Bone cement and methods of use thereof

Information

  • Patent Grant
  • 9642932
  • Patent Number
    9,642,932
  • Date Filed
    Tuesday, September 11, 2007
    17 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
A bone cement comprising an acrylic polymer mixture which is formulated to have a relatively high viscosity for a relatively long window, due to distributions of molecular weights and/or sizes of acrylic beads.
Description
FIELD OF THE INVENTION

The present invention relates to bone cement, formulations thereof and methods of use thereof.


BACKGROUND OF THE INVENTION

It is common to employ cement to repair bones in a variety of clinical scenarios.


For example, compression fractures of the vertebrae, which are a common occurrence in older persons, cause pain and/or a shortening (or other distortion) of stature. In a procedure known as vertebroplasty cement is injected into a fractured vertebra. Vertebroplasty stabilizes the fracture and reduces pain, although it does not restore the vertebra and person to their original height. In vertebroplasty the cement is typically injected in a liquid phase so that resistance to injection is not too great. Liquid cement may unintentionally be injected outside of the vertebra and/or may migrate out through cracks in the vertebra.


In another procedure, known as kyphoplasty, the fracture is reduced by expanding a device, such as a balloon inside the vertebra and then injecting a fixing material and/or an implant. Kyphoplasty reduces the problem of cement leakage by permitting a lower pressure to be used for injection of the cement.


In general, polymeric cements become more viscous as the polymer chain grows by reacting directly with the double bond of a monomer. Polymerization begins by the “addition mechanism” in which a monomer becomes unstable by reacting with an initiator, a volatile molecule that is most commonly a radical (molecules that contain a single unpaired electron). Radicals bond with monomers, forming monomer radicals that can attack the double bond of the next monomer to propagate the polymer chain. Because radicals are so transient, initiators are often added in the form of an un-reactive peroxide form which is stable in solution. Radicals are formed when heat or light cleaves the peroxide molecule. For applications in which high temperatures are not practical (such as the use of bone cement in vivo), peroxide is typically cleaved by adding a chemical activator such as N,N-dimethyl-p-toluidine. (Nussbaum D A et al: “The Chemistry of Acrylic Bone Cement and Implication for Clinical Use in Image-guided Therapy”, J Vasc Interv Radiol (2004); 15:121-126; the content of which is fully incorporated herein by reference).


Examples of commercially available viscous bone cements include, but are not limited to, CMW® Nos. 1, 2 and 3 (DePuy Orthopaedics Inc.; Warsaw, Ind., USA) and Simplex™-P and -RO (Stryker Orthopaedics; Mahwah, N.J., USA). These cements are characterized by a liquid phase after mixing and prior to achieving a viscosity of 500 Pascal-second. In a typical use scenario, these previously available cements are poured, while in a liquid phase, into a delivery device.


There have also been attempts to reduce cement leakage by injecting more viscous cement, for example, during the doughing time and the beginning of polymerization. However, the viscous materials, such as hardening PMMA, typically harden very quickly once they reach a high viscosity. This has generally prevented injection of viscous materials in orthopedic procedures.


Some bone fixing materials, such as polymethylmethacrylate (PMMA), emit heat and possibly toxic materials while setting.


U.S. patents and publication U.S. Pat. Nos. 4,969,888, 5,108,404, 6,383,188, Nos. 2003/0109883, 2002/0068974, U.S. Pat. Nos. 6,348,055, 6,383,190, 4,494,535, 4,653,489 and 4,653,487, the disclosures of which are incorporated herein by reference describe various tools and methods for treating bone.


US patent publication 2004/0260303, the disclosure of which is incorporated herein by reference, teaches an apparatus for delivering bone cement into a vertebra.


Pascual, B., et al., “New Aspects of the Effect of Size and Size Distribution on the Setting Parameters and Mechanical Properties of Acrylic Bone Cements,” Biomaterials, 17(5): 509-516 (1996) considers the effect of PMMA bead size on setting parameters of cement. This article is fully incorporated herein by reference.


Hernandez, et al., (2005) “Influence of Powder Particle Size Distribution on Complex Viscosity and Other Properties of Acrylic Bone Cement for Vertebroplasty and Kyphoplasty” Wiley International Science D01:10:1002/jbm.b.30409 (pages 98-103) considers the effect of PMMA bead size distribution on setting parameters of cement. Hernandez suggests that it is advantageous to formulate cement with a liquid phase to facilitate injection. This article is fully incorporated herein by reference.


U.S. Pat. No. 5,276,070 to Arroyo discloses use of acrylic polymers with a molecular weight in the range of 0.5 to 1.5 million Daltons in formulation of bone cement. The disclosure of this patent is fully incorporated herein by reference.


U.S. Pat. No. 5,336,699 to Cooke discloses use of acrylic polymers with a molecular weight of about one hundred thousand Daltons in formulation of bone cement. The disclosure of this patent is fully incorporated herein by reference.


SUMMARY OF THE INVENTION

A broad aspect of the invention relates to a bone cement characterized by a rapid transition from separate liquid monomer and powdered polymer components to a single phase characterized by a high viscosity when the components are mixed together with substantially no intervening liquid phase. Optionally, high viscosity indicates 500 Pascal-second or more. Mixing is deemed complete when 95-100% of the polymer beads are wetted by monomer. In an exemplary embodiment of the invention, mixing is complete in within 60, optionally within 45, optionally within 30 seconds.


In an exemplary embodiment of the invention, the cement is characterized by a working window of several minutes during which the viscosity remains high prior to hardening of the cement. Optionally, viscosity during the working window does not vary to a degree which significantly influences injection parameters. In an exemplary embodiment of the invention, viscosity increases by less than 10% during a sub-window of at least 2 minutes during the working window. Optionally, the viscosity in the working window does not exceed 500, optionally 1,000, optionally 1,500, optionally 2,000 Pascal-second or lesser or greater or intermediate values. In an exemplary embodiment of the invention, the working window lasts 6, optionally 8, optionally 10, optionally 15 minutes or lesser or greater or intermediate times. Optionally, ambient temperature influences a duration of the working window. In an exemplary embodiment of the invention, the cement can be cooled or heated to influence a length of the working window.


An aspect of some embodiments of the invention relates to formulations of bone cement which rely upon two, optionally three or more, sub-populations of polymer beads which are mixed with liquid monomer.


According to exemplary embodiments of the invention, sub-populations may be characterized by average molecular weight (MW) and/or physical size and/or geometry, and/or density. In an exemplary embodiment of the invention, size based and MW based sub-populations are defined independently. In an exemplary embodiment of the invention, the sub-populations are selected to produce desired viscosity characterization and/or polymerization kinetics. Optionally, the polymer beads comprise polymethylmethacrylate (PMMA) and/or a PMMA styrene copolymer. Optionally, PMMA is employed in conjunction with a methylmethacrylate (MMA) monomer.


Optionally, a high molecular weight sub-population contributes to a rapid transition to a high viscosity with substantially no liquid phase. Optionally, a low molecular weight subpopulation contributes to a longer working window.


Optionally, a sub-population with small size contributes to rapid wetting of polymer beads with monomer solution. In an exemplary embodiment of the invention, rapid wetting contributes to a direct transition to a viscous cement with substantially no liquid phase.


In some cases a small percentage of beads may not belong to any relevant sub-population. The small percentage of beads may be, for example 1%, 1.5%,2%, 3%, 4%, 5% or lesser or intermediate or greater percentages.


In one exemplary embodiment of the invention, there are at least two sub-populations of PMMA polymer beads characterized by molecular weights. For example, a first sub-population comprising 95 to 97% (w/w) of the total PMMA beads can be characterized by an average MW of 270,000-300,000 Dalton; a second sub-population (2-3% w/w) can be characterized by an average MW of 3,500,000-4,000,000 Dalton; and a third sub-population (0-3% w/w) can be characterized by an average MW of 10,000-15,000 Dalton.


In an exemplary embodiment of the invention, the polymer beads are characterized by a high surface area per unit weight. Optionally, the beads have a surface area of 0.5 to 1, optionally 0.5 to 0.8 optionally about 0.66 m2/gram or intermediate or lesser or greater values. Optionally, the high surface area/weight ratio improves wetting properties and/or shortens polymerization times, for example by contributing to polymer monomer contact.


In an exemplary embodiment of the invention, a cement characterized by an immediate transition to high viscosity is injected during a working window in a vertebroplasty or kyphoplasty procedure. Optionally, injection is under sufficient pressure to move fractured bone, such as vertebral plates of a collapsed vertebra. Optionally, injection of viscous cement under high pressure contributes to fracture reduction and/or restoration of vertebral height.


In an exemplary embodiment of the invention, the material (e.g., bone cement) includes processed bone (from human or animals origin) and/or synthetic bone. Optionally, the cement has osteoconductive and/or osteoinductive behavior. Additional additives as commonly used in bone cement preparation may optionally be added. These additives include, but are not limited to, barium sulfate and benzoyl peroxide.


According to some embodiments of the invention, a working window length is determined by an interaction between an immediate effect and a late effect. In an exemplary embodiment of the invention, the immediate effect includes MMA solvation and/or encapsulation of PMMA polymer beads. The immediate effect contributes to a high viscosity of the initial mixture resulting from solvation and/or friction between the beads. The late effect is increasing average polymer MW as the beads dissolve and the polymerization reaction proceeds. This increasing average polymer MW keeps viscosity high throughout the working window.


In an exemplary embodiment of the invention, a set of viscosity parameters are used to adjust a cement formulation to produce a cement characterized by a desired working window at a desired viscosity.


In an exemplary embodiment of the invention, there is provided a bone cement comprising an acrylic polymer mixture, the cement characterized in that it achieves a viscosity of at least 500 Pascal-second within 180 seconds following initiation of mixing of a monomer component and a polymer component and characterized by sufficient biocompatibility to permit in-vivo use.


Optionally, the viscosity of the mixture remains between 500 and 2000 Pascal-second for a working window of at least 5 minutes after the initial period.


Optionally, the working window is at least 8 minutes long.


Optionally, the mixture includes PMMA.


Optionally, the mixture includes Barium Sulfate.


Optionally, the PMMA is provided as a PMMA/styrene copolymer.


Optionally, the PMMA is provided as a population of beads divided into at least two sub-populations, each sub-population characterized by an average molecular weight.


Optionally, a largest sub-population of PMMA beads is characterized by an MW of 150,000 Dalton to 300,000 Dalton.


Optionally, a largest sub-population of PMMA beads includes 90-98% (w/w) of the beads.


Optionally, a high molecular weight sub-population of PMMA beads is characterized by an average MW of at least 3,000,000 Dalton.


Optionally, a high molecular weight sub-population of PMMA beads includes 2 to 3% (w/w) of the beads.


Optionally, a low molecular weight sub-population of PMMA beads is characterized by an average MW of less than 15,000 Dalton.


Optionally, a low molecular weight sub-population of PMMA beads includes 0.75 to 1.5% (W/W) of the beads.


Optionally, the PMMA is provided as a population of beads divided into at least two sub-populations, each sub-population characterized by an average bead diameter.


Optionally, at least one bead sub-population characterized by an average diameter is further divided into at least two sub-sub-populations, each sub-sub-population characterized by an average molecular weight.


Optionally, the PMMA is provided as a population of beads divided into at least three sub-populations, each sub-population characterized by an average bead diameter.


Optionally, the cement further includes processed bone and/or synthetic bone.


Optionally, the cement is characterized in that the cement achieves a viscosity of at least 500 Pascal-second when 100% of a polymer component is wetted by a monomer component.


Optionally, the viscosity is at least 800 Pascal-second.


Optionally, the viscosity is at least 1500 Pascal-second.


Optionally, the viscosity is achieved within 2 minutes.


Optionally, the viscosity is achieved within 1 minute.


Optionally, the viscosity is achieved within 45 seconds.


In an exemplary embodiment of the invention, there is provided a bone cement comprising:


a polymer component; and


a monomer component,


wherein, contacting the polymer component and the monomer component produces a mixture which attains a viscosity greater than 200 Pascal-second within 1 minute from onset of mixing and remains below 2000 Pascal-second until at least 6 minutes from onset of mixing.


Optionally, the polymer component comprises an acrylic polymer.


In an exemplary embodiment of the invention, there is provided a particulate mixture formulated for preparation of a bone cement, the mixture comprising:

  • (a) 60 to 80% polymer beads comprising a main sub-population characterized by an MW of 150,000 Dalton to 300,000 Dalton and a high molecular weight sub-population characterized by an MW of 3,000,000 Dalton to 4,000,000 Dalton; and
  • (b) 20 to 40% of a material which is non-transparent with respect to X-ray.


Optionally, the polymer beads comprise a third subpopulation characterized by an MW of 10,000 Dalton to 15,000 Dalton.


In an exemplary embodiment of the invention, there is provided a method of making a polymeric bone cement, the method comprising:

  • (a) defining a viscosity profile including a rapid transition to a working window characterized by a high viscosity;
  • (b) selecting a polymer component and a monomer component to produce a cement conforming to the viscosity profile; and
  • (c) mixing the polymer component and a monomer component to produce a cement which conforms to the viscosity profile.


In an exemplary embodiment of the invention, there is provided a cement kit, comprising:


(a) a liquid component including a monomer; and


(b) a powder component including polymeric beads,


characterized in that said powder component is provided in a substantially non-normal distribution of at least one of molecular weight of the polymeric beads and size of powder particles such that a cement mixed from the kit has both an increased immediate viscosity and an increased working window as compared to a cement having a substantially normal distribution.


Optionally, the substantially non-normal distribution is a skewed distribution.


Optionally, the substantially non-normal distribution comprises a relatively small component including higher molecular weight beads. Optionally, said component has an average molecular weight of at least a factor of 2 of an average molecular weight of said polymeric beads. Optionally, said factor is at least 3 or is at least 5.


Optionally, the substantially non-normal distribution comprises a relatively small component including smaller sized particles.





