The present invention relates to bone cement, formulations thereof and methods of use thereof.
It is common to employ cement to repair bones in a variety of clinical scenarios.
For example, compression fractures of the vertebrae, which are a common occurrence in older persons, cause pain and/or a shortening (or other distortion) of stature. In a procedure known as vertebroplasty cement is injected into a fractured vertebra. Vertebroplasty stabilizes the fracture and reduces pain, although it does not restore the vertebra and person to their original height. In vertebroplasty the cement is typically injected in a liquid phase so that resistance to injection is not too great. Liquid cement may unintentionally be injected outside of the vertebra and/or may migrate out through cracks in the vertebra.
In another procedure, known as kyphoplasty, the fracture is reduced by expanding a device, such as a balloon inside the vertebra and then injecting a fixing material and/or an implant. Kyphoplasty reduces the problem of cement leakage by permitting a lower pressure to be used for injection of the cement.
In general, polymeric cements become more viscous as the polymer chain grows by reacting directly with the double bond of a monomer. Polymerization begins by the “addition mechanism” in which a monomer becomes unstable by reacting with an initiator, a volatile molecule that is most commonly a radical (molecules that contain a single unpaired electron). Radicals bond with monomers, forming monomer radicals that can attack the double bond of the next monomer to propagate the polymer chain. Because radicals are so transient, initiators are often added in the form of an un-reactive peroxide form which is stable in solution. Radicals are formed when heat or light cleaves the peroxide molecule. For applications in which high temperatures are not practical (such as the use of bone cement in vivo), peroxide is typically cleaved by adding a chemical activator such as N,N-dimethyl-p-toluidine. (Nussbaum D A et al: “The Chemistry of Acrylic Bone Cement and Implication for Clinical Use in Image-guided Therapy”, J Vasc Interv Radiol (2004); 15:121-126; the content of which is fully incorporated herein by reference).
Examples of commercially available viscous bone cements include, but are not limited to, CMW® Nos. 1, 2 and 3 (DePuy Orthopaedics Inc.; Warsaw, Ind., USA) and Simplex™-P and -RO (Stryker Orthopaedics; Mahwah, N.J., USA). These cements are characterized by a liquid phase after mixing and prior to achieving a viscosity of 500 Pascal-second. In a typical use scenario, these previously available cements are poured, while in a liquid phase, into a delivery device.
There have also been attempts to reduce cement leakage by injecting more viscous cement, for example, during the doughing time and the beginning of polymerization. However, the viscous materials, such as hardening PMMA, typically harden very quickly once they reach a high viscosity. This has generally prevented injection of viscous materials in orthopedic procedures.
Some bone fixing materials, such as polymethylmethacrylate (PMMA), emit heat and possibly toxic materials while setting.
U.S. patents and publication U.S. Pat. Nos. 4,969,888, 5,108,404, 6,383,188, Nos. 2003/0109883, 2002/0068974, U.S. Pat. Nos. 6,348,055, 6,383,190, 4,494,535, 4,653,489 and 4,653,487, the disclosures of which are incorporated herein by reference describe various tools and methods for treating bone.
US patent publication 2004/0260303, the disclosure of which is incorporated herein by reference, teaches an apparatus for delivering bone cement into a vertebra.
Pascual, B., et al., “New Aspects of the Effect of Size and Size Distribution on the Setting Parameters and Mechanical Properties of Acrylic Bone Cements,” Biomaterials, 17(5): 509-516 (1996) considers the effect of PMMA bead size on setting parameters of cement. This article is fully incorporated herein by reference.
Hernandez, et al., (2005) “Influence of Powder Particle Size Distribution on Complex Viscosity and Other Properties of Acrylic Bone Cement for Vertebroplasty and Kyphoplasty” Wiley International Science D01:10:1002/jbm.b.30409 (pages 98-103) considers the effect of PMMA bead size distribution on setting parameters of cement. Hernandez suggests that it is advantageous to formulate cement with a liquid phase to facilitate injection. This article is fully incorporated herein by reference.
U.S. Pat. No. 5,276,070 to Arroyo discloses use of acrylic polymers with a molecular weight in the range of 0.5 to 1.5 million Daltons in formulation of bone cement. The disclosure of this patent is fully incorporated herein by reference.
U.S. Pat. No. 5,336,699 to Cooke discloses use of acrylic polymers with a molecular weight of about one hundred thousand Daltons in formulation of bone cement. The disclosure of this patent is fully incorporated herein by reference.
A broad aspect of the invention relates to a bone cement characterized by a rapid transition from separate liquid monomer and powdered polymer components to a single phase characterized by a high viscosity when the components are mixed together with substantially no intervening liquid phase. Optionally, high viscosity indicates 500 Pascal-second or more. Mixing is deemed complete when 95-100% of the polymer beads are wetted by monomer. In an exemplary embodiment of the invention, mixing is complete in within 60, optionally within 45, optionally within 30 seconds.
In an exemplary embodiment of the invention, the cement is characterized by a working window of several minutes during which the viscosity remains high prior to hardening of the cement. Optionally, viscosity during the working window does not vary to a degree which significantly influences injection parameters. In an exemplary embodiment of the invention, viscosity increases by less than 10% during a sub-window of at least 2 minutes during the working window. Optionally, the viscosity in the working window does not exceed 500, optionally 1,000, optionally 1,500, optionally 2,000 Pascal-second or lesser or greater or intermediate values. In an exemplary embodiment of the invention, the working window lasts 6, optionally 8, optionally 10, optionally 15 minutes or lesser or greater or intermediate times. Optionally, ambient temperature influences a duration of the working window. In an exemplary embodiment of the invention, the cement can be cooled or heated to influence a length of the working window.
An aspect of some embodiments of the invention relates to formulations of bone cement which rely upon two, optionally three or more, sub-populations of polymer beads which are mixed with liquid monomer.
According to exemplary embodiments of the invention, sub-populations may be characterized by average molecular weight (MW) and/or physical size and/or geometry, and/or density. In an exemplary embodiment of the invention, size based and MW based sub-populations are defined independently. In an exemplary embodiment of the invention, the sub-populations are selected to produce desired viscosity characterization and/or polymerization kinetics. Optionally, the polymer beads comprise polymethylmethacrylate (PMMA) and/or a PMMA styrene copolymer. Optionally, PMMA is employed in conjunction with a methylmethacrylate (MMA) monomer.
Optionally, a high molecular weight sub-population contributes to a rapid transition to a high viscosity with substantially no liquid phase. Optionally, a low molecular weight subpopulation contributes to a longer working window.
Optionally, a sub-population with small size contributes to rapid wetting of polymer beads with monomer solution. In an exemplary embodiment of the invention, rapid wetting contributes to a direct transition to a viscous cement with substantially no liquid phase.
In some cases a small percentage of beads may not belong to any relevant sub-population. The small percentage of beads may be, for example 1%, 1.5%,2%, 3%, 4%, 5% or lesser or intermediate or greater percentages.
In one exemplary embodiment of the invention, there are at least two sub-populations of PMMA polymer beads characterized by molecular weights. For example, a first sub-population comprising 95 to 97% (w/w) of the total PMMA beads can be characterized by an average MW of 270,000-300,000 Dalton; a second sub-population (2-3% w/w) can be characterized by an average MW of 3,500,000-4,000,000 Dalton; and a third sub-population (0-3% w/w) can be characterized by an average MW of 10,000-15,000 Dalton.
In an exemplary embodiment of the invention, the polymer beads are characterized by a high surface area per unit weight. Optionally, the beads have a surface area of 0.5 to 1, optionally 0.5 to 0.8 optionally about 0.66 m2/gram or intermediate or lesser or greater values. Optionally, the high surface area/weight ratio improves wetting properties and/or shortens polymerization times, for example by contributing to polymer monomer contact.
In an exemplary embodiment of the invention, a cement characterized by an immediate transition to high viscosity is injected during a working window in a vertebroplasty or kyphoplasty procedure. Optionally, injection is under sufficient pressure to move fractured bone, such as vertebral plates of a collapsed vertebra. Optionally, injection of viscous cement under high pressure contributes to fracture reduction and/or restoration of vertebral height.
In an exemplary embodiment of the invention, the material (e.g., bone cement) includes processed bone (from human or animals origin) and/or synthetic bone. Optionally, the cement has osteoconductive and/or osteoinductive behavior. Additional additives as commonly used in bone cement preparation may optionally be added. These additives include, but are not limited to, barium sulfate and benzoyl peroxide.
According to some embodiments of the invention, a working window length is determined by an interaction between an immediate effect and a late effect. In an exemplary embodiment of the invention, the immediate effect includes MMA solvation and/or encapsulation of PMMA polymer beads. The immediate effect contributes to a high viscosity of the initial mixture resulting from solvation and/or friction between the beads. The late effect is increasing average polymer MW as the beads dissolve and the polymerization reaction proceeds. This increasing average polymer MW keeps viscosity high throughout the working window.
In an exemplary embodiment of the invention, a set of viscosity parameters are used to adjust a cement formulation to produce a cement characterized by a desired working window at a desired viscosity.
In an exemplary embodiment of the invention, there is provided a bone cement comprising an acrylic polymer mixture, the cement characterized in that it achieves a viscosity of at least 500 Pascal-second within 180 seconds following initiation of mixing of a monomer component and a polymer component and characterized by sufficient biocompatibility to permit in-vivo use.
Optionally, the viscosity of the mixture remains between 500 and 2000 Pascal-second for a working window of at least 5 minutes after the initial period.
Optionally, the working window is at least 8 minutes long.
Optionally, the mixture includes PMMA.
Optionally, the mixture includes Barium Sulfate.
Optionally, the PMMA is provided as a PMMA/styrene copolymer.
Optionally, the PMMA is provided as a population of beads divided into at least two sub-populations, each sub-population characterized by an average molecular weight.
Optionally, a largest sub-population of PMMA beads is characterized by an MW of 150,000 Dalton to 300,000 Dalton.
Optionally, a largest sub-population of PMMA beads includes 90-98% (w/w) of the beads.
Optionally, a high molecular weight sub-population of PMMA beads is characterized by an average MW of at least 3,000,000 Dalton.
Optionally, a high molecular weight sub-population of PMMA beads includes 2 to 3% (w/w) of the beads.
Optionally, a low molecular weight sub-population of PMMA beads is characterized by an average MW of less than 15,000 Dalton.
Optionally, a low molecular weight sub-population of PMMA beads includes 0.75 to 1.5% (W/W) of the beads.
Optionally, the PMMA is provided as a population of beads divided into at least two sub-populations, each sub-population characterized by an average bead diameter.
Optionally, at least one bead sub-population characterized by an average diameter is further divided into at least two sub-sub-populations, each sub-sub-population characterized by an average molecular weight.
Optionally, the PMMA is provided as a population of beads divided into at least three sub-populations, each sub-population characterized by an average bead diameter.
Optionally, the cement further includes processed bone and/or synthetic bone.
Optionally, the cement is characterized in that the cement achieves a viscosity of at least 500 Pascal-second when 100% of a polymer component is wetted by a monomer component.
Optionally, the viscosity is at least 800 Pascal-second.
Optionally, the viscosity is at least 1500 Pascal-second.
Optionally, the viscosity is achieved within 2 minutes.
Optionally, the viscosity is achieved within 1 minute.
Optionally, the viscosity is achieved within 45 seconds.
In an exemplary embodiment of the invention, there is provided a bone cement comprising:
a polymer component; and
a monomer component,
wherein, contacting the polymer component and the monomer component produces a mixture which attains a viscosity greater than 200 Pascal-second within 1 minute from onset of mixing and remains below 2000 Pascal-second until at least 6 minutes from onset of mixing.
Optionally, the polymer component comprises an acrylic polymer.
In an exemplary embodiment of the invention, there is provided a particulate mixture formulated for preparation of a bone cement, the mixture comprising:
Optionally, the polymer beads comprise a third subpopulation characterized by an MW of 10,000 Dalton to 15,000 Dalton.
In an exemplary embodiment of the invention, there is provided a method of making a polymeric bone cement, the method comprising:
In an exemplary embodiment of the invention, there is provided a cement kit, comprising:
(a) a liquid component including a monomer; and
(b) a powder component including polymeric beads,
characterized in that said powder component is provided in a substantially non-normal distribution of at least one of molecular weight of the polymeric beads and size of powder particles such that a cement mixed from the kit has both an increased immediate viscosity and an increased working window as compared to a cement having a substantially normal distribution.
Optionally, the substantially non-normal distribution is a skewed distribution.
Optionally, the substantially non-normal distribution comprises a relatively small component including higher molecular weight beads. Optionally, said component has an average molecular weight of at least a factor of 2 of an average molecular weight of said polymeric beads. Optionally, said factor is at least 3 or is at least 5.
Optionally, the substantially non-normal distribution comprises a relatively small component including smaller sized particles.
Exemplary non-limiting embodiments of the invention will be described with reference to the following description of embodiments in conjunction with the figures. Identical structures, elements or parts which appear in more than one figure are generally labeled with a same or similar number in all the figures in which they appear, in which:
Overview of Preparation of Exemplary Bone Cement
In an exemplary embodiment of the invention, a liquid monomer and a powdered polymer component of a bone cement are combined 110. Optionally, liquid monomer is poured onto powdered polymer.
According to various embodiments of the invention, average polymer molecular weight and/or polymer molecular weight distribution and/or polymer bead size is precisely controlled in order to influence polymerization kinetics and/or cement viscosity. Alternatively or additionally, polymer and/or monomer components may contain ingredients which are not directly involved in the polymerization reaction.
In an exemplary embodiment of the invention, the polymer (e.g. an acrylic polymer such as PMMA) beads are divided into two or more sub-populations. Optionally, the sub populations are defined by molecular weight (MW). In an exemplary embodiment of the invention, the average molecular weight of the acrylic polymer in all the beads is in the range of about 300,000 to 400,000, optionally about 373,000 Dalton. This average MW for all beads was determined experimentally for a batch of beads which produced cement with a desired polymerization profile.
Optionally, the polymer beads are provided as part of an acrylic polymer mixture, for example a mixture including barium sulfate.
At 112 the components are mixed until the polymer is wetted by the monomer. Optionally, when wetting is 95 to 100% complete, the mixture has achieved a desired high viscosity, for example 500 Pascal-second or more. Optionally, mixing 112 is complete within 1, 5, 10, 15, 30, 60, 90, 120 or 180 seconds. In a modern medical facility, it can be advantageous to shorten the mixing time in order to reduce the demand on physical facilities and/or medical personnel. A savings of even 1 to 2 minutes with respect to previously available alternatives can be significant. In an exemplary embodiment of the invention, mixing 112 is conducted in a mixing apparatus of the type described in co-pending application U.S. Ser. No. 11/428,908, the disclosure of which is fully incorporate herein by reference.
