of bone marrow and bone in a single procedure in a simpler manner which is less painful for the patient, so that in a two-in-one procedure, bone marrow and a solid sample of bone are extracted. Also, in the invention presented in this document, there is no trap-type system to take the biopsy before extracting it as in some conventional tools, and the movable element is not used to take the sample, but rather, to retract the needle.
Unlike previous devices, the present invention has a very simple mechanism based on a needle and a guide, in addition, the mechanism that it uses has only two steps, and it is easy to dismantle for sterilization. The handle is designed so that it will be easier to hold and apply force, making it possible to obtain good results with less force. A principal advantage is the simplicity of the entire device and its operation, which makes the procedure easier for the user and in a single puncture, takes the liquid sample of the bone marrow and a solid bone sample; both samples taken in optimal conditions for laboratory analysis.
The single two-step procedure begins with the insertion of a special needle for the procedure in the posterior portion of the iliac crest. After passing through skin, fat, and bone, one arrives at the marrow, where the guide is raised in order to begin to take the required sample as quickly as possible (because this substance coagulates, becoming thicker and making it impossible to take the sample). Once again the guide is lowered in order to continue inserting the needle until it reaches the bone, when it reaches the bone, the guide is lifted again to take the bone biopsy. After the sample is taken, the needle is withdrawn from the patient and with the help of the guide, the sample taken is expelled.
The invention consists of a device for bone marrow aspiration and bone biopsy capable of performing in a single procedure the taking of a liquid bone marrow sample and a solid bone sample, with no need to puncture the patient with a special needle to take the liquid sample (aspiration), to withdraw it, and then to insert another special needle to take the solid bone (biopsy). The objective is to reduce trauma to the patient and to avoid the double work for the doctor who performs the procedures.
For greater comprehension since it is described in this technical memorandum, we rely on the figures in which the device, its components, and the positions that make it possible to adopt its use are represented.
In
As a result of the different diameter of the guide, it can be displaced by the horizontal and vertical grooves on the lever cover for the purpose of joining or separating the second section of the guide with the beveled edge of the needle, thus enabling the opening and closing of a channel.
The lever cover adjusts the position of the guide, and closes the vertical groove and the first and second horizontal grooves so that it is possible to create the required vacuum when the marrow aspiration is performed.
The lever cover (21) has a two-fold objective: the first allows manipulation of the position of the guide (18), and the second allows the vertical groove (11) of the peripheral cylindrical wall and the horizontal grooves (12 and 13) to be closed in order to enable the required vacuum to be created when the bone marrow aspiration is performed.
The device which is the subject of this invention can be dismantled for sterilization. Assembly is completed in the following steps:
Insert the closed bone marrow aspiration and bone biopsy device into the patient. In other words, the lever (23) must be at the bottom of the first horizontal groove (12) of the main cylinder, thus enabling the second section (20) of the guide (18) to meet the bevel (17) of the needle, and due to the difference in the diameter of the needle and the guide, a channel is formed (26) and is closed, to illustrate, what is described here can be observed in
The needle (2) is inserted into the patient until it reaches the marrow area, and then the device is opened, remaining as shown in
As the guide (18) is joined to the lever cover (21); with the previous movement, the guide (18) has been lifted and the lever cover (21) has closed the vertical groove (11) and the vertical grooves (12 and 13), leaving the channel (26) open, as shown in
Only the syringe is connected, the orifice of its lower end remains inside of the connection (10) so that lifting the plunger of the syringe causes a vacuum effect inside of the channel (26) which causes the bone marrow liquid to be introduced into the channel and to flow toward the syringe, thus completing the aspiration procedure. Subsequently, the device is closed and the syringe is removed.
The device is inserted deeper into the patient, hard bone is reached and when this occurs, the lever is manipulated (23) to open the device as shown in
In order to extract the bone sample from the device, the device is closed, causing the guide (18) to make contact with the piece of bone and it pushes it until it is expelled from the needle (2).
Number | Date | Country | Kind |
---|---|---|---|
MX/a/2007/010963 | Sep 2007 | MX | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/MX2008/000121 | 9/5/2008 | WO | 00 | 3/5/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/031880 | 3/12/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4513754 | Lee | Apr 1985 | A |
4793363 | Ausherman et al. | Dec 1988 | A |
5257632 | Turkel et al. | Nov 1993 | A |
5357974 | Baldridge | Oct 1994 | A |
5522398 | Goldenberg et al. | Jun 1996 | A |
5807275 | Jamshidi | Sep 1998 | A |
6015391 | Rishton et al. | Jan 2000 | A |
6221029 | Mathis et al. | Apr 2001 | B1 |
20030139688 | Lamoureux | Jul 2003 | A1 |
20070142744 | Provencher | Jun 2007 | A1 |
20070198013 | Foley et al. | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100234761 A1 | Sep 2010 | US |