BRIEF DESCRIPTION OF THE FIGURES

Exemplary non-limiting embodiments of the invention will be described with reference to the following description of embodiments in conjunction with the figures. Identical structures, elements or parts which appear in more than one figure are generally labeled with a same or similar number in all the figures in which they appear, in which:



FIG. 1 is a flow diagram illustrating an exemplary method 100 of preparation and behavior of exemplary cements according to the present invention;



FIG. 2 is a graph of viscosity profiles depicting viscosity (Pascal-second) as a function of time (minutes) for an exemplary cement according to the invention and an exemplary prior art cement;



FIGS. 3 and 4 are graphs indicating viscosity as Newtons of applied force per unit displacement (mm) under defined conditions for exemplary cements according to the invention and illustrate the time window for injection which is both early and long; and



FIG. 5 is a graph showing the results of bead size distribution analysis, for a bead formulation in accordance with an exemplary embodiment of the invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Overview of Preparation of Exemplary Bone Cement



FIG. 1 is a flow diagram illustrating preparation and behavior of exemplary cements according to some embodiments of the present invention.


In an exemplary embodiment of the invention, a liquid monomer and a powdered polymer component of a bone cement are combined 110. Optionally, liquid monomer is poured onto powdered polymer.


According to various embodiments of the invention, average polymer molecular weight and/or polymer molecular weight distribution and/or polymer bead size is precisely controlled in order to influence polymerization kinetics and/or cement viscosity. Alternatively or additionally, polymer and/or monomer components may contain ingredients which are not directly involved in the polymerization reaction.


In an exemplary embodiment of the invention, the polymer (e.g. an acrylic polymer such as PMMA) beads are divided into two or more sub-populations. Optionally, the sub populations are defined by molecular weight (MW). In an exemplary embodiment of the invention, the average molecular weight of the acrylic polymer in all the beads is in the range of about 300,000 to 400,000, optionally about 373,000 Dalton. This average MW for all beads was determined experimentally for a batch of beads which produced cement with a desired polymerization profile.


Optionally, the polymer beads are provided as part of an acrylic polymer mixture, for example a mixture including barium sulfate.


At 112 the components are mixed until the polymer is wetted by the monomer. Optionally, when wetting is 95 to 100% complete, the mixture has achieved a desired high viscosity, for example 500 Pascal-second or more. Optionally, mixing 112 is complete within 1, 5, 10, 15, 30, 60, 90, 120 or 180 seconds. In a modern medical facility, it can be advantageous to shorten the mixing time in order to reduce the demand on physical facilities and/or medical personnel. A savings of even 1 to 2 minutes with respect to previously available alternatives can be significant. In an exemplary embodiment of the invention, mixing 112 is conducted in a mixing apparatus of the type described in co-pending application U.S. Ser. No. 11/428,908, the disclosure of which is fully incorporate herein by reference.


After mixing 112 is complete, a working window 114 during which the cement remains viscous but has not fully hardened occurs. According to various exemplary embodiments of the invention, working window 114 may be about 2, 5, 8, 10, 15 or 20 minutes or intermediate or greater times. The duration of the working window may vary with the exact cement formulation and/or ambient conditions (e.g. temperature and/or humidity). Formulation considerations include, but are not limited to polymer MW (average and/or distribution), polymer bead size, concentrations of non-polymerizing ingredient and polymer:monomer ratio.


Working window 114, permits a medical practitioner sufficient time to load a high pressure injection device and inject 120 the cement into a desired location. Optionally, an injection needle or cannula is inserted into the body prior to, or concurrent with mixing 112 so that window 114 need only be long enough for loading and injection 120. Exemplary injection systems are disclosed in co-pending application U.S. Ser. No. 11/360,251 entitled “Methods, materials, and apparatus for treating bone and other tissue” filed Feb. 22, 2006, the disclosure of which is fully incorporated herein by reference.


In an exemplary embodiment of the invention, hardening 116 to a hardened condition occurs after working window 114. The cement hardens 116 even if it has not been injected.


Advantages with Respect to Relevant Medical Procedures


In an exemplary embodiment of the invention, cement with a viscosity profile as described above is useful in vertebral repair, for example in vertebroplasty and/or kyphoplasty procedures.


Optionally, use of cement which is viscous at the time of injection reduces the risk of material leakage and/or infiltrates into the intravertebral cancellous bone (interdigitaion) and/or reduces the fracture [see G Baroud et al, Injection biomechanics of bone cements used in vertebroplasty, Bio-Medical Materials and Engineering 00 (2004) 1-18]. Reduced leakage optionally contributes to increased likelihood of a positive clinical outcome.


In an exemplary embodiment of the invention, the viscosity of the bone cement is 500, optionally 1,000, optionally 1,500, optionally 2,000 Pascal-second or lesser or greater or intermediate values at the time injection begins, optionally 3, 2 or 1 minutes or lesser or intermediate times after mixing 112 begins. Optionally, the viscosity does not exceed 2,000 Pascal-second during working window 114. In an exemplary embodiment of the invention, this viscosity is achieved substantially as soon as 95-100% of the polymer beads are wetted by monomer.


Cement characterized by a high viscosity as described above may optionally be manually manipulated.


In an exemplary embodiment of the invention, cement is sufficiently viscous to move surrounding tissue as it is injected. Optionally, moving of the surrounding tissue contributes to fracture reduction and/or restoration of vertebral height.


An injected volume of cement may vary, depending upon the type and/or number of orthopedic procedures being performed. The volume injected may be, for example, 2-5 cc for a typical vertebral repair and as high as 8-12 cc or higher for repairs of other types of bones. Other volumes may be appropriate, depending for example, on the volume of space and the desired effect of the injection. In some cases, a large volume of viscous cement is loaded into a delivery device and several vertebrae are repaired in a single medical procedure. Optionally, one or more cannulae or needles are employed to perform multiple procedures.


Viscous cements according to exemplary embodiments of the invention may be delivered at a desired flow rate through standard orthopedic cannulae by applying sufficient pressure. Exemplary average injection rates may be in the range of 0.01 to 0.5 ml/sec, optionally about 0.05, about 0.075 or 0.1 ml/sec or lesser or intermediate or greater average flow rates. Optionally, the flow rate varies significantly during an injection period (e.g., pulse injections). Optionally, the flow rate is controlled manually or using electronic or mechanical circuitry. In an exemplary embodiment of the invention, medical personnel view the cement as it is being injected (e.g. via fluoroscopy) and adjust a flow rate and/or delivery volume based upon observed results. Optionally, the flow rate is adjusted and/or controlled to allow a medical practitioner to evaluate progress of the procedure based upon medical images (e.g. fluoroscopy) acquired during the procedure. In an exemplary embodiment of the invention, the cement is sufficiently viscous that advances into the body when pressure is applied above a threshold and ceases to advance when pressure is reduced below a threshold. Optionally, the threshold varies with one or more of cement viscosity, cannula diameter and cannula length.


Comparison of Exemplary Formulations According to Some Embodiments of the Invention to Previously Available Formulations


Although PMMA has been widely used in preparation of bone cement, previously available PMMA based cements were typically characterized by a persistent liquid state after mixing of components.


In sharp contrast, cements according to some exemplary embodiments of the invention are characterized by essentially no liquid state. Optionally, a direct transition from separate polymer and monomer components to a highly viscous state results from the presence of two or more sub-populations of polymer beads.


As a result of formulations based upon bead sub-populations, a viscosity profile of a cement according to an exemplary embodiment of the invention is significantly different from a viscosity profile of a previously available polymer based cement (e.g. PMMA) with a similar average molecular.


Because the viscosity profile of previously available PMMA cements is typically characterized by a rapid transition from high viscosity to fully hardened, these cements are typically injected into bone in a liquid phase so that they do not harden during injection.


In sharp contrast, exemplary cements according to the invention remain highly viscous during a long working window 114 before they harden. This long working window permits performance of a medical procedure of several minutes duration and imparts the advantages of the high viscosity material to the procedure.


It should be noted that while specific examples are described, it is often the case that the formulation will be varied to achieve particular desired mechanical properties. For example, different diagnoses may suggest different material viscosities which may, in turn lead to adjustment of one or more of MW (average and/or distribution), bead size and bead surface area.


In an exemplary embodiment of the invention, the cement is mixed 112 and reaches high viscosity outside the body. Optionally the materials are mixed under vacuum or ventilated. In this manner, some materials with potentially hazardous by-products can be safely mixed and then used in the body.


In an exemplary embodiment of the invention, the cement is formulated so that its mechanical properties match the bone in which it will be injected/implanted. In an exemplary embodiment of the invention, the cement is formulated to mechanically match healthy or osteoporotic trabecular (cancellous) bone. Optionally, the mechanical properties of the bone are measured during access, for example, based on a resistance to advance or using sensors provided through a cannula or by taking samples, or based on x-ray densitometry measurements. In an exemplary embodiment of the invention, strength of the cement varies as a function of one or more of a size of the high MW sub-population and/or a relationship between bead size and bead MW.


In general, PMMA is stronger and has a higher Young modulus than trabecular bone.


For example, healthy Trabecular bone can have a strength of between 1.5-8.0 mega Pascal and a Young modulus of 60-500 mega Pascal. Cortical bone, for example, has strength values of 65-160 mega Pascal and Young modulus of 12-40 giga Pascal. PMMA typically has values about half of Cortical bone (70-120 mega Pascal strength).



FIG. 2 is a plot of viscosity as a function of time for an exemplary bone cement according to the present invention. The figure is not drawn to scale and is provided to illustrate the principles of exemplary embodiments of the invention. The end of a mixing process is denoted as time 0. Mixing is deemed to end when 95-100% of acrylic polymer beads have been wetted with monomer. The graph illustrates an exemplary bone cement which enters a high viscosity plastic phase upon mixing so that it has substantially no liquid phase.



FIG. 2 illustrates that once a high viscosity is achieved, the viscosity remains relatively stable for 2, optionally 5, optionally 8 minutes or more. In an exemplary embodiment of the invention, this interval of stable viscosity provides a working window 114 (indicated here as Δt1) for performance of a medical procedure. In an exemplary embodiment of the invention, stable viscosity means that the viscosity of the cement changes by less than 200 Pascal-second during a window of at least 2 minutes optionally at least 4 minutes after mixing is complete. Optionally, the window begins 1, 2, 3, 4 or 5 minutes after mixing begins or lesser or intermediate times. In an exemplary embodiment of the invention, the viscosity of the cement remains below 1500, optionally 2000 Pascal-second for at least 4, optionally at least 6, optionally at least 8, optionally at least 10 minutes or intermediate or greater times from onset of mixing.


For purposes of comparison, the graph illustrates that an exemplary prior art cement reaches a viscosity comparable to that achieved by an exemplary cement according to the invention at time zero at a time of approximately 10.5 minutes post mixing and is completely set by about 15.5 minutes (Δt2).


A working window 114 during which viscosity is between 400 and 2000 Pascal-second for an exemplary cement according to some embodiments of the invention (Δt1) is both longer and earlier than a comparable window for an exemplary prior art cement (Δt2). Optionally, (Δt1) begins substantially as soon as mixing is complete.


Exemplary Cement Formulations


According to various exemplary embodiments of the invention, changes in the ratios between a powdered polymer component and a liquid monomer component can effect the duration of working window 114 and/or a viscosity of the cement during that window. Optionally, these ratios are adjusted to achieve desired results.


In an exemplary embodiment of the invention, the powdered polymer component contains PMMA (69.3% w/w); Barium sulfate (30.07% w/w) and Benzoyl peroxide (0.54% w/w).


In an exemplary embodiment of the invention, the liquid monomer component contains MMA (98.5% v/v); N, N-dimethyl-p-toluidine (DMPT) (1.5% v/v) and Hydroquinone (20 ppm).


In a first exemplary embodiment of the invention, 20±0.3 grams of polymer powder and 9±0.3 grams of liquid monomer are combined (weight ratio of ˜2.2:1).


In a second exemplary embodiment of the invention, 20±0.3 grams of polymer powder and 8±0.3 grams of liquid are combined (weight ratio of 2.5:1).


Under same weight ratio of second exemplary embodiment (2.5:1), a third exemplary embodiment may include a combination of 22.5±0.3 grams of polymer powder and 9±0.3 grams of liquid.


In general, increasing the weight ratio of polymer to monomer produces a cement which reaches a higher viscosity in less time. However, there is a limit beyond which there is not sufficient monomer to wet all of the polymer beads.


Optionally the powdered polymer component may vary in composition and contain PMMA (67-77%, optionally 67.5-71.5% w/w); Barium sulfate (25-35%; optionally 28-32% w/w) and Benzoyl peroxide (0.4-0.6% w/w) and still behave substantially as the powder component recipe set forth above.


Optionally the liquid monomer component may vary in composition and contain Hydroquinone (1-30 ppm; optionally 20-25 ppm) and still behave substantially as the liquid component recipe set forth above.


Viscosity Measurements Over Time for Exemplary Cements


In order to evaluate the viscosity profile of different exemplary batches of cement according to some embodiments of the invention, a bulk of pre-mixed bone cement is placed inside a Stainless Steel injector body. Krause et al. described a method for calculating viscosity in terms of applied force. (“The viscosity of acrylic bone cements”, Journal of Biomedical Materials Research, (1982): 16:219-243). This article is fully incorporated herein by reference.


In the experimental apparatus an inner diameter of the injector body is approximately 18 mm. A distal cylindrical outlet has an inner diameter of approximately 3 mm and a length of more than 4 mm. This configuration simulates a connection to standard bone cement delivery cannula/bone access needle. A piston applies force (F), thus causing the bone cement to flow through the outlet. The piston is set to move with constant velocity of approximately 3 mm/min. As a result, piston deflection is indicative of elapsed time.


The experimental procedure serves as a kind of capillary extrusion rheometer. The rheometer measures the pressure difference from an end to end of the capillary tube. The device is made of an 18 mm cylindrical reservoir and a piston. The distal end of the reservoir consist of 4 mm long 3 mm diameter hole. This procedure employs a small diameter needle and high pressure. Assuming steady flow, isothermal conditions and incompressibility of the tested material, the viscous force resisting the motion of the fluid in the capillary is equal to the applied force acting on the piston measured by a load cell and friction. Results are presented as force vs. displacement. As displacement rate was constant and set to 3 mm/min, the shear rate was constant as well. In order to measure the time elapses from test beginning, the displacement rate is divided by 3 (jog speed).