After mixing 112 is complete, a working window 114 during which the cement remains viscous but has not fully hardened occurs. According to various exemplary embodiments of the invention, working window 114 may be about 2, 5, 8, 10, 15 or 20 minutes or intermediate or greater times. The duration of the working window may vary with the exact cement formulation and/or ambient conditions (e.g. temperature and/or humidity). Formulation considerations include, but are not limited to polymer MW (average and/or distribution), polymer bead size, concentrations of non-polymerizing ingredient and polymer:monomer ratio.
Working window 114, permits a medical practitioner sufficient time to load a high pressure injection device and inject 120 the cement into a desired location. Optionally, an injection needle or cannula is inserted into the body prior to, or concurrent with mixing 112 so that window 114 need only be long enough for loading and injection 120. Exemplary injection systems are disclosed in co-pending application U.S. Ser. No. 11/360,251 entitled “Methods, materials, and apparatus for treating bone and other tissue” filed Feb. 22, 2006, the disclosure of which is fully incorporated herein by reference.
In an exemplary embodiment of the invention, hardening 116 to a hardened condition occurs after working window 114. The cement hardens 116 even if it has not been injected.
Advantages with Respect to Relevant Medical Procedures
In an exemplary embodiment of the invention, cement with a viscosity profile as described above is useful in vertebral repair, for example in vertebroplasty and/or kyphoplasty procedures.
Optionally, use of cement which is viscous at the time of injection reduces the risk of material leakage and/or infiltrates into the intravertebral cancellous bone (interdigitaion) and/or reduces the fracture [see G Baroud et al, Injection biomechanics of bone cements used in vertebroplasty, Bio-Medical Materials and Engineering 00 (2004) 1-18]. Reduced leakage optionally contributes to increased likelihood of a positive clinical outcome.
In an exemplary embodiment of the invention, the viscosity of the bone cement is 500, optionally 1,000, optionally 1,500, optionally 2,000 Pascal-second or lesser or greater or intermediate values at the time injection begins, optionally 3, 2 or 1 minutes or lesser or intermediate times after mixing 112 begins. Optionally, the viscosity does not exceed 2,000 Pascal-second during working window 114. In an exemplary embodiment of the invention, this viscosity is achieved substantially as soon as 95-100% of the polymer beads are wetted by monomer.
Cement characterized by a high viscosity as described above may optionally be manually manipulated.
In an exemplary embodiment of the invention, cement is sufficiently viscous to move surrounding tissue as it is injected. Optionally, moving of the surrounding tissue contributes to fracture reduction and/or restoration of vertebral height.
An injected volume of cement may vary, depending upon the type and/or number of orthopedic procedures being performed. The volume injected may be, for example, 2-5 cc for a typical vertebral repair and as high as 8-12 cc or higher for repairs of other types of bones. Other volumes may be appropriate, depending for example, on the volume of space and the desired effect of the injection. In some cases, a large volume of viscous cement is loaded into a delivery device and several vertebrae are repaired in a single medical procedure. Optionally, one or more cannulae or needles are employed to perform multiple procedures.
Viscous cements according to exemplary embodiments of the invention may be delivered at a desired flow rate through standard orthopedic cannulae by applying sufficient pressure. Exemplary average injection rates may be in the range of 0.01 to 0.5 ml/sec, optionally about 0.05, about 0.075 or 0.1 ml/sec or lesser or intermediate or greater average flow rates. Optionally, the flow rate varies significantly during an injection period (e.g., pulse injections). Optionally, the flow rate is controlled manually or using electronic or mechanical circuitry. In an exemplary embodiment of the invention, medical personnel view the cement as it is being injected (e.g. via fluoroscopy) and adjust a flow rate and/or delivery volume based upon observed results. Optionally, the flow rate is adjusted and/or controlled to allow a medical practitioner to evaluate progress of the procedure based upon medical images (e.g. fluoroscopy) acquired during the procedure. In an exemplary embodiment of the invention, the cement is sufficiently viscous that advances into the body when pressure is applied above a threshold and ceases to advance when pressure is reduced below a threshold. Optionally, the threshold varies with one or more of cement viscosity, cannula diameter and cannula length.
Comparison of Exemplary Formulations According to Some Embodiments of the Invention to Previously Available Formulations
Although PMMA has been widely used in preparation of bone cement, previously available PMMA based cements were typically characterized by a persistent liquid state after mixing of components.
In sharp contrast, cements according to some exemplary embodiments of the invention are characterized by essentially no liquid state. Optionally, a direct transition from separate polymer and monomer components to a highly viscous state results from the presence of two or more sub-populations of polymer beads.
As a result of formulations based upon bead sub-populations, a viscosity profile of a cement according to an exemplary embodiment of the invention is significantly different from a viscosity profile of a previously available polymer based cement (e.g. PMMA) with a similar average molecular.
Because the viscosity profile of previously available PMMA cements is typically characterized by a rapid transition from high viscosity to fully hardened, these cements are typically injected into bone in a liquid phase so that they do not harden during injection.
In sharp contrast, exemplary cements according to the invention remain highly viscous during a long working window 114 before they harden. This long working window permits performance of a medical procedure of several minutes duration and imparts the advantages of the high viscosity material to the procedure.
It should be noted that while specific examples are described, it is often the case that the formulation will be varied to achieve particular desired mechanical properties. For example, different diagnoses may suggest different material viscosities which may, in turn lead to adjustment of one or more of MW (average and/or distribution), bead size and bead surface area.
In an exemplary embodiment of the invention, the cement is mixed 112 and reaches high viscosity outside the body. Optionally the materials are mixed under vacuum or ventilated. In this manner, some materials with potentially hazardous by-products can be safely mixed and then used in the body.
In an exemplary embodiment of the invention, the cement is formulated so that its mechanical properties match the bone in which it will be injected/implanted. In an exemplary embodiment of the invention, the cement is formulated to mechanically match healthy or osteoporotic trabecular (cancellous) bone. Optionally, the mechanical properties of the bone are measured during access, for example, based on a resistance to advance or using sensors provided through a cannula or by taking samples, or based on x-ray densitometry measurements. In an exemplary embodiment of the invention, strength of the cement varies as a function of one or more of a size of the high MW sub-population and/or a relationship between bead size and bead MW.
In general, PMMA is stronger and has a higher Young modulus than trabecular bone.
For example, healthy Trabecular bone can have a strength of between 1.5-8.0 mega Pascal and a Young modulus of 60-500 mega Pascal. Cortical bone, for example, has strength values of 65-160 mega Pascal and Young modulus of 12-40 giga Pascal. PMMA typically has values about half of Cortical bone (70-120 mega Pascal strength).
For purposes of comparison, the graph illustrates that an exemplary prior art cement reaches a viscosity comparable to that achieved by an exemplary cement according to the invention at time zero at a time of approximately 10.5 minutes post mixing and is completely set by about 15.5 minutes (Δt2).
A working window 114 during which viscosity is between 400 and 2000 Pascal-second for an exemplary cement according to some embodiments of the invention (Δt1) is both longer and earlier than a comparable window for an exemplary prior art cement (Δt2). Optionally, (Δt1) begins substantially as soon as mixing is complete.
Exemplary Cement Formulations
According to various exemplary embodiments of the invention, changes in the ratios between a powdered polymer component and a liquid monomer component can effect the duration of working window 114 and/or a viscosity of the cement during that window. Optionally, these ratios are adjusted to achieve desired results.
In an exemplary embodiment of the invention, the powdered polymer component contains PMMA (69.3% w/w); Barium sulfate (30.07% w/w) and Benzoyl peroxide (0.54% w/w).
In an exemplary embodiment of the invention, the liquid monomer component contains MMA (98.5% v/v); N, N-dimethyl-p-toluidine (DMPT) (1.5% v/v) and Hydroquinone (20 ppm).
In a first exemplary embodiment of the invention, 20±0.3 grams of polymer powder and 9±0.3 grams of liquid monomer are combined (weight ratio of ˜2.2:1).
In a second exemplary embodiment of the invention, 20±0.3 grams of polymer powder and 8±0.3 grams of liquid are combined (weight ratio of 2.5:1).
Under same weight ratio of second exemplary embodiment (2.5:1), a third exemplary embodiment may include a combination of 22.5±0.3 grams of polymer powder and 9±0.3 grams of liquid.
In general, increasing the weight ratio of polymer to monomer produces a cement which reaches a higher viscosity in less time. However, there is a limit beyond which there is not sufficient monomer to wet all of the polymer beads.
Optionally the powdered polymer component may vary in composition and contain PMMA (67-77%, optionally 67.5-71.5% w/w); Barium sulfate (25-35%; optionally 28-32% w/w) and Benzoyl peroxide (0.4-0.6% w/w) and still behave substantially as the powder component recipe set forth above.
Optionally the liquid monomer component may vary in composition and contain Hydroquinone (1-30 ppm; optionally 20-25 ppm) and still behave substantially as the liquid component recipe set forth above.
Viscosity Measurements Over Time for Exemplary Cements
In order to evaluate the viscosity profile of different exemplary batches of cement according to some embodiments of the invention, a bulk of pre-mixed bone cement is placed inside a Stainless Steel injector body. Krause et al. described a method for calculating viscosity in terms of applied force. (“The viscosity of acrylic bone cements”, Journal of Biomedical Materials Research, (1982): 16:219-243). This article is fully incorporated herein by reference.
In the experimental apparatus an inner diameter of the injector body is approximately 18 mm. A distal cylindrical outlet has an inner diameter of approximately 3 mm and a length of more than 4 mm. This configuration simulates a connection to standard bone cement delivery cannula/bone access needle. A piston applies force (F), thus causing the bone cement to flow through the outlet. The piston is set to move with constant velocity of approximately 3 mm/min. As a result, piston deflection is indicative of elapsed time.
The experimental procedure serves as a kind of capillary extrusion rheometer. The rheometer measures the pressure difference from an end to end of the capillary tube. The device is made of an 18 mm cylindrical reservoir and a piston. The distal end of the reservoir consist of 4 mm long 3 mm diameter hole. This procedure employs a small diameter needle and high pressure. Assuming steady flow, isothermal conditions and incompressibility of the tested material, the viscous force resisting the motion of the fluid in the capillary is equal to the applied force acting on the piston measured by a load cell and friction. Results are presented as force vs. displacement. As displacement rate was constant and set to 3 mm/min, the shear rate was constant as well. In order to measure the time elapses from test beginning, the displacement rate is divided by 3 (jog speed).
In this test (Average temperature: 22.3° C.; Relative Humidity: app. 48%) the cement was mixed for 30-60 seconds, then manipulated by hand and placed inside the injector. Force was applied via the piston approximately 150 seconds after end of mixing, and measurements of force and piston deflection were taken.
At a time of 2.5 minutes after mixing (0 mm deflection) the force applied was higher than 30 N.
At a time of 6.5 minutes after mixing (12 mm deflection) the force applied was about 150 N.
At a time of 7.5 minutes after mixing (15 mm deflection) the force applied was higher than 200 N.
At a time of 8.5 minutes after mixing (18 mm deflection) the force applied was higher than 500 N.
At a time of 9.17 minutes after mixing (20 mm deflection) the force applied was higher than 1300 N.
At a time of 2.25 minutes after mixing (0 mm deflection) the force applied was higher than 30 N.
At a time of 8.25 minutes after mixing (18 mm deflection) the force applied was about 90 N.
At a time of 10.3 minutes after mixing (25 mm deflection) the force applied was higher than 150 N.
At a time of 11.4 minutes after mixing (28.5 mm deflection) the force applied was higher than 500 N.
At a time of 12.25 minutes after mixing (30 mm deflection) the force applied was higher than 800 N.
Results shown in
Molecular Weight Distribution
In an exemplary embodiment of the invention, the average molecular weight (MW) is skewed by the presence of one or more small sub-population of beads with a molecular weight which is significantly different from a main sub-population of polymer beads. The one or more small sub-population of beads may have a MW which is significantly higher and/or significantly lower than the average MW.
In an exemplary embodiment of the invention, the presence of even a relatively small sub-population of polymer beads with a MW significantly above the average MW causes the cement to achieve a high viscosity in a short time after wetting of polymer beads with monomer solution. Optionally, increasing a size of the high MW sub-population increases the achieved viscosity. Alternatively or additionally, increasing an average MW of the high MW sub-population increases the achieved viscosity and/or decreases the time to reach high viscosity.
Optionally, the one or more small sub-population of beads are provided in a formulation in which, the average molecular weight of PMMA in all beads is 80,000, optionally 100,000, optionally 120,000, optionally 140,000, optionally 160,000, optionally 180,000, optionally, 250,000, optionally 325,000, optionally 375.000, optionally 400,000, optionally 500,000 Dalton or intermediate or lesser or greater values.
In another exemplary embodiment of the invention, the average molecular weight of the acrylic polymer in the beads is in the range of about 130,000 to 170,000, optionally about 160,000 Dalton.
In an exemplary embodiment of the invention, a main sub-population of PMMA beads has a MW of about 150,000 Dalton to about 500,000 Dalton, optionally about 250,000 Dalton to about 300,000 Dalton, optionally about 275,000 Dalton to about 280,000 Dalton. Optionally, about 90-98% [w/w], optionally about 93% to 98%, optionally about 95% to 97% of the beads belong to the main sub-population.
In an exemplary embodiment of the invention, a second high MW sub-population of PMMA beads has a MW of about 600,000 Dalton, to about 5,000,000 Dalton, optionally about 3,000,000 Dalton to about 4,000,000 Dalton, Optionally about 3,500,000 Dalton to about 3,900,000 Dalton. Optionally, approximately 0.25% to 5% [w/w], optionally about 1% to 4%, optionally about 2% to 3% of the beads belong to this high MW sub-population. Optionally, this high molecular weight sub-population comprises a styrene co-polymer. In an exemplary embodiment of the invention, a higher molecular weight in this sub-population of beads contributes to a high viscosity within 2, optionally within 1, optionally within 0.5 minutes or less of wetting of polymer beads with monomer solution.