FIG. 3 indicates a viscosity profile of a first exemplary batch of cement according to the invention as force (Newtons) vs. displacement (mm). The cement used in this experiment included a liquid component and a powder component as described above in “Exemplary cement formulations”.


In this test (Average temperature: 22.3° C.; Relative Humidity: app. 48%) the cement was mixed for 30-60 seconds, then manipulated by hand and placed inside the injector. Force was applied via the piston approximately 150 seconds after end of mixing, and measurements of force and piston deflection were taken.


At a time of 2.5 minutes after mixing (0 mm deflection) the force applied was higher than 30 N.


At a time of 6.5 minutes after mixing (12 mm deflection) the force applied was about 150 N.


At a time of 7.5 minutes after mixing (15 mm deflection) the force applied was higher than 200 N.


At a time of 8.5 minutes after mixing (18 mm deflection) the force applied was higher than 500 N.


At a time of 9.17 minutes after mixing (20 mm deflection) the force applied was higher than 1300 N.



FIG. 4 indicates a viscosity profile of an additional exemplary batch of cement according to the invention as force (Newtons) vs. displacement (mm). The cement in this test was prepared according to the same formula described for the experiment of FIG. 3. In this test (Average 21.1° C.; Relative Humidity: app. 43%) the cement was mixed for approximately 45 seconds, then manipulated by hand and placed inside the injector. Force was applied via piston approximately 150 seconds after end of mixing, and measurements of force and piston deflection were taken.


At a time of 2.25 minutes after mixing (0 mm deflection) the force applied was higher than 30 N.


At a time of 8.25 minutes after mixing (18 mm deflection) the force applied was about 90 N.


At a time of 10.3 minutes after mixing (25 mm deflection) the force applied was higher than 150 N.


At a time of 11.4 minutes after mixing (28.5 mm deflection) the force applied was higher than 500 N.


At a time of 12.25 minutes after mixing (30 mm deflection) the force applied was higher than 800 N.


Results shown in FIGS. 3 and 4 and summarized hereinabove illustrate that exemplary bone cements according to some embodiments the invention achieve high viscosity in 2.25 minutes or less after mixing is completed. Alternatively or additionally, these cements are characterized by short mixing time (i.e. transition to highly viscous plastic phase in 30 to 60 seconds). The exemplary cements provide a “working window” for injection of 4.5 to 6.3 minutes, optionally longer if more pressure is applied and/or ambient temperatures are lower. These times correspond to delivery volumes of 14.9 and 20.8 ml respectively (vertebroplasty of a single vertebra typically requires about 5 ml of cement). These volumes are sufficient for most vertebral repair procedures. These results comply with the desired characteristics described in FIG. 2. Differences between the two experiments may reflect the influence of temperature and humidity on reaction kinetics.


Molecular Weight Distribution


In an exemplary embodiment of the invention, the average molecular weight (MW) is skewed by the presence of one or more small sub-population of beads with a molecular weight which is significantly different from a main sub-population of polymer beads. The one or more small sub-population of beads may have a MW which is significantly higher and/or significantly lower than the average MW.


In an exemplary embodiment of the invention, the presence of even a relatively small sub-population of polymer beads with a MW significantly above the average MW causes the cement to achieve a high viscosity in a short time after wetting of polymer beads with monomer solution. Optionally, increasing a size of the high MW sub-population increases the achieved viscosity. Alternatively or additionally, increasing an average MW of the high MW sub-population increases the achieved viscosity and/or decreases the time to reach high viscosity.


Optionally, the one or more small sub-population of beads are provided in a formulation in which, the average molecular weight of PMMA in all beads is 80,000, optionally 100,000, optionally 120,000, optionally 140,000, optionally 160,000, optionally 180,000, optionally, 250,000, optionally 325,000, optionally 375.000, optionally 400,000, optionally 500,000 Dalton or intermediate or lesser or greater values.


In another exemplary embodiment of the invention, the average molecular weight of the acrylic polymer in the beads is in the range of about 130,000 to 170,000, optionally about 160,000 Dalton.


In an exemplary embodiment of the invention, a main sub-population of PMMA beads has a MW of about 150,000 Dalton to about 500,000 Dalton, optionally about 250,000 Dalton to about 300,000 Dalton, optionally about 275,000 Dalton to about 280,000 Dalton. Optionally, about 90-98% [w/w], optionally about 93% to 98%, optionally about 95% to 97% of the beads belong to the main sub-population.


In an exemplary embodiment of the invention, a second high MW sub-population of PMMA beads has a MW of about 600,000 Dalton, to about 5,000,000 Dalton, optionally about 3,000,000 Dalton to about 4,000,000 Dalton, Optionally about 3,500,000 Dalton to about 3,900,000 Dalton. Optionally, approximately 0.25% to 5% [w/w], optionally about 1% to 4%, optionally about 2% to 3% of the beads belong to this high MW sub-population. Optionally, this high molecular weight sub-population comprises a styrene co-polymer. In an exemplary embodiment of the invention, a higher molecular weight in this sub-population of beads contributes to a high viscosity within 2, optionally within 1, optionally within 0.5 minutes or less of wetting of polymer beads with monomer solution.


In an exemplary embodiment of the invention, a third low MW sub-population of PMMA beads has a MW in the range of about 1,000 Dalton to about 75,000 Dalton, optionally about 10,000 Dalton to about 15,000 Dalton, optionally about 11,000 Dalton to about 13,000 Dalton. Optionally, approximately 0.5 to 2.0% [w/w], optionally about 1% of the beads belong to this sub-population.


Optionally the MW sub-populations are distinct from one another. This can cause gaps between sub-populations with respect to one or more parameters. In an exemplary embodiment of the invention, the sub-populations are represented as distinct peaks in a chromatographic separation process. Optionally, the peaks are separated by a return to baseline. Depending upon the sensitivity of detection, a background level of noise may be present. Optionally, gaps are measured relative to the noise level.


Optionally the sub-populations abut one another so that no gaps are apparent. In an exemplary embodiment of the invention, the sub-populations are represented as overlapping peaks in a chromatographic separation process. In this case, there is no return to baseline between the peaks.


Experimental Analysis of an Exemplary Batch of Cement


Sub-populations characterized by an average molecular weight were identified and quantitated using chromatographic techniques known in the art. Exemplary results described herein are based upon GPC analysis. Each peak in the GPC analysis is considered a sub-population. Similar analyses may be conducted using HPLC. Results are summarized in table 1.









TABLE I







MW distribution of polymer beads based upon GPC analysis of


a bone cement according to the powdered polymer component


described in “Exemplary cement formulations” hereinabove.











Fraction
% of total
PDI1
Mw2
Mn3














1
96.5
1.957
278,986
142,547


2
2.5
1.048
3,781,414
3,608,941


3
1.0
1.009
12,357
12,245



100.0
2.955
373,046
126,248






1polydispersity index (PDI), is a measure of the distribution of molecular weights in a given polymer sample and is equal to MW/Mn.




2MW is the weight average molecular weight in Daltons




3Mn is the number average molecular weight in Daltons







Table I illustrates an exemplary embodiment of the invention with three sub-populations of acrylic polymer beads.


The main sub-population (fraction 1) of PMMA beads has a molecular weight (MW) of 278,986 Dalton. About 96.5% of the beads belong to this sub-population.


A second sub-population (fraction 2) of PMMA beads has MW of 3,781,414 Dalton. Approximately 2.5% of the beads belong to this sub-population.


A third sub-population of PMMA beads (fraction 3) has an MW of 12,357 Dalton. Approximately 1% of the beads belong to this sub-population.


In an exemplary embodiment of the invention, cement comprising these three sub-populations is characterized by a short mixing time and/or achieves a viscosity of 500 to 900 Pascal-second in 0.5 to 3, optionally 0.5 to 1.5 minutes from the beginning of mixing and/or which remains below 2000 Pascal-second for at least 6 to 10 minutes after mixing. A short mixing time followed by a long working window is considered advantageous in orthopedic procedures where operating room availability and medical staff are at a premium.


Size Distribution


In an exemplary embodiment of the invention, the bone cement is characterized by beads with a size distribution including at least two sub-populations of polymer beads.


In an exemplary embodiment of the invention, polymer bead diameter is in the range of 10-250 microns, with a mean value of approximately 25, 30, 40, 50, 60 microns, or a lower or a higher or an intermediate diameter. In an exemplary embodiment of the invention, sub-populations of beads are defined by their size.


Optionally, a main sub-population of polymer (e.g. PMMA) beads is characterized by a diameter of about 20 to about 150, optionally about 25 to about 35, optionally an average of about 30 microns. Beads in this main sub-population are optionally far smaller than the smallest beads employed by Hernandez et al. (2005; as cited above). Presence of small beads can contribute to a rapid increase in viscosity after wetting with monomer.


Optionally a second sub-population of large polymer beads is characterized by a diameter of about 150 microns or more. Presence of large beads can slow down the polymerization reaction and prevent hardening, contributing to a long working window.


Optionally, the remaining beads are characterized by a very small average diameter, for example less than 20, optionally less than 15, optionally about 10 microns or less. Presence of very small beads can facilitate rapid wetting with monomer liquid during mixing and contribute to a fast transition to a viscous state with substantially no liquid phase.


Microscopic analysis indicates that the beads are typically spherical or spheroid.


Hernandez et al. (2005; as cited above) examined the possibility of adjusting the average polymer bead size by combining two types of beads with average sizes of 118.4μ (Colacry) and 69.7μ (Plexigum) together in different ratios. However, Hernandez's goal was a formulation which is “liquid enough to be injected”. All formulations described by Hernandez are characterized by an increase in viscosity from 500 Pascal-sec to 2000 Pascal-sec in about two minutes or less (corresponds to window 114). Hernandez does not hint or suggest that there is any necessity or advantage to increasing the size of this window.


Microscopic analysis also indicated that the barium sulfate particles are present as elongate amorphous masses with a length of approximately 1 micron. In some cases aggregates of up to 70 microns in size were observed. In some cases, barium sulfate particles and polymer beads aggregated together. Optionally, aggregates of Barium sulfate and polymer beads can delay wetting of polymer beads by monomer.


In an exemplary embodiment of the invention, MMA solvates and/or encapsulates the PMMA polymer beads and the viscosity of the initial mixture is high due to the solvation and/or friction between the beads. As the beads dissolve viscosity remains high due to polymerization which increases the average polymer MW.


The following table II shows an exemplary particle size distribution, for example, one suitable for the cement of Table I, based on an analysis of particles within the ranges of 0.375-2000 microns:









TABLE II







Particles size distribution of an exemplary powdered component














Vol. %
10
25
50
75
90







Max Beads
2.3
25.75
45.07
60.68
76.34



Diameter



[microns]











Experimental Analysis of a Second Exemplary Batch of Cement


Another example of a cement kit for mixture includes a liquid and a powder, which includes a mass of acrylic polymer beads. This cement kit is formulated as follows:


(a) liquid (9.2 gr)

    • (i) Methylmethacrylate (MMA) 98.5% (vol)
    • (ii) N,N-dimethyl-p-toluidine 1.5% (vol)
    • (iii) Hydroquinone 20 ppm (vol)


(b) powder (20 gr)

    • (i) Polymethylmethacrylate (PMMA) 69.39% (weight)
    • (ii) Barium Sulfate 30.07% (weight)
    • (iii) Benzoyl Peroxide 0.54% (weight)


As noted above, in other formulations the amounts may be varied, for example, to achieve specific mechanical (or other) properties, or they may be varied and achieve same mechanical properties. In another variation, medication may be added to the powder and/or liquid phases. Other liquid phases may be used as well, for example, as known in the art for PMMA-type cements. The ratios may be varied, for example, as described above.


Table III summarizes a molecular weight distribution of the acrylic bead component of this exemplary cement. It is hypothesized that providing a non-normal distribution of molecular weights with a heavier molecular weight component (e.g., by skewing the MW distribution by including relatively higher molecular weight beads) provides an increased immediate viscosity. In an exemplary embodiment of the invention, the higher MW beads are in a relatively small amount (for example, less than 20%, less than 10%, less than 5%) and have a MW of between 500,000 to 2,000,000 Dalton, optionally 600,000 to 1,200,000 Dalton (for example as shown in the table below).









TABLE III







MW distribution of polymer beads of a bone


cement of the second exemplary batch










Range of Molecular Weights [Dalton]
% of total















1,000,000-2,000,000
0.38%





500,000-1,000,000

3.6%



250,000-500,000
12.4%



100,000-250,000
36.4%



 50,000-100,000
26.6%



25,000-50,000
14.2%



10,000-25,000
5.3%



 8,000-10,000
0.5%



5,000-8,000
0.4%










In an exemplary embodiment of the invention, the bone cement is characterized by beads with a size distribution including at least two sub-populations of different materials. Optionally, at least two sub-populations include polymer (e.g. PMMA) beads and Barium Sulfate particles. Optionally, the range of particles diameter of the Barium Sulfate is 0.01-15 microns, optionally 0.3 to 3 microns, optionally with an average of about 0.5 microns or lesser or intermediate or greater sizes.


In an exemplary embodiment of the invention, polymer bead diameter is in the range of 10-250 microns, optionally. 15-150 microns, with a mean value of approximately 25, 30, 40, 50, 60 microns. Lower or a higher or intermediate diameters are possible as well, for example, based on the setting considerations described above. In some cases, large particle sizes, for example, particles having diameters exceeding 120 microns (e.g., when the average diameter is on the order of 60 microns) are the result of Barium sulfate primary particle aggregation on PMMA particle beads.


An exemplary distribution of bead sizes for the exemplary cement of table III, based on an analysis of particles within the range of 0.04-2000 microns, is described in Table IV:









TABLE IV







Particles size distribution of a second exemplary


powdered component of bone cement














Vol. %
10
25
50
75
90







Max Beads
2
9
46.5
70.7
90.5



Diameter



[microns]











FIG. 5 is a graph which visually shows the values of table IV


Size and MW are Independent Variables


In an exemplary embodiment of the invention, size based and MW based sub-populations are determined independently. For example, MW may be determined chromatographically and size may be determined by microscopic analysis. As a result, beads classed in a single size sub-population may be classed in two or more MW sub-populations and/or beads classed in a single MW sub-population may be classed in two or more size sub-populations.


Mechanical Viscosity Increasing Agents


In an exemplary embodiment of the invention, the cement includes particles characterized by a large surface which do not participate in the polymerization reaction. The large surface area particles can impart added viscosity to the cement mixture independent of polymerization. Optionally, the added viscosity comes from friction of particles against one another in the cement.


Examples of materials which do not participate in the polymerization reaction but increase viscosity include, but are not limited to Zirconium, hardened acrylic polymer, barium sulfate and bone.


Optionally, materials which do not participate in the polymerization reaction but increase viscosity can at least partially substitute for high MW polymers in influencing a viscosity profile.


Desired Polymerization Reaction Kinetics


In an exemplary embodiment of the invention, mixture of polymer and monomer produces a high viscosity mixture with substantially no intervening liquid phase within 180, optionally within 120, optionally within 100, optionally within 60, optionally within 30, optionally within 15 seconds or greater or intermediate times from onset of mixing.


In an exemplary embodiment of the invention, once a high viscosity is achieved, the viscosity remains stable for 5 minutes, optionally 8 minutes, optionally 10 minutes or lesser or intermediate or greater times. Optionally, stable viscosity indicates a change of 10% or less in two minutes and/or a change of 20% or less in 8 minutes. The time during which viscosity is stable provides a working window for performance of a medical procedure.


These desired reaction kinetics can be achieved by adjusting one or more of average polymer MW, polymer MW distribution, polymer to monomer ratio and polymer bead size and/or size distribution.


General Considerations


In an exemplary embodiment of the invention, a powdered polymer component and a liquid monomer component are provided as a kit. Optionally, the kit includes instructions for use. Optionally, the instructions for use specify different proportions of powder and liquid for different desired polymerization reaction kinetics.


In an exemplary embodiment of the invention, a bone cement kit including at least two, optionally three or more separately packaged sub-populations of beads and a monomer liquid is provided. Optionally, the kit includes a table which provides formulations based on combinations of different amounts of bead sub-populations and monomer to achieve desired properties.


It is common practice in formulation of acrylic polymer cements to include an initiator (e.g. benzoyl peroxide; BPO) in the powdered polymer component and/or a chemical activator (e.g. DMPT) into the liquid monomer component. These components can optionally be added to formulations according to exemplary embodiments of the invention without detracting from the desired properties of the cement.


Optionally, an easily oxidized molecule (e.g. hydroquinone) is added to the liquid component to prevent spontaneous polymerization during storage (stabilizer). The hydroquinone can be oxidized during storage.


Optionally, cement may be rendered radio-opaque, for example by adding a radio-opaque material such as barium sulfate and/or zirconium compounds and/or bone (e.g. chips or powder) to the powder and/or liquid component.


While the above description has focused on the spine, other tissue can be treated as well, for example, compacted tibia plate and other bones with compression fractures and for fixation of implants, for example, hip implants or other bone implants that loosened, or during implantation. Optionally, for tightening an existing implant, a small hole is drilled to a location where there is a void in the bone and material is extruded into the void.


It should be noted that while use of the disclosed material as bone cement is described, non-bone tissue may optionally be treated. For example, cartilage or soft tissue in need of tightening may be injected with a high viscosity polymeric mixture. Optionally, the delivered material includes an encapsulated pharmaceutical and is used as a matrix to slowly release the pharmaceutical over time. Optionally, this is used as a means to provide anti-arthritis drugs to a joint, by forming a void and implanting an eluting material near the joint.


It should be noted that while use of PMMA has been described, a wide variety of materials can be suitable for use in formulating cements with viscosity characteristics as described above. Optionally, other polymers could be employed by considering polymer molecular weight (average and/or distribution) and/or bead size as described above. Optionally, at least some of the beads include styrene. In an exemplary embodiment of the invention, styrene is added to MMA beads in a volumetric ratio of 5-25%. Optionally, addition of styrene increases creep resistance.


According to various embodiments of the invention, a bone cement according to the invention is injected into a bone void as a preventive therapy and/or as a treatment for a fracture, deformity, deficiency or other abnormality. Optionally, the bone is a vertebral body and/or a long bone. In an exemplary embodiment of the invention, the cement is inserted into the medullary canal of a long bone. Optionally, the cement is molded into a rod prior to or during placement into the bone. In an exemplary embodiment of the invention, the rod serves as an intra-medular nail.


Exemplary Characterization Tools


Molecular weight and polydispersity can be analyzed, for example by Gel permeation chromatography(GPC) system (e.g. Waters 1515 isocratic HPLC pump with a Waters 2410 refractive-index detector and a Rheodyne (Coatati, Calif.) injection valve with a 20-μL loop (Waters Mass.)). Elution of samples with CHCl3 through a linear Ultrastyragel column (Waters; 500-Å pore size) at a flow rate of 1 ml/min provides satisfactory results.


It will be appreciated that various tradeoffs may be desirable, for example, between available injection force, viscosity, degree of resistance and forces that can be withstood (e.g. by bone or injection tools). In addition, a multiplicity of various features, both of method and of cement formulation have been described. It should be appreciated that different features may be combined in different ways. In particular, not all the features shown above in a particular embodiment are necessary in every similar exemplary embodiment of the invention. Further, combinations of the above features are also considered to be within the scope of some exemplary embodiments of the invention. In addition, some of the features of the invention described herein may be adapted for use with prior art devices, in accordance with other exemplary embodiments of the invention.


Section headers are provided only to assist in navigating the application and should not be construed as necessarily limiting the contents described in a certain section, to that section. Measurements are provided to serve only as exemplary measurements for particular cases, the exact measurements applied will vary depending on the application. When used in the following claims, the terms “comprises”, “comprising”, “includes”, “including” or the like means “including but not limited to”.


It will be appreciated by a person skilled in the art that the present invention is not limited by what has thus far been described. Rather, the scope of the present invention is limited only by the following claims.

Claims
  • 1. A cement kit, comprising: (a) a liquid component including a monomer; and(b) a powder component including polymeric beads,in which the distribution of the molecular weight of the powder component is non-normal so that it is skewed to a higher molecular weight by introduction of higher molecular weight beads, the non-normal distribution of the molecular weight of the powder component causing (a) an increase in the immediate viscosity of a mixture of the liquid and powder components and compared with a cement having a substantially normal distribution, and (b) an increase in the length of the working window period in which the viscosity of the cement does not exceed 500 Pa.s compared with a cement having a substantially normal distribution.
  • 2. A cement kit according to claim 1, in which the higher molecular weight beads have an average molecular weight of at least a factor of 2 of an average molecular weight of the polymeric beads.
  • 3. A cement kit according to claim 2, in which the factor is at least 3.
  • 4. A cement kit according to claim 3, in which the factor is at least 5.
  • 5. A cement kit according to claim 1, further comprising a relatively small component including smaller sized beads.
  • 6. A cement kit according to claim 1, wherein the polymeric beads comprise PMMA.
  • 7. A cement kit according to claim 1, wherein the higher molecular weight beads have a molecular weight of about 600,000 Dalton to about 5,000,000 Dalton.
  • 8. A cement kit according to claim 1, wherein the higher molecular weight beads have a molecular weight of about 3,000,000 to 4,000,000 Dalton.
  • 9. A cement kit according to claim 1, wherein the higher molecular weight beads have a molecular weight of about 3,500,000 to 3,900,000 Dalton.
  • 10. A cement kit according to claim 1, wherein an average molecular weight of the polymeric beads is about 130,000 to 170,000 Dalton.
  • 11. A cement kit according to claim 1, wherein an average molecular weight of the polymeric beads is about 375,000 Dalton.
RELATED APPLICATIONS