In an exemplary embodiment of the invention, a third low MW sub-population of PMMA beads has a MW in the range of about 1,000 Dalton to about 75,000 Dalton, optionally about 10,000 Dalton to about 15,000 Dalton, optionally about 11,000 Dalton to about 13,000 Dalton. Optionally, approximately 0.5 to 2.0% [w/w], optionally about 1% of the beads belong to this sub-population.
Optionally the MW sub-populations are distinct from one another. This can cause gaps between sub-populations with respect to one or more parameters. In an exemplary embodiment of the invention, the sub-populations are represented as distinct peaks in a chromatographic separation process. Optionally, the peaks are separated by a return to baseline. Depending upon the sensitivity of detection, a background level of noise may be present. Optionally, gaps are measured relative to the noise level.
Optionally the sub-populations abut one another so that no gaps are apparent. In an exemplary embodiment of the invention, the sub-populations are represented as overlapping peaks in a chromatographic separation process. In this case, there is no return to baseline between the peaks.
Experimental Analysis of an Exemplary Batch of Cement
Sub-populations characterized by an average molecular weight were identified and quantitated using chromatographic techniques known in the art. Exemplary results described herein are based upon GPC analysis. Each peak in the GPC analysis is considered a sub-population. Similar analyses may be conducted using HPLC. Results are summarized in table 1.
1polydispersity index (PDI), is a measure of the distribution of molecular weights in a given polymer sample and is equal to MW/Mn.
2MW is the weight average molecular weight in Daltons
3Mn is the number average molecular weight in Daltons
Table I illustrates an exemplary embodiment of the invention with three sub-populations of acrylic polymer beads.
The main sub-population (fraction 1) of PMMA beads has a molecular weight (MW) of 278,986 Dalton. About 96.5% of the beads belong to this sub-population.
A second sub-population (fraction 2) of PMMA beads has MW of 3,781,414 Dalton. Approximately 2.5% of the beads belong to this sub-population.
A third sub-population of PMMA beads (fraction 3) has an MW of 12,357 Dalton. Approximately 1% of the beads belong to this sub-population.
In an exemplary embodiment of the invention, cement comprising these three sub-populations is characterized by a short mixing time and/or achieves a viscosity of 500 to 900 Pascal-second in 0.5 to 3, optionally 0.5 to 1.5 minutes from the beginning of mixing and/or which remains below 2000 Pascal-second for at least 6 to 10 minutes after mixing. A short mixing time followed by a long working window is considered advantageous in orthopedic procedures where operating room availability and medical staff are at a premium.
Size Distribution
In an exemplary embodiment of the invention, the bone cement is characterized by beads with a size distribution including at least two sub-populations of polymer beads.
In an exemplary embodiment of the invention, polymer bead diameter is in the range of 10-250 microns, with a mean value of approximately 25, 30, 40, 50, 60 microns, or a lower or a higher or an intermediate diameter. In an exemplary embodiment of the invention, sub-populations of beads are defined by their size.
Optionally, a main sub-population of polymer (e.g. PMMA) beads is characterized by a diameter of about 20 to about 150, optionally about 25 to about 35, optionally an average of about 30 microns. Beads in this main sub-population are optionally far smaller than the smallest beads employed by Hernandez et al. (2005; as cited above). Presence of small beads can contribute to a rapid increase in viscosity after wetting with monomer.
Optionally a second sub-population of large polymer beads is characterized by a diameter of about 150 microns or more. Presence of large beads can slow down the polymerization reaction and prevent hardening, contributing to a long working window.
Optionally, the remaining beads are characterized by a very small average diameter, for example less than 20, optionally less than 15, optionally about 10 microns or less. Presence of very small beads can facilitate rapid wetting with monomer liquid during mixing and contribute to a fast transition to a viscous state with substantially no liquid phase.
Microscopic analysis indicates that the beads are typically spherical or spheroid.
Hernandez et al. (2005; as cited above) examined the possibility of adjusting the average polymer bead size by combining two types of beads with average sizes of 118.4μ (Colacry) and 69.7μ (Plexigum) together in different ratios. However, Hernandez's goal was a formulation which is “liquid enough to be injected”. All formulations described by Hernandez are characterized by an increase in viscosity from 500 Pascal-sec to 2000 Pascal-sec in about two minutes or less (corresponds to window 114). Hernandez does not hint or suggest that there is any necessity or advantage to increasing the size of this window.
Microscopic analysis also indicated that the barium sulfate particles are present as elongate amorphous masses with a length of approximately 1 micron. In some cases aggregates of up to 70 microns in size were observed. In some cases, barium sulfate particles and polymer beads aggregated together. Optionally, aggregates of Barium sulfate and polymer beads can delay wetting of polymer beads by monomer.
In an exemplary embodiment of the invention, MMA solvates and/or encapsulates the PMMA polymer beads and the viscosity of the initial mixture is high due to the solvation and/or friction between the beads. As the beads dissolve viscosity remains high due to polymerization which increases the average polymer MW.
The following table II shows an exemplary particle size distribution, for example, one suitable for the cement of Table I, based on an analysis of particles within the ranges of 0.375-2000 microns:
Experimental Analysis of a Second Exemplary Batch of Cement
Another example of a cement kit for mixture includes a liquid and a powder, which includes a mass of acrylic polymer beads. This cement kit is formulated as follows:
(a) liquid (9.2 gr)
(b) powder (20 gr)
As noted above, in other formulations the amounts may be varied, for example, to achieve specific mechanical (or other) properties, or they may be varied and achieve same mechanical properties. In another variation, medication may be added to the powder and/or liquid phases. Other liquid phases may be used as well, for example, as known in the art for PMMA-type cements. The ratios may be varied, for example, as described above.
Table III summarizes a molecular weight distribution of the acrylic bead component of this exemplary cement. It is hypothesized that providing a non-normal distribution of molecular weights with a heavier molecular weight component (e.g., by skewing the MW distribution by including relatively higher molecular weight beads) provides an increased immediate viscosity. In an exemplary embodiment of the invention, the higher MW beads are in a relatively small amount (for example, less than 20%, less than 10%, less than 5%) and have a MW of between 500,000 to 2,000,000 Dalton, optionally 600,000 to 1,200,000 Dalton (for example as shown in the table below).
500,000-1,000,000
In an exemplary embodiment of the invention, the bone cement is characterized by beads with a size distribution including at least two sub-populations of different materials. Optionally, at least two sub-populations include polymer (e.g. PMMA) beads and Barium Sulfate particles. Optionally, the range of particles diameter of the Barium Sulfate is 0.01-15 microns, optionally 0.3 to 3 microns, optionally with an average of about 0.5 microns or lesser or intermediate or greater sizes.
In an exemplary embodiment of the invention, polymer bead diameter is in the range of 10-250 microns, optionally. 15-150 microns, with a mean value of approximately 25, 30, 40, 50, 60 microns. Lower or a higher or intermediate diameters are possible as well, for example, based on the setting considerations described above. In some cases, large particle sizes, for example, particles having diameters exceeding 120 microns (e.g., when the average diameter is on the order of 60 microns) are the result of Barium sulfate primary particle aggregation on PMMA particle beads.
An exemplary distribution of bead sizes for the exemplary cement of table III, based on an analysis of particles within the range of 0.04-2000 microns, is described in Table IV:
Size and MW are Independent Variables
In an exemplary embodiment of the invention, size based and MW based sub-populations are determined independently. For example, MW may be determined chromatographically and size may be determined by microscopic analysis. As a result, beads classed in a single size sub-population may be classed in two or more MW sub-populations and/or beads classed in a single MW sub-population may be classed in two or more size sub-populations.
Mechanical Viscosity Increasing Agents
In an exemplary embodiment of the invention, the cement includes particles characterized by a large surface which do not participate in the polymerization reaction. The large surface area particles can impart added viscosity to the cement mixture independent of polymerization. Optionally, the added viscosity comes from friction of particles against one another in the cement.
Examples of materials which do not participate in the polymerization reaction but increase viscosity include, but are not limited to Zirconium, hardened acrylic polymer, barium sulfate and bone.
Optionally, materials which do not participate in the polymerization reaction but increase viscosity can at least partially substitute for high MW polymers in influencing a viscosity profile.
Desired Polymerization Reaction Kinetics
In an exemplary embodiment of the invention, mixture of polymer and monomer produces a high viscosity mixture with substantially no intervening liquid phase within 180, optionally within 120, optionally within 100, optionally within 60, optionally within 30, optionally within 15 seconds or greater or intermediate times from onset of mixing.
In an exemplary embodiment of the invention, once a high viscosity is achieved, the viscosity remains stable for 5 minutes, optionally 8 minutes, optionally 10 minutes or lesser or intermediate or greater times. Optionally, stable viscosity indicates a change of 10% or less in two minutes and/or a change of 20% or less in 8 minutes. The time during which viscosity is stable provides a working window for performance of a medical procedure.
These desired reaction kinetics can be achieved by adjusting one or more of average polymer MW, polymer MW distribution, polymer to monomer ratio and polymer bead size and/or size distribution.
General Considerations
In an exemplary embodiment of the invention, a powdered polymer component and a liquid monomer component are provided as a kit. Optionally, the kit includes instructions for use. Optionally, the instructions for use specify different proportions of powder and liquid for different desired polymerization reaction kinetics.
In an exemplary embodiment of the invention, a bone cement kit including at least two, optionally three or more separately packaged sub-populations of beads and a monomer liquid is provided. Optionally, the kit includes a table which provides formulations based on combinations of different amounts of bead sub-populations and monomer to achieve desired properties.
It is common practice in formulation of acrylic polymer cements to include an initiator (e.g. benzoyl peroxide; BPO) in the powdered polymer component and/or a chemical activator (e.g. DMPT) into the liquid monomer component. These components can optionally be added to formulations according to exemplary embodiments of the invention without detracting from the desired properties of the cement.
Optionally, an easily oxidized molecule (e.g. hydroquinone) is added to the liquid component to prevent spontaneous polymerization during storage (stabilizer). The hydroquinone can be oxidized during storage.
Optionally, cement may be rendered radio-opaque, for example by adding a radio-opaque material such as barium sulfate and/or zirconium compounds and/or bone (e.g. chips or powder) to the powder and/or liquid component.
While the above description has focused on the spine, other tissue can be treated as well, for example, compacted tibia plate and other bones with compression fractures and for fixation of implants, for example, hip implants or other bone implants that loosened, or during implantation. Optionally, for tightening an existing implant, a small hole is drilled to a location where there is a void in the bone and material is extruded into the void.
It should be noted that while use of the disclosed material as bone cement is described, non-bone tissue may optionally be treated. For example, cartilage or soft tissue in need of tightening may be injected with a high viscosity polymeric mixture. Optionally, the delivered material includes an encapsulated pharmaceutical and is used as a matrix to slowly release the pharmaceutical over time. Optionally, this is used as a means to provide anti-arthritis drugs to a joint, by forming a void and implanting an eluting material near the joint.
It should be noted that while use of PMMA has been described, a wide variety of materials can be suitable for use in formulating cements with viscosity characteristics as described above. Optionally, other polymers could be employed by considering polymer molecular weight (average and/or distribution) and/or bead size as described above. Optionally, at least some of the beads include styrene. In an exemplary embodiment of the invention, styrene is added to MMA beads in a volumetric ratio of 5-25%. Optionally, addition of styrene increases creep resistance.
According to various embodiments of the invention, a bone cement according to the invention is injected into a bone void as a preventive therapy and/or as a treatment for a fracture, deformity, deficiency or other abnormality. Optionally, the bone is a vertebral body and/or a long bone. In an exemplary embodiment of the invention, the cement is inserted into the medullary canal of a long bone. Optionally, the cement is molded into a rod prior to or during placement into the bone. In an exemplary embodiment of the invention, the rod serves as an intra-medular nail.
Exemplary Characterization Tools
Molecular weight and polydispersity can be analyzed, for example by Gel permeation chromatography(GPC) system (e.g. Waters 1515 isocratic HPLC pump with a Waters 2410 refractive-index detector and a Rheodyne (Coatati, Calif.) injection valve with a 20-μL loop (Waters Mass.)). Elution of samples with CHCl3 through a linear Ultrastyragel column (Waters; 500-Å pore size) at a flow rate of 1 ml/min provides satisfactory results.
It will be appreciated that various tradeoffs may be desirable, for example, between available injection force, viscosity, degree of resistance and forces that can be withstood (e.g. by bone or injection tools). In addition, a multiplicity of various features, both of method and of cement formulation have been described. It should be appreciated that different features may be combined in different ways. In particular, not all the features shown above in a particular embodiment are necessary in every similar exemplary embodiment of the invention. Further, combinations of the above features are also considered to be within the scope of some exemplary embodiments of the invention. In addition, some of the features of the invention described herein may be adapted for use with prior art devices, in accordance with other exemplary embodiments of the invention.
Section headers are provided only to assist in navigating the application and should not be construed as necessarily limiting the contents described in a certain section, to that section. Measurements are provided to serve only as exemplary measurements for particular cases, the exact measurements applied will vary depending on the application. When used in the following claims, the terms “comprises”, “comprising”, “includes”, “including” or the like means “including but not limited to”.
It will be appreciated by a person skilled in the art that the present invention is not limited by what has thus far been described. Rather, the scope of the present invention is limited only by the following claims.
The present application claims the benefit under 119(e) of Ser. No. 60/825,609 filed Sep. 14, 2006, the disclosure of which is incorporated herein by reference. The present application is related to U.S. patent application Ser. No. 11/461,072 filed on Jul. 31, 2006 and entitled “Bone Cement and Methods of Use Thereof”, which is a Continuation-in-Part of U.S. application Ser. No. 11/360,251 filed on Feb. 22, 2006, entitled “Methods, Materials and Apparatus for Treating Bone and Other Tissue” and is also a Continuation-in Part of PCT/IL2005/000812 filed on Jul. 31, 2005. The disclosures of these applications are incorporated herein by reference. The present application is related to PCT application PCT/IL2006/052612 filed on Jul. 31, 2006 and entitled “Bone Cement and Methods of Use thereof” the disclosure of which is incorporated herein by reference. The present application is also related to a series of U.S. provisional applications entitled “Methods, Materials and Apparatus for Treating Bone and Other Tissue”: Ser. No. 60/765,484 filed on Feb. 2, 2006; Ser. No. 60/762,789 filed on Jan. 26, 2006; Ser. No. 60/738,556 filed Nov. 22, 2005; Ser. No. 60/729,505 filed Oct. 25, 2005; Ser. No. 60/720,725 filed on Sep. 28, 2005 and Ser. No. 60/721,094 filed on Sep. 28, 2005. The disclosures of these applications are incorporated herein by reference. The present application is related to PCT application PCT/IL2006/000239 filed on Feb. 22, 2006; U.S. provisional application Ser. No. 60/763,003, entitled “Cannula” filed on Jan. 26, 2006; U.S. provisional application Ser. No. 60/654,495 entitled “Materials, devices and methods for treating bones”. filed Feb. 22, 2005; U.S. Ser. No. 11/194,411 filed Aug. 1, 2005; IL 166017 filed Dec. 28, 2004; IL 160987 filed Mar. 21, 2004; U.S. Provisional Application No. 60/654,784 filed on Jan. 31, 2005; U.S. Provisional Application No. 60/592,149 filed on Jul. 30, 2004; PCT Application No. PCT/IL2004/000527 filed on Jun. 17, 2004, Israel Application No. 160987 filed on Mar. 21, 2004, U.S. Provisional Applications Ser. No.: 60/478,841 filed on Jun. 17, 2003; Ser. No. 60/529,612 filed on Dec. 16, 2003; Ser. No. 60/534,377 filed on Jan. 6, 2004 and Ser. No. 60/554,558 filed on Mar. 18, 2004; U.S. application Ser. No. 09/890,172 filed on Jul. 25, 2001; U.S. application Ser. No. 09/890,318 filed on Jul. 25, 2001 and U.S. application Ser. No. 10/549,409 entitled “Hydraulic Device for the injection of Bone Cement in Percutaneous Vertebroplasty filed on Sep. 14, 2005. The disclosures of all of these applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2007/001130 | 9/11/2007 | WO | 00 | 8/3/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/032322 | 3/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
229932 | Witsil | Jul 1880 | A |
370335 | Hunter | Sep 1887 | A |
817973 | Hausman | Apr 1906 | A |
833044 | Goodhugh | Oct 1906 | A |
843587 | DePew | Feb 1907 | A |
1175530 | Kirchoff | Mar 1916 | A |
1612281 | Goetz | Dec 1926 | A |
1612996 | Waagbo | Jan 1927 | A |
1733516 | Jamison | Oct 1929 | A |
1894274 | Jacques | Jan 1933 | A |
1929247 | Hein | Oct 1933 | A |
408668 | Norman et al. | Apr 1934 | A |
2123712 | Clark | Jul 1938 | A |
2283915 | Cole | May 1942 | A |
2394488 | Rotter et al. | Feb 1946 | A |
2425867 | Davis | Aug 1947 | A |
2435647 | Engseth | Feb 1948 | A |
2497762 | Davis | Feb 1950 | A |
2521569 | Davis | Sep 1950 | A |
2567960 | Meyers et al. | Sep 1951 | A |
2745575 | Spencer | May 1956 | A |
2773500 | Young | Dec 1956 | A |
2808239 | Alfred | Oct 1957 | A |
2874877 | Spencer | Feb 1959 | A |
2918841 | Poupitch | Dec 1959 | A |
2928574 | Wagner | Mar 1960 | A |
2970773 | Horace et al. | Feb 1961 | A |
3058413 | Cavalieri | Nov 1962 | A |
3063449 | Schultz | Nov 1962 | A |
3075746 | Yablonski et al. | Jan 1963 | A |
3108593 | Glassman | Oct 1963 | A |
3151847 | Broomall | Oct 1964 | A |
3198194 | Wilburn | Aug 1965 | A |
3216616 | Blankenship, Jr. | Nov 1965 | A |
3224744 | Broomall | Dec 1965 | A |
3225760 | Di Cosola | Dec 1965 | A |
3254494 | Chartouni | Jun 1966 | A |
3362793 | Massoubre | Jan 1968 | A |
3381566 | Passer | May 1968 | A |
3426364 | Lumb | Feb 1969 | A |
3515873 | Higgins | Jun 1970 | A |
3559956 | Gray | Feb 1971 | A |
3568885 | Spencer | Mar 1971 | A |
3572556 | Pogacar | Mar 1971 | A |
3605745 | Hodosh | Sep 1971 | A |
3615240 | Sanz | Oct 1971 | A |
3674011 | Michel et al. | Jul 1972 | A |
3701350 | Guenther | Oct 1972 | A |
3750667 | Pshenichny et al. | Aug 1973 | A |
3789727 | Moran | Feb 1974 | A |
3796303 | Allet-Coche | Mar 1974 | A |
3798982 | Lundquist | Mar 1974 | A |
3846846 | Fischer | Nov 1974 | A |
3850158 | Elias et al. | Nov 1974 | A |
3867728 | Stubsted et al. | Feb 1975 | A |
3873008 | Jahn | Mar 1975 | A |
3875595 | Froning | Apr 1975 | A |
3896504 | Fischer | Jul 1975 | A |
3901408 | Boden et al. | Aug 1975 | A |
3921858 | Bemm | Nov 1975 | A |
3931914 | Hosaka et al. | Jan 1976 | A |
3942407 | Mortensen | Mar 1976 | A |
3976060 | Hildenbrandt et al. | Aug 1976 | A |
3993250 | Shure | Nov 1976 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4062274 | Knab | Dec 1977 | A |
4077494 | Spaude et al. | Mar 1978 | A |
4079917 | Popeil | Mar 1978 | A |
4090640 | Smith et al. | May 1978 | A |
4093576 | Dewijn | Jun 1978 | A |
4105145 | Capra | Aug 1978 | A |
4115346 | Gross et al. | Sep 1978 | A |
4146334 | Farrell | Mar 1979 | A |
4168787 | Stamper | Sep 1979 | A |
4170990 | Baumgart et al. | Oct 1979 | A |
4180070 | Genese | Dec 1979 | A |
4185072 | Puderbaugh et al. | Jan 1980 | A |
4189065 | Herold | Feb 1980 | A |
4198383 | Konsetov et al. | Apr 1980 | A |
4198975 | Haller | Apr 1980 | A |
4204531 | Aginsky | May 1980 | A |
4239113 | Gross et al. | Dec 1980 | A |
4250887 | Dardik et al. | Feb 1981 | A |
4257540 | Wegmann et al. | Mar 1981 | A |
4268639 | Seibel et al. | May 1981 | A |
4274163 | Malcolm et al. | Jun 1981 | A |
4276878 | Storz | Jul 1981 | A |
4277184 | Solomon | Jul 1981 | A |
4298144 | Pressi | Nov 1981 | A |
4309777 | Patil | Jan 1982 | A |
4312343 | LaVeen et al. | Jan 1982 | A |
4313434 | Segal | Feb 1982 | A |
4326567 | Mistarz | Apr 1982 | A |
4338925 | Miller | Jul 1982 | A |
4341691 | Anuta | Jul 1982 | A |
4346708 | LeVeen et al. | Aug 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4359049 | Redl et al. | Nov 1982 | A |
4373217 | Draenert | Feb 1983 | A |
4380398 | Burgess | Apr 1983 | A |
4400170 | McNaughton et al. | Aug 1983 | A |
4403989 | Christensen et al. | Sep 1983 | A |
4404327 | Crugnola et al. | Sep 1983 | A |
4405249 | Scales | Sep 1983 | A |
4409966 | Lambrecht et al. | Oct 1983 | A |
4453539 | Raftopoulos et al. | Jun 1984 | A |
4474572 | McNaughton et al. | Oct 1984 | A |
4475856 | Toomingas | Oct 1984 | A |
4476866 | Chin | Oct 1984 | A |
4487602 | Christensen et al. | Dec 1984 | A |
4494535 | Haig | Jan 1985 | A |
4500658 | Fox | Feb 1985 | A |
4503169 | Randklev | Mar 1985 | A |
4522200 | Stednitz | Jun 1985 | A |
D279499 | Case | Jul 1985 | S |
4543966 | Islam et al. | Oct 1985 | A |
4546767 | Smith | Oct 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4558693 | Lash et al. | Dec 1985 | A |
4562598 | Kranz | Jan 1986 | A |
4576152 | Muller et al. | Mar 1986 | A |
4588583 | Pietsch et al. | May 1986 | A |
4593685 | McKay et al. | Jun 1986 | A |
4595006 | Burke et al. | Jun 1986 | A |
4600118 | Martin | Jul 1986 | A |
4605011 | Naslund | Aug 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4642099 | Phillips et al. | Feb 1987 | A |
4650469 | Berg et al. | Mar 1987 | A |
4651904 | Schuckman | Mar 1987 | A |
4653487 | Maale | Mar 1987 | A |
4653489 | Tronzo et al. | Mar 1987 | A |
4664298 | Shew | May 1987 | A |
4664655 | Orentreich et al. | May 1987 | A |
4668220 | Hawrylenko | May 1987 | A |
4668295 | Abipai | May 1987 | A |
4670008 | Von Albertini | Jun 1987 | A |
4671263 | Draenert | Jun 1987 | A |
4676655 | Handler | Jun 1987 | A |
4676781 | Phillips et al. | Jun 1987 | A |
4686973 | Frisch | Aug 1987 | A |
4697584 | Haynes | Oct 1987 | A |
4697929 | Muller | Oct 1987 | A |
4704035 | Kowalczyk | Nov 1987 | A |
4710179 | Haber et al. | Dec 1987 | A |
4714721 | Franek et al. | Dec 1987 | A |
4717383 | Phillips et al. | Jan 1988 | A |
4718910 | Draenert | Jan 1988 | A |
4722948 | Sanderson | Feb 1988 | A |
4735616 | Eibl et al. | Apr 1988 | A |
4737151 | Clement et al. | Apr 1988 | A |
4747832 | Buffet | May 1988 | A |
4758096 | Gunnarsson | Jul 1988 | A |
4758234 | Orentreich et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4762515 | Grimm | Aug 1988 | A |
4767033 | Gemperle | Aug 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4782118 | Fontanille et al. | Nov 1988 | A |
4786184 | Berezkina et al. | Nov 1988 | A |
4791150 | Braden et al. | Dec 1988 | A |
4792577 | Chen et al. | Dec 1988 | A |
2067458 | Nichols | Feb 1989 | A |
4804023 | Frearson | Feb 1989 | A |
4813870 | Pitzen | Mar 1989 | A |
4815454 | Dozier | Mar 1989 | A |
4815632 | Ball et al. | Mar 1989 | A |
4826053 | Keller | May 1989 | A |
4830227 | Ball et al. | May 1989 | A |
4837279 | Arroyo | Jun 1989 | A |
4854312 | Raftopoulos et al. | Aug 1989 | A |
4854482 | Bergner | Aug 1989 | A |
4854716 | Ziemann et al. | Aug 1989 | A |
4863072 | Perler | Sep 1989 | A |
4869906 | Dingeldein et al. | Sep 1989 | A |
4872936 | Engelbrecht | Oct 1989 | A |
4892231 | Ball | Jan 1990 | A |
4892550 | Huebsch | Jan 1990 | A |
4902649 | Kimura et al. | Feb 1990 | A |
4904260 | Ray et al. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4910259 | Kindt-Larsen et al. | Mar 1990 | A |
4927866 | Purrmann et al. | May 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4935029 | Matsutani et al. | Jun 1990 | A |
4944065 | Svanberg et al. | Jul 1990 | A |
4944726 | Hilal et al. | Jul 1990 | A |
4946077 | Olsen | Aug 1990 | A |
4946285 | Vennemeyer | Aug 1990 | A |
4946901 | Lechner et al. | Aug 1990 | A |
4961647 | Coutts et al. | Oct 1990 | A |
4966601 | Draenet | Oct 1990 | A |
4968303 | Clarke et al. | Nov 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4973168 | Chan | Nov 1990 | A |
4973301 | Nissenkorn | Nov 1990 | A |
4973334 | Ziemann | Nov 1990 | A |
4978336 | Capozzi et al. | Dec 1990 | A |
4983164 | Hook et al. | Jan 1991 | A |
4994065 | Gibbs et al. | Feb 1991 | A |
4995868 | Brazier | Feb 1991 | A |
5004501 | Faccioli et al. | Apr 1991 | A |
5006112 | Metzner | Apr 1991 | A |
5012066 | Matsutani et al. | Apr 1991 | A |
5015233 | McGough et al. | May 1991 | A |
5018919 | Stephan | May 1991 | A |
5022563 | Marchito et al. | Jun 1991 | A |
5024232 | Smid et al. | Jun 1991 | A |
5028141 | Stiegelmann | Jul 1991 | A |
5037473 | Antonucci et al. | Aug 1991 | A |
5049157 | Mittelmeier et al. | Sep 1991 | A |
5051482 | Tepic | Sep 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5059199 | Okada et al. | Oct 1991 | A |
5061128 | Jahr et al. | Oct 1991 | A |
5071040 | Laptewicz, Jr. | Dec 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5078919 | Ashley et al. | Jan 1992 | A |
5092888 | Iwamoto et al. | Mar 1992 | A |
5102413 | Poddar | Apr 1992 | A |
5108403 | Stern | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112333 | Fixel | May 1992 | A |
5114240 | Kindt-Larsen et al. | May 1992 | A |
5116335 | Hannon | May 1992 | A |
5122400 | Stewart | Jun 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5125971 | Nonami et al. | Jun 1992 | A |
5131382 | Meyer | Jul 1992 | A |
5141496 | Dalto et al. | Aug 1992 | A |
5145250 | Planck et al. | Sep 1992 | A |
5147903 | Podszun et al. | Sep 1992 | A |