The present application claims the benefit under 119(e) of Ser. No. 60/825,609 filed Sep. 14, 2006, the disclosure of which is incorporated herein by reference. The present application is related to U.S. patent application Ser. No. 11/461,072 filed on Jul. 31, 2006 and entitled “Bone Cement and Methods of Use Thereof”, which is a Continuation-in-Part of U.S. application Ser. No. 11/360,251 filed on Feb. 22, 2006, entitled “Methods, Materials and Apparatus for Treating Bone and Other Tissue” and is also a Continuation-in Part of PCT/IL2005/000812 filed on Jul. 31, 2005. The disclosures of these applications are incorporated herein by reference. The present application is related to PCT application PCT/IL2006/052612 filed on Jul. 31, 2006 and entitled “Bone Cement and Methods of Use thereof” the disclosure of which is incorporated herein by reference. The present application is also related to a series of U.S. provisional applications entitled “Methods, Materials and Apparatus for Treating Bone and Other Tissue”: Ser. No. 60/765,484 filed on Feb. 2, 2006; Ser. No. 60/762,789 filed on Jan. 26, 2006; Ser. No. 60/738,556 filed Nov. 22, 2005; Ser. No. 60/729,505 filed Oct. 25, 2005; Ser. No. 60/720,725 filed on Sep. 28, 2005 and Ser. No. 60/721,094 filed on Sep. 28, 2005. The disclosures of these applications are incorporated herein by reference. The present application is related to PCT application PCT/IL2006/000239 filed on Feb. 22, 2006; U.S. provisional application Ser. No. 60/763,003, entitled “Cannula” filed on Jan. 26, 2006; U.S. provisional application Ser. No. 60/654,495 entitled “Materials, devices and methods for treating bones”. filed Feb. 22, 2005; U.S. Ser. No. 11/194,411 filed Aug. 1, 2005; IL 166017 filed Dec. 28, 2004; IL 160987 filed Mar. 21, 2004; U.S. Provisional Application No. 60/654,784 filed on Jan. 31, 2005; U.S. Provisional Application No. 60/592,149 filed on Jul. 30, 2004; PCT Application No. PCT/IL2004/000527 filed on Jun. 17, 2004, Israel Application No. 160987 filed on Mar. 21, 2004, U.S. Provisional Applications Ser. No.: 60/478,841 filed on Jun. 17, 2003; Ser. No. 60/529,612 filed on Dec. 16, 2003; Ser. No. 60/534,377 filed on Jan. 6, 2004 and Ser. No. 60/554,558 filed on Mar. 18, 2004; U.S. application Ser. No. 09/890,172 filed on Jul. 25, 2001; U.S. application Ser. No. 09/890,318 filed on Jul. 25, 2001 and U.S. application Ser. No. 10/549,409 entitled “Hydraulic Device for the injection of Bone Cement in Percutaneous Vertebroplasty filed on Sep. 14, 2005. The disclosures of all of these applications are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IL2007/001130 9/11/2007 WO 00 8/3/2009
Publishing Document Publishing Date Country Kind
WO2008/032322 3/20/2008 WO A
US Referenced Citations (790)
Number Name Date Kind
229932 Witsil Jul 1880 A
370335 Hunter Sep 1887 A
817973 Hausman Apr 1906 A
833044 Goodhugh Oct 1906 A
843587 DePew Feb 1907 A
1175530 Kirchoff Mar 1916 A
1612281 Goetz Dec 1926 A
1612996 Waagbo Jan 1927 A
1733516 Jamison Oct 1929 A
1894274 Jacques Jan 1933 A
1929247 Hein Oct 1933 A
408668 Norman et al. Apr 1934 A
2123712 Clark Jul 1938 A
2283915 Cole May 1942 A
2394488 Rotter et al. Feb 1946 A
2425867 Davis Aug 1947 A
2435647 Engseth Feb 1948 A
2497762 Davis Feb 1950 A
2521569 Davis Sep 1950 A
2567960 Meyers et al. Sep 1951 A
2745575 Spencer May 1956 A
2773500 Young Dec 1956 A
2808239 Alfred Oct 1957 A
2874877 Spencer Feb 1959 A
2918841 Poupitch Dec 1959 A
2928574 Wagner Mar 1960 A
2970773 Horace et al. Feb 1961 A
3058413 Cavalieri Nov 1962 A
3063449 Schultz Nov 1962 A
3075746 Yablonski et al. Jan 1963 A
3108593 Glassman Oct 1963 A
3151847 Broomall Oct 1964 A
3198194 Wilburn Aug 1965 A
3216616 Blankenship, Jr. Nov 1965 A
3224744 Broomall Dec 1965 A
3225760 Di Cosola Dec 1965 A
3254494 Chartouni Jun 1966 A
3362793 Massoubre Jan 1968 A
3381566 Passer May 1968 A
3426364 Lumb Feb 1969 A
3515873 Higgins Jun 1970 A
3559956 Gray Feb 1971 A
3568885 Spencer Mar 1971 A
3572556 Pogacar Mar 1971 A
3605745 Hodosh Sep 1971 A
3615240 Sanz Oct 1971 A
3674011 Michel et al. Jul 1972 A
3701350 Guenther Oct 1972 A
3750667 Pshenichny et al. Aug 1973 A
3789727 Moran Feb 1974 A
3796303 Allet-Coche Mar 1974 A
3798982 Lundquist Mar 1974 A
3846846 Fischer Nov 1974 A
3850158 Elias et al. Nov 1974 A
3867728 Stubsted et al. Feb 1975 A
3873008 Jahn Mar 1975 A
3875595 Froning Apr 1975 A
3896504 Fischer Jul 1975 A
3901408 Boden et al. Aug 1975 A
3921858 Bemm Nov 1975 A
3931914 Hosaka et al. Jan 1976 A
3942407 Mortensen Mar 1976 A
3976060 Hildenbrandt et al. Aug 1976 A
3993250 Shure Nov 1976 A
4011602 Rybicki et al. Mar 1977 A
4062274 Knab Dec 1977 A
4077494 Spaude et al. Mar 1978 A
4079917 Popeil Mar 1978 A
4090640 Smith et al. May 1978 A
4093576 Dewijn Jun 1978 A
4105145 Capra Aug 1978 A
4115346 Gross et al. Sep 1978 A
4146334 Farrell Mar 1979 A
4168787 Stamper Sep 1979 A
4170990 Baumgart et al. Oct 1979 A
4180070 Genese Dec 1979 A
4185072 Puderbaugh et al. Jan 1980 A
4189065 Herold Feb 1980 A
4198383 Konsetov et al. Apr 1980 A
4198975 Haller Apr 1980 A
4204531 Aginsky May 1980 A
4239113 Gross et al. Dec 1980 A
4250887 Dardik et al. Feb 1981 A
4257540 Wegmann et al. Mar 1981 A
4268639 Seibel et al. May 1981 A
4274163 Malcolm et al. Jun 1981 A
4276878 Storz Jul 1981 A
4277184 Solomon Jul 1981 A
4298144 Pressi Nov 1981 A
4309777 Patil Jan 1982 A
4312343 LaVeen et al. Jan 1982 A
4313434 Segal Feb 1982 A
4326567 Mistarz Apr 1982 A
4338925 Miller Jul 1982 A
4341691 Anuta Jul 1982 A
4346708 LeVeen et al. Aug 1982 A
4349921 Kuntz Sep 1982 A
4359049 Redl et al. Nov 1982 A
4373217 Draenert Feb 1983 A
4380398 Burgess Apr 1983 A
4400170 McNaughton et al. Aug 1983 A
4403989 Christensen et al. Sep 1983 A
4404327 Crugnola et al. Sep 1983 A
4405249 Scales Sep 1983 A
4409966 Lambrecht et al. Oct 1983 A
4453539 Raftopoulos et al. Jun 1984 A
4474572 McNaughton et al. Oct 1984 A
4475856 Toomingas Oct 1984 A
4476866 Chin Oct 1984 A
4487602 Christensen et al. Dec 1984 A
4494535 Haig Jan 1985 A
4500658 Fox Feb 1985 A
4503169 Randklev Mar 1985 A
4522200 Stednitz Jun 1985 A
D279499 Case Jul 1985 S
4543966 Islam et al. Oct 1985 A
4546767 Smith Oct 1985 A
4554914 Kapp et al. Nov 1985 A
4558693 Lash et al. Dec 1985 A
4562598 Kranz Jan 1986 A
4576152 Muller et al. Mar 1986 A
4588583 Pietsch et al. May 1986 A
4593685 McKay et al. Jun 1986 A
4595006 Burke et al. Jun 1986 A
4600118 Martin Jul 1986 A
4605011 Naslund Aug 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4642099 Phillips et al. Feb 1987 A
4650469 Berg et al. Mar 1987 A
4651904 Schuckman Mar 1987 A
4653487 Maale Mar 1987 A
4653489 Tronzo et al. Mar 1987 A
4664298 Shew May 1987 A
4664655 Orentreich et al. May 1987 A
4668220 Hawrylenko May 1987 A
4668295 Abipai May 1987 A
4670008 Von Albertini Jun 1987 A
4671263 Draenert Jun 1987 A
4676655 Handler Jun 1987 A
4676781 Phillips et al. Jun 1987 A
4686973 Frisch Aug 1987 A
4697584 Haynes Oct 1987 A
4697929 Muller Oct 1987 A
4704035 Kowalczyk Nov 1987 A
4710179 Haber et al. Dec 1987 A
4714721 Franek et al. Dec 1987 A
4717383 Phillips et al. Jan 1988 A
4718910 Draenert Jan 1988 A
4722948 Sanderson Feb 1988 A
4735616 Eibl et al. Apr 1988 A
4737151 Clement et al. Apr 1988 A
4747832 Buffet May 1988 A
4758096 Gunnarsson Jul 1988 A
4758234 Orentreich et al. Jul 1988 A
4759769 Hedman et al. Jul 1988 A
4762515 Grimm Aug 1988 A
4767033 Gemperle Aug 1988 A
4772287 Ray et al. Sep 1988 A
4782118 Fontanille et al. Nov 1988 A
4786184 Berezkina et al. Nov 1988 A
4791150 Braden et al. Dec 1988 A
4792577 Chen et al. Dec 1988 A
2067458 Nichols Feb 1989 A
4804023 Frearson Feb 1989 A
4813870 Pitzen Mar 1989 A
4815454 Dozier Mar 1989 A
4815632 Ball et al. Mar 1989 A
4826053 Keller May 1989 A
4830227 Ball et al. May 1989 A
4837279 Arroyo Jun 1989 A
4854312 Raftopoulos et al. Aug 1989 A
4854482 Bergner Aug 1989 A
4854716 Ziemann et al. Aug 1989 A
4863072 Perler Sep 1989 A
4869906 Dingeldein et al. Sep 1989 A
4872936 Engelbrecht Oct 1989 A
4892231 Ball Jan 1990 A
4892550 Huebsch Jan 1990 A
4902649 Kimura et al. Feb 1990 A
4904260 Ray et al. Feb 1990 A
4908017 Howson et al. Mar 1990 A
4910259 Kindt-Larsen et al. Mar 1990 A
4927866 Purrmann et al. May 1990 A
4932969 Frey et al. Jun 1990 A
4935029 Matsutani et al. Jun 1990 A
4944065 Svanberg et al. Jul 1990 A
4944726 Hilal et al. Jul 1990 A
4946077 Olsen Aug 1990 A
4946285 Vennemeyer Aug 1990 A
4946901 Lechner et al. Aug 1990 A
4961647 Coutts et al. Oct 1990 A
4966601 Draenet Oct 1990 A
4968303 Clarke et al. Nov 1990 A
4969888 Scholten et al. Nov 1990 A
4973168 Chan Nov 1990 A
4973301 Nissenkorn Nov 1990 A
4973334 Ziemann Nov 1990 A
4978336 Capozzi et al. Dec 1990 A
4983164 Hook et al. Jan 1991 A
4994065 Gibbs et al. Feb 1991 A
4995868 Brazier Feb 1991 A
5004501 Faccioli et al. Apr 1991 A
5006112 Metzner Apr 1991 A
5012066 Matsutani et al. Apr 1991 A
5015233 McGough et al. May 1991 A
5018919 Stephan May 1991 A
5022563 Marchito et al. Jun 1991 A
5024232 Smid et al. Jun 1991 A
5028141 Stiegelmann Jul 1991 A
5037473 Antonucci et al. Aug 1991 A
5049157 Mittelmeier et al. Sep 1991 A
5051482 Tepic Sep 1991 A
5059193 Kuslich Oct 1991 A
5059199 Okada et al. Oct 1991 A
5061128 Jahr et al. Oct 1991 A
5071040 Laptewicz, Jr. Dec 1991 A
5074871 Groshong Dec 1991 A
5078919 Ashley et al. Jan 1992 A
5092888 Iwamoto et al. Mar 1992 A
5102413 Poddar Apr 1992 A
5108403 Stern Apr 1992 A
5108404 Scholten et al. Apr 1992 A
5112333 Fixel May 1992 A
5114240 Kindt-Larsen et al. May 1992 A
5116335 Hannon May 1992 A
5122400 Stewart Jun 1992 A
5123926 Pisharodi Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5131382 Meyer Jul 1992 A
5141496 Dalto et al. Aug 1992 A
5145250 Planck et al. Sep 1992 A
5147903 Podszun et al. Sep 1992 A
5171248 Ellis Dec 1992 A
5171278 Pisharodi Dec 1992 A
5181918 Brandhorst et al. Jan 1993 A
5188259 Petit Feb 1993 A
5190191 Reyman Mar 1993 A
5192327 Brantigan Mar 1993 A
5193907 Faccioli Mar 1993 A
5209753 Biedermann et al. May 1993 A
5217147 Kaufman Jun 1993 A
5219897 Murray Jun 1993 A
5236445 Hayhurst et al. Aug 1993 A
5242983 Kennedy et al. Sep 1993 A
5252301 Nilson et al. Oct 1993 A
5254092 Polyak Oct 1993 A
5258420 Posey-Dowty et al. Nov 1993 A
5264215 Nakabayashi et al. Nov 1993 A
5268001 Nicholson et al. Dec 1993 A
5269762 Armbruster et al. Dec 1993 A
5275214 Rehberger Jan 1994 A
5276070 Arroyo Jan 1994 A
5277339 Shew et al. Jan 1994 A
5279555 Lifshey Jan 1994 A
5290260 Stines Mar 1994 A
5295980 Ersek Mar 1994 A
5302020 Kruse Apr 1994 A
5303718 Krajicek Apr 1994 A
5304147 Johnson et al. Apr 1994 A
5318532 Frassica Jun 1994 A
5328262 Lidgren et al. Jul 1994 A
5328362 Watson et al. Jul 1994 A
5331972 Wadhwani et al. Jul 1994 A
5333951 Wakoh Aug 1994 A
5334184 Bimman Aug 1994 A
5334626 Lin Aug 1994 A
5336699 Cooke et al. Aug 1994 A
5336700 Murray Aug 1994 A
5344232 Nelson et al. Sep 1994 A
5348391 Murray Sep 1994 A
5348548 Meyer et al. Sep 1994 A
5350372 Ikeda et al. Sep 1994 A
5354287 Wacks Oct 1994 A
5356382 Picha et al. Oct 1994 A
5368046 Scarfone et al. Nov 1994 A
5368386 Murray Nov 1994 A
5370221 Magnusson et al. Dec 1994 A
5372583 Roberts et al. Dec 1994 A
5374427 Stille et al. Dec 1994 A
5376123 Klaue et al. Dec 1994 A
5380772 Hasegawa et al. Jan 1995 A
5385081 Sneddon Jan 1995 A
5385566 Ullmaerk Jan 1995 A
5387191 Hemstreet et al. Feb 1995 A
5390683 Pisharodi Feb 1995 A
5395167 Murray Mar 1995 A
5395326 Haber et al. Mar 1995 A
5398483 Smith et al. Mar 1995 A
5401806 Braden et al. Mar 1995 A
5407266 Dotsch et al. Apr 1995 A
5411180 Dumelle May 1995 A
5415474 Nelson et al. May 1995 A
5423824 Akerfeldt et al. Jun 1995 A
5423850 Berger Jun 1995 A
5431654 Nic Jul 1995 A
5435645 Faccioli Jul 1995 A
5441502 Bartlett Aug 1995 A
5443182 Tanaka et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5450924 Tseng Sep 1995 A