5171248 | Ellis | Dec 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5181918 | Brandhorst et al. | Jan 1993 | A |
5188259 | Petit | Feb 1993 | A |
5190191 | Reyman | Mar 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5193907 | Faccioli | Mar 1993 | A |
5209753 | Biedermann et al. | May 1993 | A |
5217147 | Kaufman | Jun 1993 | A |
5219897 | Murray | Jun 1993 | A |
5236445 | Hayhurst et al. | Aug 1993 | A |
5242983 | Kennedy et al. | Sep 1993 | A |
5252301 | Nilson et al. | Oct 1993 | A |
5254092 | Polyak | Oct 1993 | A |
5258420 | Posey-Dowty et al. | Nov 1993 | A |
5264215 | Nakabayashi et al. | Nov 1993 | A |
5268001 | Nicholson et al. | Dec 1993 | A |
5269762 | Armbruster et al. | Dec 1993 | A |
5275214 | Rehberger | Jan 1994 | A |
5276070 | Arroyo | Jan 1994 | A |
5277339 | Shew et al. | Jan 1994 | A |
5279555 | Lifshey | Jan 1994 | A |
5290260 | Stines | Mar 1994 | A |
5295980 | Ersek | Mar 1994 | A |
5302020 | Kruse | Apr 1994 | A |
5303718 | Krajicek | Apr 1994 | A |
5304147 | Johnson et al. | Apr 1994 | A |
5318532 | Frassica | Jun 1994 | A |
5328262 | Lidgren et al. | Jul 1994 | A |
5328362 | Watson et al. | Jul 1994 | A |
5331972 | Wadhwani et al. | Jul 1994 | A |
5333951 | Wakoh | Aug 1994 | A |
5334184 | Bimman | Aug 1994 | A |
5334626 | Lin | Aug 1994 | A |
5336699 | Cooke et al. | Aug 1994 | A |
5336700 | Murray | Aug 1994 | A |
5344232 | Nelson et al. | Sep 1994 | A |
5348391 | Murray | Sep 1994 | A |
5348548 | Meyer et al. | Sep 1994 | A |
5350372 | Ikeda et al. | Sep 1994 | A |
5354287 | Wacks | Oct 1994 | A |
5356382 | Picha et al. | Oct 1994 | A |
5368046 | Scarfone et al. | Nov 1994 | A |
5368386 | Murray | Nov 1994 | A |
5370221 | Magnusson et al. | Dec 1994 | A |
5372583 | Roberts et al. | Dec 1994 | A |
5374427 | Stille et al. | Dec 1994 | A |
5376123 | Klaue et al. | Dec 1994 | A |
5380772 | Hasegawa et al. | Jan 1995 | A |
5385081 | Sneddon | Jan 1995 | A |
5385566 | Ullmaerk | Jan 1995 | A |
5387191 | Hemstreet et al. | Feb 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5395167 | Murray | Mar 1995 | A |
5395326 | Haber et al. | Mar 1995 | A |
5398483 | Smith et al. | Mar 1995 | A |
5401806 | Braden et al. | Mar 1995 | A |
5407266 | Dotsch et al. | Apr 1995 | A |
5411180 | Dumelle | May 1995 | A |
5415474 | Nelson et al. | May 1995 | A |
5423824 | Akerfeldt et al. | Jun 1995 | A |
5423850 | Berger | Jun 1995 | A |
5431654 | Nic | Jul 1995 | A |
5435645 | Faccioli | Jul 1995 | A |
5441502 | Bartlett | Aug 1995 | A |
5443182 | Tanaka et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5450924 | Tseng | Sep 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5456267 | Stark | Oct 1995 | A |
5468245 | Vargas, III | Nov 1995 | A |
5480400 | Berger | Jan 1996 | A |
5480403 | Lee | Jan 1996 | A |
5482187 | Poulsen et al. | Jan 1996 | A |
5492247 | Shu et al. | Feb 1996 | A |
5494349 | Seddon | Feb 1996 | A |
5501374 | Laufer et al. | Mar 1996 | A |
5501520 | Lidgren et al. | Mar 1996 | A |
5501695 | Anspach, Jr. et al. | Mar 1996 | A |
5512610 | Lin | Apr 1996 | A |
5514135 | Earle | May 1996 | A |
5514137 | Coutts | May 1996 | A |
5518498 | Lindenberg et al. | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5522816 | Dinello et al. | Jun 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5526853 | McPhee et al. | Jun 1996 | A |
5531519 | Earle | Jul 1996 | A |
5531683 | Kriesel et al. | Jul 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5536262 | Velasquez | Jul 1996 | A |
5545460 | Tanaka et al. | Aug 1996 | A |
5548001 | Podszun et al. | Aug 1996 | A |
5549380 | Lidgren et al. | Aug 1996 | A |
5549381 | Hays et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5551778 | Hauke et al. | Sep 1996 | A |
5554101 | Matula et al. | Sep 1996 | A |
5556201 | Veltrop et al. | Sep 1996 | A |
5558136 | Orrico | Sep 1996 | A |
5558639 | Gangemi et al. | Sep 1996 | A |
5571189 | Kuslich et al. | Nov 1996 | A |
5573265 | Pradel | Nov 1996 | A |
5578035 | Lin | Nov 1996 | A |
5586821 | Bonitati et al. | Dec 1996 | A |
5588745 | Tanaka et al. | Dec 1996 | A |
5591197 | Orth et al. | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
5603701 | Fisher | Feb 1997 | A |
5609637 | Biedermann et al. | Mar 1997 | A |
5624184 | Chan | Apr 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5634880 | Feldman et al. | Jun 1997 | A |
5637097 | Yoon | Jun 1997 | A |
5638997 | Hawkins et al. | Jun 1997 | A |
5641010 | Maier | Jun 1997 | A |
5645598 | Brosnahan, III | Jul 1997 | A |
5647856 | Eykmann | Jul 1997 | A |
5653686 | Coulter et al. | Aug 1997 | A |
5658310 | Berger | Aug 1997 | A |
5660186 | Bachir | Aug 1997 | A |
5665067 | Linder et al. | Sep 1997 | A |
5681317 | Caldarise | Oct 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5685826 | Bonutti | Nov 1997 | A |
5690606 | Slotman | Nov 1997 | A |
5693100 | Pisharodi | Dec 1997 | A |
5697977 | Pisharodi | Dec 1997 | A |
5698611 | Okada et al. | Dec 1997 | A |
5702448 | Buechel et al. | Dec 1997 | A |
5704895 | Scott et al. | Jan 1998 | A |
5707390 | Bonutti | Jan 1998 | A |
5718707 | Mikhail | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725341 | Hofmeister | Mar 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5747553 | Guzauskas | May 1998 | A |
5752935 | Robinson et al. | May 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5752974 | Rhee | May 1998 | A |
5755732 | Green et al. | May 1998 | A |
5759186 | Bachmann et al. | Jun 1998 | A |
5763092 | Lee et al. | Jun 1998 | A |
5779356 | Chan | Jul 1998 | A |
5782713 | Yang | Jul 1998 | A |
5782747 | Zimmon | Jul 1998 | A |
5782830 | Farris | Jul 1998 | A |
5782838 | Beyar et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5785682 | Grabenkort | Jul 1998 | A |
5792044 | Foley | Aug 1998 | A |
5795922 | Demian et al. | Aug 1998 | A |
5797678 | Murray | Aug 1998 | A |
5800169 | Muhlbauer | Sep 1998 | A |
5800409 | Bruce | Sep 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5820321 | Gruber | Oct 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5826713 | Sunago et al. | Oct 1998 | A |
5826753 | Fehlig et al. | Oct 1998 | A |
5827217 | Silver et al. | Oct 1998 | A |
5827289 | Reiley et al. | Oct 1998 | A |
5829875 | Hagel et al. | Nov 1998 | A |
5830194 | Anwar et al. | Nov 1998 | A |
5836306 | Duane et al. | Nov 1998 | A |
5839621 | Tada | Nov 1998 | A |
5842785 | Brown et al. | Dec 1998 | A |
5865802 | Yoon et al. | Feb 1999 | A |
5876116 | Barker et al. | Mar 1999 | A |
5876457 | Picha et al. | Mar 1999 | A |
5882340 | Yoon | Mar 1999 | A |
5884818 | Campbell | Mar 1999 | A |
5893488 | Hoag et al. | Apr 1999 | A |
5893850 | Cachia | Apr 1999 | A |
5902839 | Lautenschlager et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
5918702 | Cheng et al. | Jul 1999 | A |
5918770 | Camm et al. | Jul 1999 | A |
5925051 | Mikhail | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5931347 | Haubrich | Aug 1999 | A |
5941851 | Coffey et al. | Aug 1999 | A |
5954671 | O'Neill | Sep 1999 | A |
5954728 | Heller et al. | Sep 1999 | A |
5961211 | Barker et al. | Oct 1999 | A |
5968008 | Grams | Oct 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5968999 | Ramp et al. | Oct 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5980527 | Cohen et al. | Nov 1999 | A |
5993535 | Sawamura et al. | Nov 1999 | A |
5997544 | Nies et al. | Dec 1999 | A |
6004325 | Vargas, III | Dec 1999 | A |
6007496 | Brannon | Dec 1999 | A |
6017349 | Heller et al. | Jan 2000 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6019776 | Preissman et al. | Feb 2000 | A |
6019789 | Dinh et al. | Feb 2000 | A |
6020396 | Jacobs | Feb 2000 | A |
6022339 | Fowles et al. | Feb 2000 | A |
6033105 | Barker et al. | Mar 2000 | A |
6033411 | Preissman | Mar 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6040408 | Koole | Mar 2000 | A |
6041977 | Lisi | Mar 2000 | A |
6042262 | Hajianpour | Mar 2000 | A |
6045555 | Smith et al. | Apr 2000 | A |
6048346 | Reiley | Apr 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6075067 | Lidgren | Jun 2000 | A |
6080579 | Hanley, Jr. | Jun 2000 | A |
6080801 | Draenert et al. | Jun 2000 | A |
6080811 | Schehlmann et al. | Jun 2000 | A |
6083229 | Constantz et al. | Jul 2000 | A |
6086594 | Brown | Jul 2000 | A |
6103779 | Guzauskas | Aug 2000 | A |
6116773 | Murray | Sep 2000 | A |
6120174 | Hoag et al. | Sep 2000 | A |
6124373 | Peter et al. | Sep 2000 | A |
6126689 | Brett | Oct 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6132396 | Antanavich et al. | Oct 2000 | A |
6136038 | Raab | Oct 2000 | A |
6139509 | Yuan et al. | Oct 2000 | A |
6142998 | Smith et al. | Nov 2000 | A |
6146401 | Yoon et al. | Nov 2000 | A |
6149651 | Drewry et al. | Nov 2000 | A |
6149655 | Constantz et al. | Nov 2000 | A |
6149664 | Kurz | Nov 2000 | A |
6160033 | Nies | Dec 2000 | A |
6161955 | Rademaker | Dec 2000 | A |
6168597 | Biedermann et al. | Jan 2001 | B1 |
6174935 | Matsunae et al. | Jan 2001 | B1 |
6176607 | Hajianpour | Jan 2001 | B1 |
6183441 | Kriesel et al. | Feb 2001 | B1 |
6183516 | Burkinshaw et al. | Feb 2001 | B1 |
6187015 | Brenneman | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6206058 | Nagel et al. | Mar 2001 | B1 |
6210031 | Murray | Apr 2001 | B1 |
6214012 | Karpman et al. | Apr 2001 | B1 |
6214016 | Williams et al. | Apr 2001 | B1 |
6214037 | Mitchell et al. | Apr 2001 | B1 |
6217566 | Ju et al. | Apr 2001 | B1 |
6217581 | Tolson | Apr 2001 | B1 |
6217608 | Penn et al. | Apr 2001 | B1 |
6221029 | Mathis et al. | Apr 2001 | B1 |
6224604 | Suddaby | May 2001 | B1 |
6228049 | Schroeder et al. | May 2001 | B1 |
6228068 | Yoon | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6238399 | Heller et al. | May 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6245101 | Drasler et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6254268 | Long | Jul 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6264618 | Landi et al. | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6264660 | Schmidt et al. | Jul 2001 | B1 |
6273916 | Murphy | Aug 2001 | B1 |
6281271 | Rumphorst et al. | Aug 2001 | B1 |
6309395 | Smith et al. | Oct 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312149 | Sjovall et al. | Nov 2001 | B1 |
6325812 | Dubrul et al. | Dec 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6348518 | Montgomery | Feb 2002 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361539 | Heller et al. | Mar 2002 | B1 |
6364865 | Lavi et al. | Apr 2002 | B1 |
6367962 | Mizutani et al. | Apr 2002 | B1 |
6375659 | Erbe et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6383188 | Kuslich et al. | May 2002 | B2 |
6383190 | Preissman | May 2002 | B1 |
6395007 | Bhatnagar | May 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6402758 | Tolson | Jun 2002 | B1 |
6406175 | Marino | Jun 2002 | B1 |
6409972 | Chan | Jun 2002 | B1 |
6410612 | Hatanaka | Jun 2002 | B1 |
6425887 | McGuckin et al. | Jul 2002 | B1 |
6431743 | Mizutani et al. | Aug 2002 | B1 |
6433037 | Guzauskas | Aug 2002 | B1 |
6436143 | Ross et al. | Aug 2002 | B1 |
6439439 | Rickard | Aug 2002 | B1 |
6443334 | John et al. | Sep 2002 | B1 |
6447478 | Maynards | Sep 2002 | B1 |
6450973 | Murphy | Sep 2002 | B1 |
6458117 | Pollins, Sr. | Oct 2002 | B1 |
6479565 | Stanley | Nov 2002 | B1 |
6488667 | Murphy | Dec 2002 | B1 |
6494868 | Amar | Dec 2002 | B2 |
6500182 | Foster | Dec 2002 | B2 |
6502608 | Burchett et al. | Jan 2003 | B1 |
6527144 | Ritsche et al. | Mar 2003 | B2 |
6550957 | Mizutani et al. | Apr 2003 | B2 |
6554833 | Levy et al. | Apr 2003 | B2 |
6568439 | Se et al. | May 2003 | B1 |
6572256 | Seaton et al. | Jun 2003 | B2 |
6575331 | Peeler et al. | Jun 2003 | B1 |
6575919 | Reilley et al. | Jun 2003 | B1 |
6582439 | Sproul | Jun 2003 | B1 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6595967 | Kramer | Jul 2003 | B2 |
6599293 | Tague et al. | Jul 2003 | B2 |
6599520 | Scarborough et al. | Jul 2003 | B2 |
6613018 | Bagga | Sep 2003 | B2 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6626912 | Speitling | Sep 2003 | B2 |
6641587 | Scribner et al. | Nov 2003 | B2 |
6645213 | Sand et al. | Nov 2003 | B2 |
6662969 | Peeler et al. | Dec 2003 | B2 |
6676664 | Al-Assir | Jan 2004 | B1 |
6689823 | Bellare et al. | Feb 2004 | B1 |
6702455 | Vendrely et al. | Mar 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6719761 | Reiley et al. | Apr 2004 | B1 |
6720417 | Walter | Apr 2004 | B1 |
6730095 | Olson, Jr. et al. | May 2004 | B2 |
6752180 | Delay | Jun 2004 | B2 |
6758837 | Peciat et al. | Jul 2004 | B2 |
6759449 | Kimura et al. | Jul 2004 | B2 |
6767973 | Suau et al. | Jul 2004 | B2 |
6770079 | Bhatnagar | Aug 2004 | B2 |
6779566 | Engel | Aug 2004 | B2 |
6780175 | Sachdeva et al. | Aug 2004 | B1 |
6783515 | Miller et al. | Aug 2004 | B1 |
6787584 | Jia et al. | Sep 2004 | B2 |
6796987 | Tague et al. | Sep 2004 | B2 |
6852439 | Frank | Feb 2005 | B2 |
6874927 | Foster | Apr 2005 | B2 |
6875219 | Arramon et al. | Apr 2005 | B2 |
6887246 | Bhatnagar | May 2005 | B2 |
6916308 | Dixon et al. | Jul 2005 | B2 |
6957747 | Peeler et al. | Oct 2005 | B2 |
6974247 | Frei et al. | Dec 2005 | B2 |
6974416 | Booker et al. | Dec 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6994465 | Tague et al. | Feb 2006 | B2 |
6997930 | Jäggi et al. | Feb 2006 | B1 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7025771 | Kuslich et al. | Apr 2006 | B2 |
7029163 | Barker et al. | Apr 2006 | B2 |
7044954 | Reiley | May 2006 | B2 |
7048743 | Miller | May 2006 | B2 |
7066942 | Treace | Jun 2006 | B2 |
7087040 | McGuckin | Aug 2006 | B2 |
7091258 | Neubert et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7112205 | Carrison | Sep 2006 | B2 |
7116121 | Holcombe et al. | Oct 2006 | B1 |
7252671 | Scribner | Aug 2007 | B2 |
7264622 | Michelson | Sep 2007 | B2 |
7270667 | Faccioli | Sep 2007 | B2 |
7278778 | Sand | Oct 2007 | B2 |
7320540 | Coffeen | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7456024 | Dahm et al. | Nov 2008 | B2 |
7470258 | Barker et al. | Dec 2008 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7572263 | Preismann | Aug 2009 | B2 |
7604618 | Dixon et al. | Oct 2009 | B2 |
7666205 | Weikel et al. | Feb 2010 | B2 |
7678116 | Truckai et al. | Mar 2010 | B2 |
7717918 | Truckai et al. | May 2010 | B2 |
7722620 | Truckai et al. | May 2010 | B2 |
8038682 | McGill et al. | Oct 2011 | B2 |
8066713 | DiMauro et al. | Nov 2011 | B2 |
8070753 | Truckai et al. | Dec 2011 | B2 |
8333773 | DiMauro et al. | Dec 2012 | B2 |
8360629 | Globerman et al. | Jan 2013 | B2 |
8361078 | Beyar et al. | Jan 2013 | B2 |
8415407 | Beyar et al. | Apr 2013 | B2 |
8540722 | Beyar et al. | Sep 2013 | B2 |
8809418 | Beyar et al. | Aug 2014 | B2 |
8950929 | Globerman et al. | Feb 2015 | B2 |
8956368 | Beyar et al. | Feb 2015 | B2 |
9186194 | Ferreyro et al. | Nov 2015 | B2 |
9259696 | Globerman et al. | Feb 2016 | B2 |
9381024 | Globerman et al. | Jul 2016 | B2 |
9504508 | Beyar et al. | Nov 2016 | B2 |
20010012968 | Preissman | Aug 2001 | A1 |
20010024400 | Van Der Wel | Sep 2001 | A1 |
20010034527 | Scribner et al. | Oct 2001 | A1 |
20020008122 | Ritsche et al. | Jan 2002 | A1 |
20020010471 | Wironen | Jan 2002 | A1 |
20020010472 | Kuslich et al. | Jan 2002 | A1 |
20020013553 | Pajunk | Jan 2002 | A1 |
20020049448 | Sand et al. | Apr 2002 | A1 |
20020049449 | Bhatnagar et al. | Apr 2002 | A1 |
20020058947 | Hochschuler et al. | May 2002 | A1 |
20020067658 | Vendrely et al. | Jun 2002 | A1 |
20020068939 | Levy et al. | Jun 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020068975 | Teitelbaum et al. | Jun 2002 | A1 |
20020072768 | Ginn | Jun 2002 | A1 |
20020082605 | Reiley et al. | Jun 2002 | A1 |
20020099384 | Scribner et al. | Jul 2002 | A1 |
20020099385 | Ralph et al. | Jul 2002 | A1 |
20020118595 | Miller | Aug 2002 | A1 |
20020123716 | VanDiver et al. | Sep 2002 | A1 |
20020156483 | Voellicke et al. | Oct 2002 | A1 |
20020161373 | Osorio et al. | Oct 2002 | A1 |
20020177866 | Weikel et al. | Nov 2002 | A1 |
20020183851 | Spiegelberg et al. | Dec 2002 | A1 |
20020188300 | Arramon | Dec 2002 | A1 |
20020191487 | Sand | Dec 2002 | A1 |
20030009177 | Middleman et al. | Jan 2003 | A1 |
20030018339 | Higueras et al. | Jan 2003 | A1 |
20030031698 | Roeder et al. | Feb 2003 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030036763 | Bhatnagar et al. | Feb 2003 | A1 |
20030040718 | Keahey et al. | Feb 2003 | A1 |
20030050644 | Boucher et al. | Mar 2003 | A1 |
20030050702 | Berger | Mar 2003 | A1 |
20030078589 | Preissman | Apr 2003 | A1 |
20030109883 | Matsuzaki et al. | Jun 2003 | A1 |
20030109884 | Tague et al. | Jun 2003 | A1 |
20030144742 | King et al. | Jul 2003 | A1 |
20030162864 | Pearson et al. | Aug 2003 | A1 |
20030174576 | Tague et al. | Sep 2003 | A1 |
20030181963 | Pellegrino et al. | Sep 2003 | A1 |
20030185093 | Vendrely et al. | Oct 2003 | A1 |
20030220414 | Axen et al. | Nov 2003 | A1 |
20030225364 | Kraft et al. | Dec 2003 | A1 |
20030227816 | Okamoto et al. | Dec 2003 | A1 |
20030231545 | Seaton | Dec 2003 | A1 |
20040010263 | Boucher et al. | Jan 2004 | A1 |
20040029996 | Kuhn | Feb 2004 | A1 |
20040054377 | Foster et al. | Mar 2004 | A1 |
20040059283 | Kirwan et al. | Mar 2004 | A1 |
20040066706 | Barker et al. | Apr 2004 | A1 |
20040068264 | Treace | Apr 2004 | A1 |
20040073139 | Hirsch et al. | Apr 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040098015 | Weikel et al. | May 2004 | A1 |
20040106913 | Eidenschink et al. | Jun 2004 | A1 |
20040122438 | Abrams | Jun 2004 | A1 |
20040132859 | Puckett, Jr et al. | Jul 2004 | A1 |
20040133124 | Bates et al. | Jul 2004 | A1 |
20040133211 | Raskin et al. | Jul 2004 | A1 |
20040138759 | Muller et al. | Jul 2004 | A1 |
20040157952 | Soffiati et al. | Aug 2004 | A1 |
20040157954 | Imai et al. | Aug 2004 | A1 |
20040162559 | Arramon et al. | Aug 2004 | A1 |
20040167532 | Olson et al. | Aug 2004 | A1 |
20040167562 | Osorio et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040193171 | DiMauro et al. | Sep 2004 | A1 |
20040215202 | Preissman | Oct 2004 | A1 |
20040220672 | Shadduck | Nov 2004 | A1 |
20040226479 | Lyles et al. | Nov 2004 | A1 |
20040229972 | Klee et al. | Nov 2004 | A1 |
20040230309 | DiMauro et al. | Nov 2004 | A1 |
20040236313 | Klein | Nov 2004 | A1 |
20040249015 | Jia et al. | Dec 2004 | A1 |
20040249347 | Miller et al. | Dec 2004 | A1 |
20040260303 | Carrison | Dec 2004 | A1 |
20040260304 | Faccioli et al. | Dec 2004 | A1 |
20040267154 | Sutton et al. | Dec 2004 | A1 |
20050014273 | Dahm | Jan 2005 | A1 |
20050015148 | Jansen et al. | Jan 2005 | A1 |
20050025622 | Djeridane et al. | Feb 2005 | A1 |
20050058717 | Yetlinler et al. | Mar 2005 | A1 |
20050060023 | Mitchell et al. | Mar 2005 | A1 |
20050070912 | Voellmicke | Mar 2005 | A1 |
20050070914 | Constantz et al. | Mar 2005 | A1 |
20050070915 | Mazzuca | Mar 2005 | A1 |
20050083782 | Gronau et al. | Apr 2005 | A1 |
20050113762 | Kay et al. | May 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050154081 | Yin et al. | Jul 2005 | A1 |
20050180806 | Green | Aug 2005 | A1 |
20050203206 | Trieu | Sep 2005 | A1 |
20050209695 | de Vries et al. | Sep 2005 | A1 |
20050216025 | Chern Lin et al. | Sep 2005 | A1 |
20050256220 | Lavergne et al. | Nov 2005 | A1 |
20050281132 | Armstrong et al. | Dec 2005 | A1 |
20060035997 | Orlowski et al. | Feb 2006 | A1 |
20060041033 | Bisig et al. | Feb 2006 | A1 |
20060052794 | McGill | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060116643 | Dixon et al. | Jun 2006 | A1 |
20060116689 | Albans et al. | Jun 2006 | A1 |
20060116690 | Pagano | Jun 2006 | A1 |
20060122614 | Truckai et al. | Jun 2006 | A1 |
20060148923 | Ashman et al. | Jul 2006 | A1 |
20060167148 | Engquist et al. | Jul 2006 | A1 |
20060181959 | Weiss et al. | Aug 2006 | A1 |
20060235338 | Pacheco | Oct 2006 | A1 |
20060241644 | Osorio et al. | Oct 2006 | A1 |
20060264695 | Viole et al. | Nov 2006 | A1 |
20060264967 | Ferreyro et al. | Nov 2006 | A1 |
20060266372 | Miller et al. | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060276819 | Osorio et al. | Dec 2006 | A1 |
20070027230 | Beyar et al. | Feb 2007 | A1 |
20070032567 | Beyar et al. | Feb 2007 | A1 |
20070055266 | Osorio et al. | Mar 2007 | A1 |
20070055267 | Osorio et al. | Mar 2007 | A1 |
20070055278 | Osorio et al. | Mar 2007 | A1 |
20070055280 | Osorio et al. | Mar 2007 | A1 |
20070055284 | Osorio et al. | Mar 2007 | A1 |
20070055285 | Osorio | Mar 2007 | A1 |
20070055300 | Osorio et al. | Mar 2007 | A1 |
20070060941 | Reiley et al. | Mar 2007 | A1 |
20070118142 | Krueger | May 2007 | A1 |
20070142842 | Krueger | Jun 2007 | A1 |
20070197935 | Reiley et al. | Aug 2007 | A1 |
20070198013 | Foley et al. | Aug 2007 | A1 |
20070198023 | Sand et al. | Aug 2007 | A1 |
20070198024 | Plishka et al. | Aug 2007 | A1 |
20070255282 | Simonton et al. | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080039856 | DiMauro | Feb 2008 | A1 |
20080044374 | Lavergne et al. | Feb 2008 | A1 |
20080058827 | Osorio et al. | Mar 2008 | A1 |
20080065087 | Osorio et al. | Mar 2008 | A1 |
20080065089 | Osorio et al. | Mar 2008 | A1 |
20080065137 | Boucher et al. | Mar 2008 | A1 |
20080065142 | Reiley et al. | Mar 2008 | A1 |
20080065190 | Osorio et al. | Mar 2008 | A1 |
20080071283 | Osorio et al. | Mar 2008 | A1 |
20080086133 | Kuslich et al. | Apr 2008 | A1 |
20080132935 | Osorio et al. | Jun 2008 | A1 |
20080140079 | Osorio et al. | Jun 2008 | A1 |
20080140084 | Osorio et al. | Jun 2008 | A1 |
20080200915 | Globerman et al. | Aug 2008 | A1 |
20080212405 | Globerman et al. | Sep 2008 | A1 |
20080228192 | Beyar et al. | Sep 2008 | A1 |
20090264892 | Beyar et al. | Oct 2009 | A1 |
20090264942 | Beyar et al. | Oct 2009 | A1 |
20090270872 | DiMauro | Oct 2009 | A1 |
20100065154 | Globerman | Mar 2010 | A1 |
20100069786 | Globerman | Mar 2010 | A1 |
20100152855 | Kuslich et al. | Jun 2010 | A1 |
20100168271 | Beyar | Jul 2010 | A1 |
20100268231 | Kuslich et al. | Oct 2010 | A1 |
20120307586 | Globerman et al. | Dec 2012 | A1 |
20130123791 | Beyar et al. | May 2013 | A1 |
20130261217 | Beyar et al. | Oct 2013 | A1 |
20130345708 | Beyar et al. | Dec 2013 | A1 |
20140088605 | Ferreyro et al. | Mar 2014 | A1 |
20140148866 | Globerman et al. | May 2014 | A1 |
20150122691 | Globerman et al. | May 2015 | A1 |
20150127058 | Beyar et al. | May 2015 | A1 |
20150148777 | Ferreyro et al. | May 2015 | A1 |
20160051302 | Ferreyro et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
724544 | Nov 1996 | AU |
9865136 | Sep 1998 | AU |
1138001 | Dec 1996 | CN |
1310026 | Aug 2001 | CN |
136018 | Nov 1902 | DE |
226956 | Mar 1909 | DE |
868497 | Feb 1953 | DE |
1283448 | Nov 1968 | DE |
1810799 | Jun 1970 | DE |
2821785 | Nov 1979 | DE |
3003947 | Aug 1980 | DE |
2947875 | Apr 1981 | DE |
3443167 | Jun 1986 | DE |
8716073 | Mar 1988 | DE |
3817101 | Nov 1989 | DE |
3730298 | Feb 1990 | DE |
4104092 | Aug 1991 | DE |
293485 | Sep 1991 | DE |
4016135 | Mar 1992 | DE |
4315757 | Nov 1994 | DE |
19612276 | Oct 1997 | DE |
10258140 | Jul 2004 | DE |
20207 | Jun 1908 | EP |
486638 | Jun 1938 | EP |
0044877 | Feb 1982 | EP |
0190504 | Mar 1986 | EP |
0177781 | Apr 1986 | EP |
0 235 905 | Sep 1987 | EP |