5454365 Bonutti Oct 1995 A
5456267 Stark Oct 1995 A
5468245 Vargas, III Nov 1995 A
5480400 Berger Jan 1996 A
5480403 Lee Jan 1996 A
5482187 Poulsen et al. Jan 1996 A
5492247 Shu et al. Feb 1996 A
5494349 Seddon Feb 1996 A
5501374 Laufer et al. Mar 1996 A
5501520 Lidgren et al. Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5512610 Lin Apr 1996 A
5514135 Earle May 1996 A
5514137 Coutts May 1996 A
5518498 Lindenberg et al. May 1996 A
5520690 Errico et al. May 1996 A
5522816 Dinello et al. Jun 1996 A
5522899 Michelson Jun 1996 A
5526853 McPhee et al. Jun 1996 A
5531519 Earle Jul 1996 A
5531683 Kriesel et al. Jul 1996 A
5534028 Bao et al. Jul 1996 A
5536262 Velasquez Jul 1996 A
5545460 Tanaka et al. Aug 1996 A
5548001 Podszun et al. Aug 1996 A
5549380 Lidgren et al. Aug 1996 A
5549381 Hays et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5551778 Hauke et al. Sep 1996 A
5554101 Matula et al. Sep 1996 A
5556201 Veltrop et al. Sep 1996 A
5558136 Orrico Sep 1996 A
5558639 Gangemi et al. Sep 1996 A
5571189 Kuslich et al. Nov 1996 A
5573265 Pradel Nov 1996 A
5578035 Lin Nov 1996 A
5586821 Bonitati et al. Dec 1996 A
5588745 Tanaka et al. Dec 1996 A
5591197 Orth et al. Jan 1997 A
5601557 Hayhurst Feb 1997 A
5603701 Fisher Feb 1997 A
5609637 Biedermann et al. Mar 1997 A
5624184 Chan Apr 1997 A
5630806 Inagaki et al. May 1997 A
5634880 Feldman et al. Jun 1997 A
5637097 Yoon Jun 1997 A
5638997 Hawkins et al. Jun 1997 A
5641010 Maier Jun 1997 A
5645598 Brosnahan, III Jul 1997 A
5647856 Eykmann Jul 1997 A
5653686 Coulter et al. Aug 1997 A
5658310 Berger Aug 1997 A
5660186 Bachir Aug 1997 A
5665067 Linder et al. Sep 1997 A
5681317 Caldarise Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5685826 Bonutti Nov 1997 A
5690606 Slotman Nov 1997 A
5693100 Pisharodi Dec 1997 A
5697977 Pisharodi Dec 1997 A
5698611 Okada et al. Dec 1997 A
5702448 Buechel et al. Dec 1997 A
5704895 Scott et al. Jan 1998 A
5707390 Bonutti Jan 1998 A
5718707 Mikhail Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725341 Hofmeister Mar 1998 A
5725529 Nicholson et al. Mar 1998 A
5747553 Guzauskas May 1998 A
5752935 Robinson et al. May 1998 A
5752969 Cunci et al. May 1998 A
5752974 Rhee May 1998 A
5755732 Green et al. May 1998 A
5759186 Bachmann et al. Jun 1998 A
5763092 Lee et al. Jun 1998 A
5779356 Chan Jul 1998 A
5782713 Yang Jul 1998 A
5782747 Zimmon Jul 1998 A
5782830 Farris Jul 1998 A
5782838 Beyar et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5785682 Grabenkort Jul 1998 A
5792044 Foley Aug 1998 A
5795922 Demian et al. Aug 1998 A
5797678 Murray Aug 1998 A
5800169 Muhlbauer Sep 1998 A
5800409 Bruce Sep 1998 A
5800549 Bao et al. Sep 1998 A
5800550 Sertich Sep 1998 A
5820321 Gruber Oct 1998 A
5824087 Aspden et al. Oct 1998 A
5826713 Sunago et al. Oct 1998 A
5826753 Fehlig et al. Oct 1998 A
5827217 Silver et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5829875 Hagel et al. Nov 1998 A
5830194 Anwar et al. Nov 1998 A
5836306 Duane et al. Nov 1998 A
5839621 Tada Nov 1998 A
5842785 Brown et al. Dec 1998 A
5865802 Yoon et al. Feb 1999 A
5876116 Barker et al. Mar 1999 A
5876457 Picha et al. Mar 1999 A
5882340 Yoon Mar 1999 A
5884818 Campbell Mar 1999 A
5893488 Hoag et al. Apr 1999 A
5893850 Cachia Apr 1999 A
5902839 Lautenschlager et al. May 1999 A
5911721 Nicholson et al. Jun 1999 A
5918702 Cheng et al. Jul 1999 A
5918770 Camm et al. Jul 1999 A
5925051 Mikhail Jul 1999 A
5928239 Mirza Jul 1999 A
5931347 Haubrich Aug 1999 A
5941851 Coffey et al. Aug 1999 A
5954671 O'Neill Sep 1999 A
5954728 Heller et al. Sep 1999 A
5961211 Barker et al. Oct 1999 A
5968008 Grams Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5968999 Ramp et al. Oct 1999 A
5972015 Scribner et al. Oct 1999 A
5980527 Cohen et al. Nov 1999 A
5993535 Sawamura et al. Nov 1999 A
5997544 Nies et al. Dec 1999 A
6004325 Vargas, III Dec 1999 A
6007496 Brannon Dec 1999 A
6017349 Heller et al. Jan 2000 A
6019765 Thornhill et al. Feb 2000 A
6019776 Preissman et al. Feb 2000 A
6019789 Dinh et al. Feb 2000 A
6020396 Jacobs Feb 2000 A
6022339 Fowles et al. Feb 2000 A
6033105 Barker et al. Mar 2000 A
6033411 Preissman Mar 2000 A
6039761 Li et al. Mar 2000 A
6040408 Koole Mar 2000 A
6041977 Lisi Mar 2000 A
6042262 Hajianpour Mar 2000 A
6045555 Smith et al. Apr 2000 A
6048346 Reiley Apr 2000 A
6049026 Muschler Apr 2000 A
6075067 Lidgren Jun 2000 A
6080579 Hanley, Jr. Jun 2000 A
6080801 Draenert et al. Jun 2000 A
6080811 Schehlmann et al. Jun 2000 A
6083229 Constantz et al. Jul 2000 A
6086594 Brown Jul 2000 A
6103779 Guzauskas Aug 2000 A
6116773 Murray Sep 2000 A
6120174 Hoag et al. Sep 2000 A
6124373 Peter et al. Sep 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132396 Antanavich et al. Oct 2000 A
6136038 Raab Oct 2000 A
6139509 Yuan et al. Oct 2000 A
6142998 Smith et al. Nov 2000 A
6146401 Yoon et al. Nov 2000 A
6149651 Drewry et al. Nov 2000 A
6149655 Constantz et al. Nov 2000 A
6149664 Kurz Nov 2000 A
6160033 Nies Dec 2000 A
6161955 Rademaker Dec 2000 A
6168597 Biedermann et al. Jan 2001 B1
6174935 Matsunae et al. Jan 2001 B1
6176607 Hajianpour Jan 2001 B1
6183441 Kriesel et al. Feb 2001 B1
6183516 Burkinshaw et al. Feb 2001 B1
6187015 Brenneman Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6206058 Nagel et al. Mar 2001 B1
6210031 Murray Apr 2001 B1
6214012 Karpman et al. Apr 2001 B1
6214016 Williams et al. Apr 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6217566 Ju et al. Apr 2001 B1
6217581 Tolson Apr 2001 B1
6217608 Penn et al. Apr 2001 B1
6221029 Mathis et al. Apr 2001 B1
6224604 Suddaby May 2001 B1
6228049 Schroeder et al. May 2001 B1
6228068 Yoon May 2001 B1
6228082 Baker et al. May 2001 B1
6231615 Preissman May 2001 B1
6235043 Reiley et al. May 2001 B1
6238399 Heller et al. May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6245101 Drasler et al. Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6254268 Long Jul 2001 B1
6261289 Levy Jul 2001 B1
6264618 Landi et al. Jul 2001 B1
6264659 Ross et al. Jul 2001 B1
6264660 Schmidt et al. Jul 2001 B1
6273916 Murphy Aug 2001 B1
6281271 Rumphorst et al. Aug 2001 B1
6309395 Smith et al. Oct 2001 B1
6309420 Preissman Oct 2001 B1
6312149 Sjovall et al. Nov 2001 B1
6325812 Dubrul et al. Dec 2001 B1
6348055 Preissman Feb 2002 B1
6348518 Montgomery Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361539 Heller et al. Mar 2002 B1
6364865 Lavi et al. Apr 2002 B1
6367962 Mizutani et al. Apr 2002 B1
6375659 Erbe et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6383188 Kuslich et al. May 2002 B2
6383190 Preissman May 2002 B1
6395007 Bhatnagar May 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6402758 Tolson Jun 2002 B1
6406175 Marino Jun 2002 B1
6409972 Chan Jun 2002 B1
6410612 Hatanaka Jun 2002 B1
6425887 McGuckin et al. Jul 2002 B1
6431743 Mizutani et al. Aug 2002 B1
6433037 Guzauskas Aug 2002 B1
6436143 Ross et al. Aug 2002 B1
6439439 Rickard Aug 2002 B1
6443334 John et al. Sep 2002 B1
6447478 Maynards Sep 2002 B1
6450973 Murphy Sep 2002 B1
6458117 Pollins, Sr. Oct 2002 B1
6479565 Stanley Nov 2002 B1
6488667 Murphy Dec 2002 B1
6494868 Amar Dec 2002 B2
6500182 Foster Dec 2002 B2
6502608 Burchett et al. Jan 2003 B1
6527144 Ritsche et al. Mar 2003 B2
6550957 Mizutani et al. Apr 2003 B2
6554833 Levy et al. Apr 2003 B2
6568439 Se et al. May 2003 B1
6572256 Seaton et al. Jun 2003 B2
6575331 Peeler et al. Jun 2003 B1
6575919 Reilley et al. Jun 2003 B1
6582439 Sproul Jun 2003 B1
6592559 Pakter et al. Jul 2003 B1
6595967 Kramer Jul 2003 B2
6599293 Tague et al. Jul 2003 B2
6599520 Scarborough et al. Jul 2003 B2
6613018 Bagga Sep 2003 B2
6613054 Scribner et al. Sep 2003 B2
6626912 Speitling Sep 2003 B2
6641587 Scribner et al. Nov 2003 B2
6645213 Sand et al. Nov 2003 B2
6662969 Peeler et al. Dec 2003 B2
6676664 Al-Assir Jan 2004 B1
6689823 Bellare et al. Feb 2004 B1
6702455 Vendrely et al. Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6719761 Reiley et al. Apr 2004 B1
6720417 Walter Apr 2004 B1
6730095 Olson, Jr. et al. May 2004 B2
6752180 Delay Jun 2004 B2
6758837 Peciat et al. Jul 2004 B2
6759449 Kimura et al. Jul 2004 B2
6767973 Suau et al. Jul 2004 B2
6770079 Bhatnagar Aug 2004 B2
6779566 Engel Aug 2004 B2
6780175 Sachdeva et al. Aug 2004 B1
6783515 Miller et al. Aug 2004 B1
6787584 Jia et al. Sep 2004 B2
6796987 Tague et al. Sep 2004 B2
6852439 Frank Feb 2005 B2
6874927 Foster Apr 2005 B2
6875219 Arramon et al. Apr 2005 B2
6887246 Bhatnagar May 2005 B2
6916308 Dixon et al. Jul 2005 B2
6957747 Peeler et al. Oct 2005 B2
6974247 Frei et al. Dec 2005 B2
6974416 Booker et al. Dec 2005 B2
6979341 Scribner et al. Dec 2005 B2
6979352 Reynolds Dec 2005 B2
6994465 Tague et al. Feb 2006 B2
6997930 Jäggi et al. Feb 2006 B1
7008433 Voellmicke et al. Mar 2006 B2
7025771 Kuslich et al. Apr 2006 B2
7029163 Barker et al. Apr 2006 B2
7044954 Reiley May 2006 B2
7048743 Miller May 2006 B2
7066942 Treace Jun 2006 B2
7087040 McGuckin Aug 2006 B2
7091258 Neubert et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7112205 Carrison Sep 2006 B2
7116121 Holcombe et al. Oct 2006 B1
7252671 Scribner Aug 2007 B2
7264622 Michelson Sep 2007 B2
7270667 Faccioli Sep 2007 B2
7278778 Sand Oct 2007 B2
7320540 Coffeen Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7456024 Dahm et al. Nov 2008 B2
7470258 Barker et al. Dec 2008 B2
7559932 Truckai et al. Jul 2009 B2
7572263 Preismann Aug 2009 B2
7604618 Dixon et al. Oct 2009 B2
7666205 Weikel et al. Feb 2010 B2
7678116 Truckai et al. Mar 2010 B2
7717918 Truckai et al. May 2010 B2
7722620 Truckai et al. May 2010 B2
8038682 McGill et al. Oct 2011 B2
8066713 DiMauro et al. Nov 2011 B2
8070753 Truckai et al. Dec 2011 B2
8333773 DiMauro et al. Dec 2012 B2
8360629 Globerman et al. Jan 2013 B2
8361078 Beyar et al. Jan 2013 B2
8415407 Beyar et al. Apr 2013 B2
8540722 Beyar et al. Sep 2013 B2
8809418 Beyar et al. Aug 2014 B2
8950929 Globerman et al. Feb 2015 B2
8956368 Beyar et al. Feb 2015 B2
9186194 Ferreyro et al. Nov 2015 B2
9259696 Globerman et al. Feb 2016 B2
9381024 Globerman et al. Jul 2016 B2
9504508 Beyar et al. Nov 2016 B2
20010012968 Preissman Aug 2001 A1
20010024400 Van Der Wel Sep 2001 A1
20010034527 Scribner et al. Oct 2001 A1
20020008122 Ritsche et al. Jan 2002 A1
20020010471 Wironen Jan 2002 A1
20020010472 Kuslich et al. Jan 2002 A1
20020013553 Pajunk Jan 2002 A1
20020049448 Sand et al. Apr 2002 A1
20020049449 Bhatnagar et al. Apr 2002 A1
20020058947 Hochschuler et al. May 2002 A1
20020067658 Vendrely et al. Jun 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020068974 Kuslich et al. Jun 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020072768 Ginn Jun 2002 A1
20020082605 Reiley et al. Jun 2002 A1
20020099384 Scribner et al. Jul 2002 A1
20020099385 Ralph et al. Jul 2002 A1
20020118595 Miller Aug 2002 A1
20020123716 VanDiver et al. Sep 2002 A1
20020156483 Voellicke et al. Oct 2002 A1
20020161373 Osorio et al. Oct 2002 A1
20020177866 Weikel et al. Nov 2002 A1
20020183851 Spiegelberg et al. Dec 2002 A1
20020188300 Arramon Dec 2002 A1
20020191487 Sand Dec 2002 A1
20030009177 Middleman et al. Jan 2003 A1
20030018339 Higueras et al. Jan 2003 A1
20030031698 Roeder et al. Feb 2003 A1
20030032929 McGuckin Feb 2003 A1
20030036763 Bhatnagar et al. Feb 2003 A1
20030040718 Keahey et al. Feb 2003 A1
20030050644 Boucher et al. Mar 2003 A1
20030050702 Berger Mar 2003 A1
20030078589 Preissman Apr 2003 A1
20030109883 Matsuzaki et al. Jun 2003 A1
20030109884 Tague et al. Jun 2003 A1
20030144742 King et al. Jul 2003 A1
20030162864 Pearson et al. Aug 2003 A1
20030174576 Tague et al. Sep 2003 A1
20030181963 Pellegrino et al. Sep 2003 A1
20030185093 Vendrely et al. Oct 2003 A1
20030220414 Axen et al. Nov 2003 A1
20030225364 Kraft et al. Dec 2003 A1
20030227816 Okamoto et al. Dec 2003 A1