0235905 | Sep 1987 | EP |
0301759 | Jul 1988 | EP |
0242672 | Sep 1989 | EP |
0425200 | Oct 1990 | EP |
0423916 | Apr 1991 | EP |
0475077 | Mar 1992 | EP |
0511868 | Apr 1992 | EP |
0493789 | Jul 1992 | EP |
0581387 | Feb 1994 | EP |
0614653 | Sep 1994 | EP |
0669100 | Aug 1995 | EP |
0748615 | Dec 1996 | EP |
0763348 | Mar 1997 | EP |
1 074 231 | Feb 2001 | EP |
1074231 | Feb 2001 | EP |
1095667 | May 2001 | EP |
1103237 | May 2001 | EP |
1104260 | Jun 2001 | EP |
1 247 454 | Oct 2002 | EP |
1464292 | Oct 2004 | EP |
1 517 655 | Mar 2005 | EP |
1148850 | Apr 2005 | EP |
1552797 | Jul 2005 | EP |
1570873 | Sep 2005 | EP |
1 596 896 | Nov 2005 | EP |
1598 015 | Nov 2005 | EP |
1148851 | May 2006 | EP |
1829518 | Sep 2007 | EP |
1 886 648 | Feb 2008 | EP |
1886647 | Feb 2008 | EP |
1548575 | Oct 1968 | FR |
2606282 | May 1988 | FR |
2629337 | Oct 1989 | FR |
2638972 | May 1990 | FR |
2674119 | Sep 1992 | FR |
2690332 | Oct 1993 | FR |
2712486 | May 1995 | FR |
2722679 | Jan 1996 | FR |
8331 | Jan 1904 | GB |
179502045 | Jan 1795 | GB |
190720207 | Jun 1908 | GB |
408668 | Apr 1934 | GB |
486638 | Jun 1938 | GB |
2114005 | Aug 1983 | GB |
2156824 | Oct 1985 | GB |
2197691 | May 1988 | GB |
2268068 | Jan 1994 | GB |
2276560 | Oct 1994 | GB |
2411849 | Sep 2005 | GB |
2413280 | Oct 2005 | GB |
2469749 | Oct 2010 | GB |
51-134465 | Nov 1976 | JP |
54-009110 | Jan 1979 | JP |
55-009242 | Jan 1980 | JP |
55-109440 | Aug 1980 | JP |
62-068893 | Mar 1987 | JP |
63-194722 | Aug 1988 | JP |
02-122017 | May 1990 | JP |
02-166235 | Jun 1990 | JP |
02-125730 | Oct 1990 | JP |
4 329956 | Nov 1992 | JP |
07-000410 | Jan 1995 | JP |
8322848 | Dec 1996 | JP |
10146559 | Jun 1998 | JP |
10-511569 | Oct 1998 | JP |
2001-514922 | Sep 2001 | JP |
2004-16707 | Jan 2004 | JP |
2005-500103 | Jan 2005 | JP |
2008-55367 | Mar 2008 | JP |
116784 | Jun 2001 | RO |
1011119 | Apr 1983 | RU |
1049050 | Oct 1983 | RU |
662082 | May 1979 | SU |
8810129 | Dec 1988 | WO |
WO 9000037 | Jan 1990 | WO |
WO 9214423 | Sep 1992 | WO |
WO 9412112 | Jun 1994 | WO |
WO 9513862 | May 1995 | WO |
WO 9611643 | Apr 1996 | WO |
WO 9619940 | Jul 1996 | WO |
WO 9632899 | Oct 1996 | WO |
WO 9637170 | Nov 1996 | WO |
WO 9718769 | May 1997 | WO |
WO 9728835 | Aug 1997 | WO |
WO 9828035 | Jul 1998 | WO |
WO 9838918 | Sep 1998 | WO |
WO 9918866 | Apr 1999 | WO |
WO 9918894 | Apr 1999 | WO |
WO 9929253 | Jun 1999 | WO |
WO 9937212 | Jul 1999 | WO |
WO 9939661 | Aug 1999 | WO |
WO 9949819 | Oct 1999 | WO |
WO 9952446 | Oct 1999 | WO |
WO 0006216 | Feb 2000 | WO |
WO 0044319 | Aug 2000 | WO |
WO 0044321 | Aug 2000 | WO |
WO 0044946 | Aug 2000 | WO |
WO 0054705 | Sep 2000 | WO |
WO 0056254 | Sep 2000 | WO |
WO 0108571 | Feb 2001 | WO |
WO 0113822 | Mar 2001 | WO |
WO 0154598 | Aug 2001 | WO |
WO 0160270 | Aug 2001 | WO |
WO 0176514 | Oct 2001 | WO |
WO 0200143 | Jan 2002 | WO |
WO 0202033 | Jan 2002 | WO |
WO 0219933 | Mar 2002 | WO |
02064195 | Aug 2002 | WO |
WO 02064062 | Aug 2002 | WO |
WO 02064194 | Aug 2002 | WO |
WO 02072156 | Sep 2002 | WO |
WO 02096474 | Dec 2002 | WO |
WO 03007854 | Jan 2003 | WO |
WO 03015845 | Feb 2003 | WO |
WO 03022165 | Mar 2003 | WO |
WO 03061495 | Jul 2003 | WO |
WO 03078041 | Sep 2003 | WO |
WO 03101596 | Dec 2003 | WO |
WO 2004002375 | Jan 2004 | WO |
WO 2004001980 | Mar 2004 | WO |
WO 2004019810 | Mar 2004 | WO |
WO 2004071543 | Aug 2004 | WO |
2004080357 | Sep 2004 | WO |
WO 2004075965 | Sep 2004 | WO |
WO 2004080357 | Sep 2004 | WO |
WO 2004110292 | Dec 2004 | WO |
WO 2004110300 | Dec 2004 | WO |
WO 2005000138 | Jan 2005 | WO |
2005017000 | Feb 2005 | WO |
WO 2005032326 | Apr 2005 | WO |
WO 2005048867 | Jun 2005 | WO |
WO 2005051212 | Jun 2005 | WO |
WO 2005110259 | Nov 2005 | WO |
WO 2006011152 | Feb 2006 | WO |
WO 2006039159 | Apr 2006 | WO |
2006062939 | Jun 2006 | WO |
WO 2006090379 | Aug 2006 | WO |
WO 2006090379 | Aug 2006 | WO |
WO 2007015202 | Feb 2007 | WO |
WO 2007036815 | Apr 2007 | WO |
WO 2007148336 | Dec 2007 | WO |
WO 2008004229 | Jan 2008 | WO |
WO 2008032322 | Mar 2008 | WO |
WO 2008047371 | Apr 2008 | WO |
Entry |
---|
US Office Action, from U.S. Appl. No. 11/360,251, mailed Apr. 17, 2009. |
International Search Report, for PCT/IL07/00808, issued Aug. 22, 2008. |
Marks, Standard handbook for mechanical engineers, section 5 (Tenth ed. 1996). |
Supp. EP Search Report, from EP 07766838.2, dated May 18, 2011. |
Al-Assir et al., “Percutaneous Vertebroplasty: A Special Syringe for Cement Injection,” AJNR Am. J. Neuroradiol. 21:159-61 (2000). |
Baroud et al., “Injection Biomechanics of Bone Cements Used in Vertebroplasty,” Biomed. Mat. & Eng. 00:1-18 (2004). |
Cole et al., “AIM Titanium Humeral Nail System,” Surgical Technique. DePuy Orthopaedics 17P (2000). |
Farrar, D.F. et al., “Rheological Properties of PMMA Bone Cements During Curing,” Biomaterials 22:3005-13 (2001). |
Heini et al., “The Use of a Side-Opening Injection Cannula in Vertebroplasty,” Spine 27(1):105-09 (2002). |
Hernandez et al., “Influence of Powder Particle Size Distribution on Complex Viscosity and Other Properties of Acrylic Bone Cement for Vertebroplasty and Kyphoplasty,” J. Biomed. Mat. Res. 77B:98-103 (2006). |
International Search Report, for PCT/MX03/00027, filed Mar. 14, 2003. |
Ishikawa et al., “Effects of Neutral Sodium Hydrogen Phosphate on Setting Reaction and Mechanical Strength of Hydroxyapatite Putty,” J. Biomed. Mat. Res. 44:322-29, (1999). |
Ishikawa et al., “Non-Decay Type Fast-Setting Calcium Phosphate Cement: Hydroxyapatite Putty Containing an Increased Amount of Sodium Alginate,” J. Biomed. Mat. Res. 36:393-99 (1997). |
Kallmes et al., “Radiation Dose to the Operator During Vertebroplasty: Prospective Comparison of the Use of 1-cc Syringes Versus an Injection Device,” AJNR Am. J. Neuroradiol. 24:1257-60 (2003). |
Krause et al., “The Viscosity of Acrylic Bone Cements,” J. Biomed. Mat. Res. 16:219-43 (1982). |
Lewis, “Properties of Ascrylic Bone Cement: State of the Art Review,” J. Biomed. Mat. Res. Appl. Biomaterials 38(2):155-82 (p. 158 s.Viscosity) (1997). |
Lewis, “Toward Standardization of Methods of Determination of Fracture Properties of Acrylic Bone Cement and Statistical Analysis of Test Results,” J. Biomed. Research: Appl. Biomaterials 53(6):748-68 (2000). |
Mousa, W.F. et al., “Biological and Mechanical Properties of PMMA-Based Bioactive Bone Cements,” Biomaterials 21:2137-46 (2000). |
Nussbaum et al., “The Chemistry of Acrylic Bone Cements and Implications for Clinical Use in Image-Guided Therapy,” J. Vasc. Interv. Radiol. 15:121-26 (2004). |
Serbetci, K. et al., “Thermal and Mechanical Properties of Hydroxyapatite Impregnated Acrylic Bone Cements,” Polymer Testing 23:145-55 (2004). |
Steen, “Laser Surface Treatment,” Laser Mat. Processing, Springer 2d ed. ch. 6:218-71 (2003). |
Supp EP Search Report, from EP Appl No. 05763930.4, dated Sep. 11, 2008. |
Supp EP Search Report, from EP Appl No. 06711221.9, dated Sep. 15, 2008. |
Varela et al., “Closed Intramedullary Pinning of Metacarpal and Phalanx Fractures,” Orthopaedics 13(2):213-15 (1990). |
Weissman et al., “Trochanteric Fractures of the Femur Treatment with a Strong Nail and early Weight-Bearing,” Clin. Ortho. & Related Res. 67:143-50 (1969). |
Bohner, M. et al., “Theoretical and Experimental Model to Describe the Injection of a Polymethacrylate Cement into a Porous Structure,” Biomaterials 24(16):2721-30 (2003). |
Breusch, S. et al., “Knochenzemente auf Basis von Polymethylmethacrylat,” Orthopade 32:41-50 (2003). |
Carrodegus et al., “Injectable Acrylic Bone Cements for Vertebroplasty with Improved Properties,” J. Biomed. Materials Res. 68(1):94-104 (Jan. 2004). |
Gheduzzi, S. et al., “Mechanical Characterisation of Three Percutaneous Vertebroplasty Biomaterials,” J. Mater Sci Mater Med 17(5):421-26 (2006). |
Giannitsios, D. et al., “High Cement Viscosity Reduces Leakage Risk in Vertebroplasty,” European Cells & Mat. 10 supp. 3:54 (2005). |
Hasenwinkel, J. et al., “A Novel High-Viscosity, Two-Solution Acrylic Bone Cement: Effect of Chemical Composition on Properties,” J. Biomed. Materials Research 47(1):36-45 (1999). |
Hasenwinkel, J. et al., “Effect of Initiation Chemistry on the Fracture Toughness, Fatigue Strength, and Residual Monomer Content of a Novel High-Viscosity, Two-Solution Acrylic Bone Cement,” J. Biomed. Materials Res. 59(3):411-21 (2001). |
Lewis, G. et al., “Rheological Properties of Acrylic Bone Cement During Curing and the Role of the Size of the Powder Particles,” J. Biomed. Mat. Res. Appl. Biomat. 63(2):191-99 (2002). |
Pascual, B. et al., “New Aspects of the Effect of Size and Size Distribution on the Setting Parameters and Mechanical Properties of Acrylic Bone Cements,” Biomaterials 17(5):509-16 (1996). |
Robinson, R. et al., “Mechanical Properties of Poly(methyl methacrylate) Bone Cement,” J. Biomed. Materials Res. 15(2):203-08 (2004). |
Saha, S. et a., “Mechanical Properties of Bone Cement: A Review,” J. Biomed. Materilas Res. 18(4):435-62 (1984). |
Andersen, M. et al., “Vertebroplastik, ny behandling af osteoporotiske columnafrakturer?”, Ugeskr Laefer 166/6:463-66 (Feb. 2, 2004). |
Zapalowicz, K. et al., “Percutaneous Vertebroplasty with Bone Cement in the Treatment of Osteoporotic Vertebral Compression Fractures,” Ortopedia Traumatologia Rehabilitacja NR Jan. 2003. |
Chinese Office Action, from CN Appl No. 200680013255.5, mailed Jan. 23, 2009. |
European Communication, from EP Appl No. 06711221.9, mailed Nov. 24, 2008. |
European Search Report, from EP05763930.4; mailed Sep. 11, 2008. |
International Search Report, from PCT/IL06/00239, mailed Jan. 26, 2007. |
International Search Report, from PCT/IL05/00812, mailed Feb. 28, 2007. |
International Search Report, from PCT/IB06/052612, mailed Oct. 2, 2007. |
Lewis, G., “Properties of Acrylic Bone Cement: State of the Art Review,” J. Biomed. Mat. Res. 38(2):155-82 (1997). |
Lewis, G., “Toward Standardization of Methods of Determination of Fracture Properties of Acrylic Bone Cement and Statistical Analysis of Test Results,” J. Biomed. Mat. Res. 53(6):748-68 (2000). |
US Office Action, from U.S. Appl. No. 11/461,072, mailed Jan. 28, 2009. |
JP Office Action, from JP Appl No. 2009-517607, mailed Aug. 9, 2011. |
Baroud, G., “Influence of Mixing Method on the Cement Temperature—Mixing Time History and Doughing Time of Three Acrylic Cements for Vertebroplasty,” Wiley Periodicals Inc. 112-116 (2003). |
European Search Report, from EP 10182769.9, mailed Mar. 2, 2011. |
European Search Report, from EP 10182693.1, mailed Mar. 2, 2011. |
European Search Report, from EP 10192302.7, mailed Mar. 24, 2011. |
European Search Report, from EP 10192301.9, mailed Mar. 24, 2011. |
European Search Report, from EP 10192300.1, mailed Mar. 24, 2011. |
Hide, I. et al., “Percutaneous Vertebroplasty: History, Technique and current Perspectives,” Clin. Radiology 59:461-67 (2004). |
Hu, M. et al., “Kyphoplasty for Vertebral Compression Fracture Via a Uni-Pedicular Approach,” Pain Phys. 8:363-67 (2005). |
Liang, B. et al., “Preliminary Clinical Application of Percutaneous Vertebroplasty,” Zhong Nan Da Xue Bao Yi Xue Ban 31(1):114-9 (2006). |
Noetzel, J. et al., Calcium Phosphate Cements in Medicine and Denistry—A Review of Literature, Schweiz Monatsschr Zehmed 115(12):1148-56 (2005). |
Supp. EP Search Report, from EP Appl. No. 07766863.0, dated Apr. 12, 2011. |
Amar, Arun P. et al., “Percutaneous Transpedicular Polymethylmethacrylate Vertebroplasty for the Treatment of Spinal Compression Fractures,” Neurosurgery 49(5):1105-15 (2001). |
Avalione & Baumeister III, Marks' Standard Handbook for Mechanical Engineers, 10 ed, pp. 5-6 (1996). |
Barr, J.D., “Percutaneous Vertebroplasty for pain Relief and Spinal Stabilization,” Spine 25(8):923-28 (2000). |
Belkoff, S. et al., The Biomechanics of Vertebroplasty, the Effect of Cement Volume on Mechanical Behavior, SPINE 26(14):1537-41 (2001). |
Belkoff, S.M. et al., “An Ex Vivo Biomechanical Evaluation of a Hydroxyapatite Cement for Use with Kyphoplasty,” Am. J. Neurorad. 22:1212-16 (2001). |
Belkoff, S.M. et al., “An Ex Vivo Biomechanical Evaluation of a Inflatable Bone Tamp Used in the Treatment of Compression Fracture,” SPINE 26(2):151-56 (2001). |
Belkoff, S.M. et al., “An In Vitro Biomechanical Evaluation of Bone Cements Used in Percutaneous Vertebroplasty,” Bone 25(2):23S-26S (1999). |
Blinc, A et al., “Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro,” Thrombosis Research 114:179-84 (2004). |
Canale et al., “Campbell's operative orthopaedic—vol. 3—ninth ed”, Mosby:p. 2097,2121,2184-85,2890-96, (1998). |
Codman & Shurtleff, “V-MAX™ Mixing and Delivery Device,” Catalog No. 43-1056, 2001. |
Combs, S. et al., “The Effects of Barium Sulfate on the Polymerization Temperature and Shear Strength of Surgical Simplex P,” Clin. Ortho. and Related Res. pp. 287-291 (Jun. 4, 1979). |
Cotton, A. et al., “Percutaneous Vertebroplasty: State of the Art,” Scientific Exhibit, Radiographics 18:311-20 (1998). |
Dean, J.R. et al., “The Strengthening Effect of Percutaneous Vertebroplasty,” Clin Radiol. 55:471-76 (2000). |
Deramond, H. et al, “Percutaneous Vertebroplasty with Polymethylmethacrylate, Technique Indications and Results,” Radiologic Clinics of North America 36(3) (May 1988). |
Deramond, H. et al., “Temperature Elevation Caused by Bone cement Polymerization During Vertbroplasty,” Bone 25(2):17S-21S (1999). |
DeWijn, J.R., Characterization of Bone Cements, The Institute of Dental Materials Science and Technology and the Dept of Ortho., Catholic University, Netherlands 46:38-51 (1975). |
Edeland, “Some additional suggestions for an intervertebral disc prothesis,” J. Biomed. Eng. XP008072822, 7(1):57-62 (1985. |
European Search Report, from EP09151379.6, mailed Oct. 20, 2009. |
European Search Report, from EP06780252.0, mailed Oct. 29, 2009. |
Fessler, Richard D. et al., “Vertebroplasty,” Neurosurgical Operative Atlas 9:233-240 (2000). |
Gangi, A., “CT-Guided Interventional Procedures for Pain Management in the Lumbosacral Spine,” Radiographics 18:621-33 (1998). |
Gangi, A., “Computed Tomography CT and Fluoroscopy-Guided Vertebroplasty: Results and Complications in 187 Patients,” Seminars in Interventional Radiology 16(2):137-42 (1999). |
Gangi, A., “Percutaneous Vertebroplasty Guided by a Combination of CT and Fluoroscopy,” AJNR 15:83-86 (1994). |
Garfin, S. R. et al., “New Technologies in Spine, Kyphoplasty and Vertebroplasty for the Treatment of Painful Osteoporotic Compression Fractures,” Spine 26(14:1511-15 (2001). |
Grados F. et al.,“Long-Term Observations of Vertebral Osteoporotic Fractures Treated by Percutaneous Vertebroplasty,” Rheumatology 39:1410-14 (2000). |
Heini, P. et al., “Augmentation of Mechanical Properties in Osteoporatic Vertebral Bones—a Biomechanical Investigation of Vertebroplasty Efficacy With Different Bone Cements,” EUR Spine J. v. 10, pp. 164-171, Springer-Verlag (2001). |
Heini, P., “Percutaneous Transpedicular Vertebroplasty with PMMA: Operative Technique and Early Results,” EUR Spine J. v. 9, pp. 445-450, Springer-Verlag (2000). |
Heraeus Palacos R, 2008, Palacos R, high Viscosity Bone Cement. |
International Preliminary Report on Patentability, from PCT/IB06/053014, dated Apr. 10, 2008. |
International Search Report, from PCT/IL07,00833, mailed Apr. 4, 2008. |
International Search Report, from PCT/IL07/00484, mailed Apr. 17, 2008. |
Jasper, L.E. et al., “The Effect of Monomer-to-Powder Ratio on the Material Properties of Cranioplastic,” Bone 25(2):27S-29S (1999). |
Jensen, Mary E. et al., “Percutaneous Polymethylmethacrylate Vertebroplasty in the Treatment of Osteoporotic Vertebral Body Compression Fractures: Technical Aspects,” AJNR 18:1897-1904 (1997). |
Jensen, Mary E. et al., “Percutaneous Vertebroplasty in the Treatment of Osteoporotic Compression Fractures,” Spine Interventions 10(3):547-568 (2000). |
Johnson & Johnson Orthopaedics, The CEMVAC Method, Raynham, MA. |
Kaufmann et al, “Age of Fracture and Clinical Outcomes of Percutaneous Vertebroplasty,” Am. J. Neuroradiology 22:1860-63 (2001). |
Kuhn, Klaus-Dieter, Bone Cements—Uptodate Comparison of Physical and Chemical Properties of Commercial Materials, Springer-Verlag Heidelberg Germany p. 7-8, 17, 38 (2000). |
Kyphom Medical Professionals, KyphXProducts (Nov. 8, 2001). |
Li, C. et al., “Thermal Characterization of PMMA-Based Bone Cement Curing,” J. Materials Sci.: Materials in Medicine 15:84-89 (2004). |
Lieberman, I.H. et al., “Initial Outcome and Efficiacy of Kyphoplasty in the Treatment of Painful Osteoporatic Vertebral Compression Fractures,” Spine 26(14:1631-38 (2001). |
Mathis, John et al., “Percutaneous Vertebroplasty: A Developing Standard of Care for Vertebral Compression Fractures,” AJNR Am. J. Neurorad. 22:373-81 (2001). |
Medsafe Palacos R 2007, Data Sheet : Palacos R Bone cement with Garamycin pp. 1-7; http://www.medsafe.govt.nz/profs/datasheet/p/palacosbonecements.htm. |
O'Brien, J. et al., “Vertebroplasty in patients with Severe Vertebral Compression Fractures: A Technical Report,” AJNR 21:1555-58 (2000). |
Odian, G., “Principles of Polymerization,” pp. 20-23, 1991. |
Padovani, B. et al., “Pulmonary Embolism Caused by Acrylic Cement: A Rare Complication of Percutaneous Vertebroplasty,” AJNR 20:375-77 (1999). |
Parallax Medical, Inc., Exflow Cement Delivery System (May 16, 2000). |
Rimnac, CM, et al., “The effect of centrifugation on the fracture properties of acrylic bone cements,” JB&JS 68A(2):281-87 (1986). |
Ryu, K. S. et al., “Dose-Dependent Epidural Leakage of Polymethylmethacrylate after Percutaneous Vertebroplasty in Patients with Osteoporotic Vertebral Compression Fractures,” J. Neuro: Spine 96:56-61 (2002). |
Shah, T., Radiopaque Polymer Formulations for Medical Devices; Medical Plastics and Biomaterials Special Section; Medical device & Diagnostic Industry pp. 102-111 (2000). |
Vasconcelos, C., “Transient Arterial Hypotension Induced by Polymethyacrylated Injection During Percutaneous Vertebroplasty,” Letter to the Editor, JVIR (Aug. 2001). |
Wimhurst, J.A., et al., “The Effects of Particulate Bone Cements at the Bone-Implant Interface,” J. Bone & Joint Surgery pp. 588-592 (2001). |
Wimhurst, J.A. et al., “Inflammatory Responses of Human Primary Macrophages to Particulate Bone Cements in Vitro,” J. Bone & Joint Surgery 83B:278-82 (2001). |
Feldman, H., “Die Geschichte der Injektionen,” Laryngo-Rhino-Othol 79:239-46 (2000). |
Glasgow Medico-Chirurgical Society, The lancet 1364 (May 18, 1907). |
Greenberg, “Filling Root Canals by an Injection Technique,” Dental Digest 61-63 (Feb. 1963). |
Greenberg, “Filling Root Canals in Deciduous Teeth by an Injection Technique,” Dental Digest 574-575 (Dec. 1961). |
Greig, D., “A New Syringe for Injecting Paraffin,” The Lancet 611-12 (Aug. 29, 1903). |
Lake, R., “The Restoration of the Inferior Turbinate Body by Paraffin Injections in the Treatment of Atrophic Rhinitis,” The Lancet 168-69 (Jan. 17, 1903). |
Paget, S., “The Uses of Paraffin in Plastic Surgery,” The Lancet 1354 (May 16, 1903). |
Walton, A, “Some Cases of Bone Cavities Treated by Stopping With Paraffin,” The Lancet 155 (Jan. 18, 1908). |
Cromer, A., “Fluids,” Physics for the Life Sciences, 2:136-37 (1977). |
JP Office Action, from JP Appl No. 2008-532910, mailed Jul. 19, 2011. |
Lindeburg, M., “External Pressurized Liquids,” Mechanical Eng. Ref. Manual for the PE Exam, 10:15-14(May 1997). |
European Search Report, from EP07827231.7, mailed Sep. 12, 2011. |
International Search Report, from corresponding PCT/IL07/01257, dated Jul. 15, 2008. |
Japanese Office Action issued Dec. 6, 2011 for Application No. 2008-524651 (9 pages). |
Mendizabal et al., Modeling of the curing kinetics of an acrylic bone cement modified with hydroxyapatite. International Journal of Polymeric Materials. 2003;52:927-938. |
Morejon et al., Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements. International Journal of Polymeric Materials. 2003;52(7):637-654. |
Sreeja et al., Studies on poly(methyl methacrylate)/polystyrene copolymers for potential bone cement applications. Metals Materials and Processes. 1996;8(4):315-322. |
Yang et al., Polymerization of acrylic bone cement investigated by differential scanning calorimetry: Effects of heating rate and TCP content. Polymer Engineering and Science. Jul. 1997;1182-1187. |
Japanese Office Action issued Feb. 21, 2012 for Application No. 2009-516062 (6 pages). |
[No Author Listed] Plastic Deformation of Metals and Related Properties. New Age Publishers. p. 1-29. |
European Search Report for Application No. 12181745.6, issued Sep. 25, 2012. (9 pages). |
Japanese Office Action for Application No. 2009-517607, dated Aug. 28, 2012. (4 pages). |
Japanese Office Action for Application No. 2009-516062, dated Oct. 16, 2012 (6 pages). |
[No Author Listed] Simplex p. Bone Cement. Stryker Corporation, 2 pages, publication date unknown. Retrieved from <http://www.stryker.com/en-us/products/Orthopaedics/BoneCementSubstitutes/index.htm>. |
[No Author Listed] Standard Specification for Acrylic Bone Cement. Designation F 451-08, ASTM International :2008), 11 pages. |
Australian Office Action issued Mar. 7, 2013 for Application No. 2012203300 (6 pages). |
Chinese Office Action for Application No. 201310064546.9, issued Jul. 31, 2014. |
European Communication Issued Jul. 1, 2015 for Application No. 10182769.9, enclosing third party observations ,concerning patentability (Submission dated Jun. 25, 2015) (6 pages). |
Notice of Opposition to a European Patent for U.S. Pat. No. 2314259, from KIPA AB (EP Application No. 10182769.9), lated Apr. 28, 2016 (72 pages). |
Notice of Opposition to a European Patent for U.S. Pat. No. 2,314,259, from Lover & Abello (EP Application No. 10182769.9), dated Apr. 28, 2016 (40 pages). |
European Communication for Application No. 10192301.9, issued Sep. 17, 2015, enclosing third party observations concerning patentability (Submission dated Sep. 11, 2015 (22 pages). |
European Search Report for Application No. 13174874.1, issued Nov. 13, 2013 (6 pages). |
Extended European Search Report for Application No. 14166420.1, issued Jul. 14, 2014 (9 pages). |
Extended European Search Report for Application No. 16173186.4, issued Oct. 6, 2016 (11 pages). |
Japanese Office Action issued Apr. 9, 2013 for Application No. 2007-556708. |
Japanese Interrogation for Application No. 2009-516062 issued Jul. 9, 2013 (9 pages). |
Japanese Office Action for Application No. 2009-517607, dated Aug. 27, 2013. (6 pages). |
Japanese Office Action for Application No. 2009-517607, dated Feb. 4, 2014. (8 pages). |
Kuehn et al., Acrylic bone cements: composition and properties. Orthop Clin North Am. 2005 Jan;36(1):17-28, v. |
Lu Orthopedic Bone Cement. Biomechanics and Biomaterials in Orthopedics. Ed. Poitout London: Springer-Verlag London Limited Jul. 2004 86-88. |
Su, W.-F, Polymer Size and Polymer Solutions. Principles of Polymer Design and Synthesis. Chapter 2, pp. 9-26, Springer-Verlag Berlin Heidelberg, 2013. |
Number | Date | Country | |
---|---|---|---|
20100168271 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60825609 | Sep 2006 | US |