20030231545 Seaton Dec 2003 A1
20040010263 Boucher et al. Jan 2004 A1
20040029996 Kuhn Feb 2004 A1
20040054377 Foster et al. Mar 2004 A1
20040059283 Kirwan et al. Mar 2004 A1
20040066706 Barker et al. Apr 2004 A1
20040068264 Treace Apr 2004 A1
20040073139 Hirsch et al. Apr 2004 A1
20040092946 Bagga et al. May 2004 A1
20040098015 Weikel et al. May 2004 A1
20040106913 Eidenschink et al. Jun 2004 A1
20040122438 Abrams Jun 2004 A1
20040132859 Puckett, Jr et al. Jul 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040133211 Raskin et al. Jul 2004 A1
20040138759 Muller et al. Jul 2004 A1
20040157952 Soffiati et al. Aug 2004 A1
20040157954 Imai et al. Aug 2004 A1
20040162559 Arramon et al. Aug 2004 A1
20040167532 Olson et al. Aug 2004 A1
20040167562 Osorio et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040193171 DiMauro et al. Sep 2004 A1
20040215202 Preissman Oct 2004 A1
20040220672 Shadduck Nov 2004 A1
20040226479 Lyles et al. Nov 2004 A1
20040229972 Klee et al. Nov 2004 A1
20040230309 DiMauro et al. Nov 2004 A1
20040236313 Klein Nov 2004 A1
20040249015 Jia et al. Dec 2004 A1
20040249347 Miller et al. Dec 2004 A1
20040260303 Carrison Dec 2004 A1
20040260304 Faccioli et al. Dec 2004 A1
20040267154 Sutton et al. Dec 2004 A1
20050014273 Dahm Jan 2005 A1
20050015148 Jansen et al. Jan 2005 A1
20050025622 Djeridane et al. Feb 2005 A1
20050058717 Yetlinler et al. Mar 2005 A1
20050060023 Mitchell et al. Mar 2005 A1
20050070912 Voellmicke Mar 2005 A1
20050070914 Constantz et al. Mar 2005 A1
20050070915 Mazzuca Mar 2005 A1
20050083782 Gronau et al. Apr 2005 A1
20050113762 Kay et al. May 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050154081 Yin et al. Jul 2005 A1
20050180806 Green Aug 2005 A1
20050203206 Trieu Sep 2005 A1
20050209695 de Vries et al. Sep 2005 A1
20050216025 Chern Lin et al. Sep 2005 A1
20050256220 Lavergne et al. Nov 2005 A1
20050281132 Armstrong et al. Dec 2005 A1
20060035997 Orlowski et al. Feb 2006 A1
20060041033 Bisig et al. Feb 2006 A1
20060052794 McGill Mar 2006 A1
20060074433 McGill et al. Apr 2006 A1
20060079905 Beyar et al. Apr 2006 A1
20060116643 Dixon et al. Jun 2006 A1
20060116689 Albans et al. Jun 2006 A1
20060116690 Pagano Jun 2006 A1
20060122614 Truckai et al. Jun 2006 A1
20060148923 Ashman et al. Jul 2006 A1
20060167148 Engquist et al. Jul 2006 A1
20060181959 Weiss et al. Aug 2006 A1
20060235338 Pacheco Oct 2006 A1
20060241644 Osorio et al. Oct 2006 A1
20060264695 Viole et al. Nov 2006 A1
20060264967 Ferreyro et al. Nov 2006 A1
20060266372 Miller et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060276819 Osorio et al. Dec 2006 A1
20070027230 Beyar et al. Feb 2007 A1
20070032567 Beyar et al. Feb 2007 A1
20070055266 Osorio et al. Mar 2007 A1
20070055267 Osorio et al. Mar 2007 A1
20070055278 Osorio et al. Mar 2007 A1
20070055280 Osorio et al. Mar 2007 A1
20070055284 Osorio et al. Mar 2007 A1
20070055285 Osorio Mar 2007 A1
20070055300 Osorio et al. Mar 2007 A1
20070060941 Reiley et al. Mar 2007 A1
20070118142 Krueger May 2007 A1
20070142842 Krueger Jun 2007 A1
20070197935 Reiley et al. Aug 2007 A1
20070198013 Foley et al. Aug 2007 A1
20070198023 Sand et al. Aug 2007 A1
20070198024 Plishka et al. Aug 2007 A1
20070255282 Simonton et al. Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080039856 DiMauro Feb 2008 A1
20080044374 Lavergne et al. Feb 2008 A1
20080058827 Osorio et al. Mar 2008 A1
20080065087 Osorio et al. Mar 2008 A1
20080065089 Osorio et al. Mar 2008 A1
20080065137 Boucher et al. Mar 2008 A1
20080065142 Reiley et al. Mar 2008 A1
20080065190 Osorio et al. Mar 2008 A1
20080071283 Osorio et al. Mar 2008 A1
20080086133 Kuslich et al. Apr 2008 A1
20080132935 Osorio et al. Jun 2008 A1
20080140079 Osorio et al. Jun 2008 A1
20080140084 Osorio et al. Jun 2008 A1
20080200915 Globerman et al. Aug 2008 A1
20080212405 Globerman et al. Sep 2008 A1
20080228192 Beyar et al. Sep 2008 A1
20090264892 Beyar et al. Oct 2009 A1
20090264942 Beyar et al. Oct 2009 A1
20090270872 DiMauro Oct 2009 A1
20100065154 Globerman Mar 2010 A1
20100069786 Globerman Mar 2010 A1
20100152855 Kuslich et al. Jun 2010 A1
20100168271 Beyar Jul 2010 A1
20100268231 Kuslich et al. Oct 2010 A1
20120307586 Globerman et al. Dec 2012 A1
20130123791 Beyar et al. May 2013 A1
20130261217 Beyar et al. Oct 2013 A1
20130345708 Beyar et al. Dec 2013 A1
20140088605 Ferreyro et al. Mar 2014 A1
20140148866 Globerman et al. May 2014 A1
20150122691 Globerman et al. May 2015 A1
20150127058 Beyar et al. May 2015 A1
20150148777 Ferreyro et al. May 2015 A1
20160051302 Ferreyro et al. Feb 2016 A1
Foreign Referenced Citations (172)
Number Date Country
724544 Nov 1996 AU
9865136 Sep 1998 AU
1138001 Dec 1996 CN
1310026 Aug 2001 CN
136018 Nov 1902 DE
226956 Mar 1909 DE
868497 Feb 1953 DE
1283448 Nov 1968 DE
1810799 Jun 1970 DE
2821785 Nov 1979 DE
3003947 Aug 1980 DE
2947875 Apr 1981 DE
3443167 Jun 1986 DE
8716073 Mar 1988 DE
3817101 Nov 1989 DE
3730298 Feb 1990 DE
4104092 Aug 1991 DE
293485 Sep 1991 DE
4016135 Mar 1992 DE
4315757 Nov 1994 DE
19612276 Oct 1997 DE
10258140 Jul 2004 DE
20207 Jun 1908 EP
486638 Jun 1938 EP
0044877 Feb 1982 EP
0190504 Mar 1986 EP
0177781 Apr 1986 EP
0 235 905 Sep 1987 EP
0235905 Sep 1987 EP
0301759 Jul 1988 EP
0242672 Sep 1989 EP
0425200 Oct 1990 EP
0423916 Apr 1991 EP
0475077 Mar 1992 EP
0511868 Apr 1992 EP
0493789 Jul 1992 EP
0581387 Feb 1994 EP
0614653 Sep 1994 EP
0669100 Aug 1995 EP
0748615 Dec 1996 EP
0763348 Mar 1997 EP
1 074 231 Feb 2001 EP
1074231 Feb 2001 EP
1095667 May 2001 EP
1103237 May 2001 EP
1104260 Jun 2001 EP
1 247 454 Oct 2002 EP
1464292 Oct 2004 EP
1 517 655 Mar 2005 EP
1148850 Apr 2005 EP
1552797 Jul 2005 EP
1570873 Sep 2005 EP
1 596 896 Nov 2005 EP
1598 015 Nov 2005 EP
1148851 May 2006 EP
1829518 Sep 2007 EP
1 886 648 Feb 2008 EP
1886647 Feb 2008 EP
1548575 Oct 1968 FR
2606282 May 1988 FR
2629337 Oct 1989 FR
2638972 May 1990 FR
2674119 Sep 1992 FR
2690332 Oct 1993 FR
2712486 May 1995 FR
2722679 Jan 1996 FR
8331 Jan 1904 GB
179502045 Jan 1795 GB
190720207 Jun 1908 GB
408668 Apr 1934 GB
486638 Jun 1938 GB
2114005 Aug 1983 GB
2156824 Oct 1985 GB
2197691 May 1988 GB
2268068 Jan 1994 GB
2276560 Oct 1994 GB
2411849 Sep 2005 GB
2413280 Oct 2005 GB
2469749 Oct 2010 GB
51-134465 Nov 1976 JP
54-009110 Jan 1979 JP
55-009242 Jan 1980 JP
55-109440 Aug 1980 JP
62-068893 Mar 1987 JP
63-194722 Aug 1988 JP
02-122017 May 1990 JP
02-166235 Jun 1990 JP
02-125730 Oct 1990 JP
4 329956 Nov 1992 JP
07-000410 Jan 1995 JP
8322848 Dec 1996 JP
10146559 Jun 1998 JP
10-511569 Oct 1998 JP
2001-514922 Sep 2001 JP
2004-16707 Jan 2004 JP
2005-500103 Jan 2005 JP
2008-55367 Mar 2008 JP
116784 Jun 2001 RO
1011119 Apr 1983 RU
1049050 Oct 1983 RU
662082 May 1979 SU
8810129 Dec 1988 WO
WO 9000037 Jan 1990 WO
WO 9214423 Sep 1992 WO
WO 9412112 Jun 1994 WO
WO 9513862 May 1995 WO
WO 9611643 Apr 1996 WO
WO 9619940 Jul 1996 WO
WO 9632899 Oct 1996 WO
WO 9637170 Nov 1996 WO
WO 9718769 May 1997 WO
WO 9728835 Aug 1997 WO
WO 9828035 Jul 1998 WO
WO 9838918 Sep 1998 WO
WO 9918866 Apr 1999 WO
WO 9918894 Apr 1999 WO
WO 9929253 Jun 1999 WO
WO 9937212 Jul 1999 WO
WO 9939661 Aug 1999 WO
WO 9949819 Oct 1999 WO
WO 9952446 Oct 1999 WO
WO 0006216 Feb 2000 WO
WO 0044319 Aug 2000 WO
WO 0044321 Aug 2000 WO
WO 0044946 Aug 2000 WO
WO 0054705 Sep 2000 WO
WO 0056254 Sep 2000 WO
WO 0108571 Feb 2001 WO
WO 0113822 Mar 2001 WO
WO 0154598 Aug 2001 WO
WO 0160270 Aug 2001 WO
WO 0176514 Oct 2001 WO
WO 0200143 Jan 2002 WO
WO 0202033 Jan 2002 WO
WO 0219933 Mar 2002 WO
02064195 Aug 2002 WO
WO 02064062 Aug 2002 WO
WO 02064194 Aug 2002 WO
WO 02072156 Sep 2002 WO
WO 02096474 Dec 2002 WO
WO 03007854 Jan 2003 WO
WO 03015845 Feb 2003 WO
WO 03022165 Mar 2003 WO
WO 03061495 Jul 2003 WO
WO 03078041 Sep 2003 WO
WO 03101596 Dec 2003 WO
WO 2004002375 Jan 2004 WO
WO 2004001980 Mar 2004 WO
WO 2004019810 Mar 2004 WO
WO 2004071543 Aug 2004 WO
2004080357 Sep 2004 WO
WO 2004075965 Sep 2004 WO
WO 2004080357 Sep 2004 WO
WO 2004110292 Dec 2004 WO
WO 2004110300 Dec 2004 WO
WO 2005000138 Jan 2005 WO
2005017000 Feb 2005 WO
WO 2005032326 Apr 2005 WO
WO 2005048867 Jun 2005 WO
WO 2005051212 Jun 2005 WO
WO 2005110259 Nov 2005 WO
WO 2006011152 Feb 2006 WO
WO 2006039159 Apr 2006 WO
2006062939 Jun 2006 WO
WO 2006090379 Aug 2006 WO
WO 2006090379 Aug 2006 WO
WO 2007015202 Feb 2007 WO
WO 2007036815 Apr 2007 WO
WO 2007148336 Dec 2007 WO
WO 2008004229 Jan 2008 WO
WO 2008032322 Mar 2008 WO
WO 2008047371 Apr 2008 WO
Non-Patent Literature Citations (152)
Entry
US Office Action, from U.S. Appl. No. 11/360,251, mailed Apr. 17, 2009.
International Search Report, for PCT/IL07/00808, issued Aug. 22, 2008.
Marks, Standard handbook for mechanical engineers, section 5 (Tenth ed. 1996).
Supp. EP Search Report, from EP 07766838.2, dated May 18, 2011.
Al-Assir et al., “Percutaneous Vertebroplasty: A Special Syringe for Cement Injection,” AJNR Am. J. Neuroradiol. 21:159-61 (2000).
Baroud et al., “Injection Biomechanics of Bone Cements Used in Vertebroplasty,” Biomed. Mat. & Eng. 00:1-18 (2004).
Cole et al., “AIM Titanium Humeral Nail System,” Surgical Technique. DePuy Orthopaedics 17P (2000).
Farrar, D.F. et al., “Rheological Properties of PMMA Bone Cements During Curing,” Biomaterials 22:3005-13 (2001).
Heini et al., “The Use of a Side-Opening Injection Cannula in Vertebroplasty,” Spine 27(1):105-09 (2002).
Hernandez et al., “Influence of Powder Particle Size Distribution on Complex Viscosity and Other Properties of Acrylic Bone Cement for Vertebroplasty and Kyphoplasty,” J. Biomed. Mat. Res. 77B:98-103 (2006).
International Search Report, for PCT/MX03/00027, filed Mar. 14, 2003.
Ishikawa et al., “Effects of Neutral Sodium Hydrogen Phosphate on Setting Reaction and Mechanical Strength of Hydroxyapatite Putty,” J. Biomed. Mat. Res. 44:322-29, (1999).
Ishikawa et al., “Non-Decay Type Fast-Setting Calcium Phosphate Cement: Hydroxyapatite Putty Containing an Increased Amount of Sodium Alginate,” J. Biomed. Mat. Res. 36:393-99 (1997).
Kallmes et al., “Radiation Dose to the Operator During Vertebroplasty: Prospective Comparison of the Use of 1-cc Syringes Versus an Injection Device,” AJNR Am. J. Neuroradiol. 24:1257-60 (2003).
Krause et al., “The Viscosity of Acrylic Bone Cements,” J. Biomed. Mat. Res. 16:219-43 (1982).
Lewis, “Properties of Ascrylic Bone Cement: State of the Art Review,” J. Biomed. Mat. Res. Appl. Biomaterials 38(2):155-82 (p. 158 s.Viscosity) (1997).
Lewis, “Toward Standardization of Methods of Determination of Fracture Properties of Acrylic Bone Cement and Statistical Analysis of Test Results,” J. Biomed. Research: Appl. Biomaterials 53(6):748-68 (2000).
Mousa, W.F. et al., “Biological and Mechanical Properties of PMMA-Based Bioactive Bone Cements,” Biomaterials 21:2137-46 (2000).
Nussbaum et al., “The Chemistry of Acrylic Bone Cements and Implications for Clinical Use in Image-Guided Therapy,” J. Vasc. Interv. Radiol. 15:121-26 (2004).
Serbetci, K. et al., “Thermal and Mechanical Properties of Hydroxyapatite Impregnated Acrylic Bone Cements,” Polymer Testing 23:145-55 (2004).
Steen, “Laser Surface Treatment,” Laser Mat. Processing, Springer 2d ed. ch. 6:218-71 (2003).
Supp EP Search Report, from EP Appl No. 05763930.4, dated Sep. 11, 2008.
Supp EP Search Report, from EP Appl No. 06711221.9, dated Sep. 15, 2008.
Varela et al., “Closed Intramedullary Pinning of Metacarpal and Phalanx Fractures,” Orthopaedics 13(2):213-15 (1990).
Weissman et al., “Trochanteric Fractures of the Femur Treatment with a Strong Nail and early Weight-Bearing,” Clin. Ortho. & Related Res. 67:143-50 (1969).
Bohner, M. et al., “Theoretical and Experimental Model to Describe the Injection of a Polymethacrylate Cement into a Porous Structure,” Biomaterials 24(16):2721-30 (2003).
Breusch, S. et al., “Knochenzemente auf Basis von Polymethylmethacrylat,” Orthopade 32:41-50 (2003).
Carrodegus et al., “Injectable Acrylic Bone Cements for Vertebroplasty with Improved Properties,” J. Biomed. Materials Res. 68(1):94-104 (Jan. 2004).
Gheduzzi, S. et al., “Mechanical Characterisation of Three Percutaneous Vertebroplasty Biomaterials,” J. Mater Sci Mater Med 17(5):421-26 (2006).
Giannitsios, D. et al., “High Cement Viscosity Reduces Leakage Risk in Vertebroplasty,” European Cells & Mat. 10 supp. 3:54 (2005).
Hasenwinkel, J. et al., “A Novel High-Viscosity, Two-Solution Acrylic Bone Cement: Effect of Chemical Composition on Properties,” J. Biomed. Materials Research 47(1):36-45 (1999).
Hasenwinkel, J. et al., “Effect of Initiation Chemistry on the Fracture Toughness, Fatigue Strength, and Residual Monomer Content of a Novel High-Viscosity, Two-Solution Acrylic Bone Cement,” J. Biomed. Materials Res. 59(3):411-21 (2001).
Lewis, G. et al., “Rheological Properties of Acrylic Bone Cement During Curing and the Role of the Size of the Powder Particles,” J. Biomed. Mat. Res. Appl. Biomat. 63(2):191-99 (2002).
Pascual, B. et al., “New Aspects of the Effect of Size and Size Distribution on the Setting Parameters and Mechanical Properties of Acrylic Bone Cements,” Biomaterials 17(5):509-16 (1996).
Robinson, R. et al., “Mechanical Properties of Poly(methyl methacrylate) Bone Cement,” J. Biomed. Materials Res. 15(2):203-08 (2004).
Saha, S. et a., “Mechanical Properties of Bone Cement: A Review,” J. Biomed. Materilas Res. 18(4):435-62 (1984).
Andersen, M. et al., “Vertebroplastik, ny behandling af osteoporotiske columnafrakturer?”, Ugeskr Laefer 166/6:463-66 (Feb. 2, 2004).
Zapalowicz, K. et al., “Percutaneous Vertebroplasty with Bone Cement in the Treatment of Osteoporotic Vertebral Compression Fractures,” Ortopedia Traumatologia Rehabilitacja NR Jan. 2003.
Chinese Office Action, from CN Appl No. 200680013255.5, mailed Jan. 23, 2009.
European Communication, from EP Appl No. 06711221.9, mailed Nov. 24, 2008.
European Search Report, from EP05763930.4; mailed Sep. 11, 2008.
International Search Report, from PCT/IL06/00239, mailed Jan. 26, 2007.
International Search Report, from PCT/IL05/00812, mailed Feb. 28, 2007.
International Search Report, from PCT/IB06/052612, mailed Oct. 2, 2007.
Lewis, G., “Properties of Acrylic Bone Cement: State of the Art Review,” J. Biomed. Mat. Res. 38(2):155-82 (1997).
Lewis, G., “Toward Standardization of Methods of Determination of Fracture Properties of Acrylic Bone Cement and Statistical Analysis of Test Results,” J. Biomed. Mat. Res. 53(6):748-68 (2000).
US Office Action, from U.S. Appl. No. 11/461,072, mailed Jan. 28, 2009.
JP Office Action, from JP Appl No. 2009-517607, mailed Aug. 9, 2011.
Baroud, G., “Influence of Mixing Method on the Cement Temperature—Mixing Time History and Doughing Time of Three Acrylic Cements for Vertebroplasty,” Wiley Periodicals Inc. 112-116 (2003).
European Search Report, from EP 10182769.9, mailed Mar. 2, 2011.
European Search Report, from EP 10182693.1, mailed Mar. 2, 2011.
European Search Report, from EP 10192302.7, mailed Mar. 24, 2011.
European Search Report, from EP 10192301.9, mailed Mar. 24, 2011.
European Search Report, from EP 10192300.1, mailed Mar. 24, 2011.
Hide, I. et al., “Percutaneous Vertebroplasty: History, Technique and current Perspectives,” Clin. Radiology 59:461-67 (2004).
Hu, M. et al., “Kyphoplasty for Vertebral Compression Fracture Via a Uni-Pedicular Approach,” Pain Phys. 8:363-67 (2005).
Liang, B. et al., “Preliminary Clinical Application of Percutaneous Vertebroplasty,” Zhong Nan Da Xue Bao Yi Xue Ban 31(1):114-9 (2006).
Noetzel, J. et al., Calcium Phosphate Cements in Medicine and Denistry—A Review of Literature, Schweiz Monatsschr Zehmed 115(12):1148-56 (2005).
Supp. EP Search Report, from EP Appl. No. 07766863.0, dated Apr. 12, 2011.
Amar, Arun P. et al., “Percutaneous Transpedicular Polymethylmethacrylate Vertebroplasty for the Treatment of Spinal Compression Fractures,” Neurosurgery 49(5):1105-15 (2001).
Avalione & Baumeister III, Marks' Standard Handbook for Mechanical Engineers, 10 ed, pp. 5-6 (1996).
Barr, J.D., “Percutaneous Vertebroplasty for pain Relief and Spinal Stabilization,” Spine 25(8):923-28 (2000).
Belkoff, S. et al., The Biomechanics of Vertebroplasty, the Effect of Cement Volume on Mechanical Behavior, SPINE 26(14):1537-41 (2001).
Belkoff, S.M. et al., “An Ex Vivo Biomechanical Evaluation of a Hydroxyapatite Cement for Use with Kyphoplasty,” Am. J. Neurorad. 22:1212-16 (2001).
Belkoff, S.M. et al., “An Ex Vivo Biomechanical Evaluation of a Inflatable Bone Tamp Used in the Treatment of Compression Fracture,” SPINE 26(2):151-56 (2001).
Belkoff, S.M. et al., “An In Vitro Biomechanical Evaluation of Bone Cements Used in Percutaneous Vertebroplasty,” Bone 25(2):23S-26S (1999).
Blinc, A et al., “Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro,” Thrombosis Research 114:179-84 (2004).
Canale et al., “Campbell's operative orthopaedic—vol. 3—ninth ed”, Mosby:p. 2097,2121,2184-85,2890-96, (1998).
Codman & Shurtleff, “V-MAX™ Mixing and Delivery Device,” Catalog No. 43-1056, 2001.
Combs, S. et al., “The Effects of Barium Sulfate on the Polymerization Temperature and Shear Strength of Surgical Simplex P,” Clin. Ortho. and Related Res. pp. 287-291 (Jun. 4, 1979).
Cotton, A. et al., “Percutaneous Vertebroplasty: State of the Art,” Scientific Exhibit, Radiographics 18:311-20 (1998).
Dean, J.R. et al., “The Strengthening Effect of Percutaneous Vertebroplasty,” Clin Radiol. 55:471-76 (2000).
Deramond, H. et al, “Percutaneous Vertebroplasty with Polymethylmethacrylate, Technique Indications and Results,” Radiologic Clinics of North America 36(3) (May 1988).
Deramond, H. et al., “Temperature Elevation Caused by Bone cement Polymerization During Vertbroplasty,” Bone 25(2):17S-21S (1999).
DeWijn, J.R., Characterization of Bone Cements, The Institute of Dental Materials Science and Technology and the Dept of Ortho., Catholic University, Netherlands 46:38-51 (1975).
Edeland, “Some additional suggestions for an intervertebral disc prothesis,” J. Biomed. Eng. XP008072822, 7(1):57-62 (1985.
European Search Report, from EP09151379.6, mailed Oct. 20, 2009.
European Search Report, from EP06780252.0, mailed Oct. 29, 2009.
Fessler, Richard D. et al., “Vertebroplasty,” Neurosurgical Operative Atlas 9:233-240 (2000).
Gangi, A., “CT-Guided Interventional Procedures for Pain Management in the Lumbosacral Spine,” Radiographics 18:621-33 (1998).
Gangi, A., “Computed Tomography CT and Fluoroscopy-Guided Vertebroplasty: Results and Complications in 187 Patients,” Seminars in Interventional Radiology 16(2):137-42 (1999).
Gangi, A., “Percutaneous Vertebroplasty Guided by a Combination of CT and Fluoroscopy,” AJNR 15:83-86 (1994).
Garfin, S. R. et al., “New Technologies in Spine, Kyphoplasty and Vertebroplasty for the Treatment of Painful Osteoporotic Compression Fractures,” Spine 26(14:1511-15 (2001).
Grados F. et al.,“Long-Term Observations of Vertebral Osteoporotic Fractures Treated by Percutaneous Vertebroplasty,” Rheumatology 39:1410-14 (2000).
Heini, P. et al., “Augmentation of Mechanical Properties in Osteoporatic Vertebral Bones—a Biomechanical Investigation of Vertebroplasty Efficacy With Different Bone Cements,” EUR Spine J. v. 10, pp. 164-171, Springer-Verlag (2001).
Heini, P., “Percutaneous Transpedicular Vertebroplasty with PMMA: Operative Technique and Early Results,” EUR Spine J. v. 9, pp. 445-450, Springer-Verlag (2000).
Heraeus Palacos R, 2008, Palacos R, high Viscosity Bone Cement.
International Preliminary Report on Patentability, from PCT/IB06/053014, dated Apr. 10, 2008.
International Search Report, from PCT/IL07,00833, mailed Apr. 4, 2008.
International Search Report, from PCT/IL07/00484, mailed Apr. 17, 2008.
Jasper, L.E. et al., “The Effect of Monomer-to-Powder Ratio on the Material Properties of Cranioplastic,” Bone 25(2):27S-29S (1999).
Jensen, Mary E. et al., “Percutaneous Polymethylmethacrylate Vertebroplasty in the Treatment of Osteoporotic Vertebral Body Compression Fractures: Technical Aspects,” AJNR 18:1897-1904 (1997).
Jensen, Mary E. et al., “Percutaneous Vertebroplasty in the Treatment of Osteoporotic Compression Fractures,” Spine Interventions 10(3):547-568 (2000).
Johnson & Johnson Orthopaedics, The CEMVAC Method, Raynham, MA.
Kaufmann et al, “Age of Fracture and Clinical Outcomes of Percutaneous Vertebroplasty,” Am. J. Neuroradiology 22:1860-63 (2001).
Kuhn, Klaus-Dieter, Bone Cements—Uptodate Comparison of Physical and Chemical Properties of Commercial Materials, Springer-Verlag Heidelberg Germany p. 7-8, 17, 38 (2000).
Kyphom Medical Professionals, KyphXProducts (Nov. 8, 2001).
Li, C. et al., “Thermal Characterization of PMMA-Based Bone Cement Curing,” J. Materials Sci.: Materials in Medicine 15:84-89 (2004).
Lieberman, I.H. et al., “Initial Outcome and Efficiacy of Kyphoplasty in the Treatment of Painful Osteoporatic Vertebral Compression Fractures,” Spine 26(14:1631-38 (2001).
Mathis, John et al., “Percutaneous Vertebroplasty: A Developing Standard of Care for Vertebral Compression Fractures,” AJNR Am. J. Neurorad. 22:373-81 (2001).
Medsafe Palacos R 2007, Data Sheet : Palacos R Bone cement with Garamycin pp. 1-7; http://www.medsafe.govt.nz/profs/datasheet/p/palacosbonecements.htm.
O'Brien, J. et al., “Vertebroplasty in patients with Severe Vertebral Compression Fractures: A Technical Report,” AJNR 21:1555-58 (2000).
Odian, G., “Principles of Polymerization,” pp. 20-23, 1991.
Padovani, B. et al., “Pulmonary Embolism Caused by Acrylic Cement: A Rare Complication of Percutaneous Vertebroplasty,” AJNR 20:375-77 (1999).
Parallax Medical, Inc., Exflow Cement Delivery System (May 16, 2000).
Rimnac, CM, et al., “The effect of centrifugation on the fracture properties of acrylic bone cements,” JB&JS 68A(2):281-87 (1986).
Ryu, K. S. et al., “Dose-Dependent Epidural Leakage of Polymethylmethacrylate after Percutaneous Vertebroplasty in Patients with Osteoporotic Vertebral Compression Fractures,” J. Neuro: Spine 96:56-61 (2002).
Shah, T., Radiopaque Polymer Formulations for Medical Devices; Medical Plastics and Biomaterials Special Section; Medical device & Diagnostic Industry pp. 102-111 (2000).
Vasconcelos, C., “Transient Arterial Hypotension Induced by Polymethyacrylated Injection During Percutaneous Vertebroplasty,” Letter to the Editor, JVIR (Aug. 2001).
Wimhurst, J.A., et al., “The Effects of Particulate Bone Cements at the Bone-Implant Interface,” J. Bone & Joint Surgery pp. 588-592 (2001).
Wimhurst, J.A. et al., “Inflammatory Responses of Human Primary Macrophages to Particulate Bone Cements in Vitro,” J. Bone & Joint Surgery 83B:278-82 (2001).
Feldman, H., “Die Geschichte der Injektionen,” Laryngo-Rhino-Othol 79:239-46 (2000).
Glasgow Medico-Chirurgical Society, The lancet 1364 (May 18, 1907).
Greenberg, “Filling Root Canals by an Injection Technique,” Dental Digest 61-63 (Feb. 1963).
Greenberg, “Filling Root Canals in Deciduous Teeth by an Injection Technique,” Dental Digest 574-575 (Dec. 1961).
Greig, D., “A New Syringe for Injecting Paraffin,” The Lancet 611-12 (Aug. 29, 1903).
Lake, R., “The Restoration of the Inferior Turbinate Body by Paraffin Injections in the Treatment of Atrophic Rhinitis,” The Lancet 168-69 (Jan. 17, 1903).
Paget, S., “The Uses of Paraffin in Plastic Surgery,” The Lancet 1354 (May 16, 1903).
Walton, A, “Some Cases of Bone Cavities Treated by Stopping With Paraffin,” The Lancet 155 (Jan. 18, 1908).
Cromer, A., “Fluids,” Physics for the Life Sciences, 2:136-37 (1977).
JP Office Action, from JP Appl No. 2008-532910, mailed Jul. 19, 2011.
Lindeburg, M., “External Pressurized Liquids,” Mechanical Eng. Ref. Manual for the PE Exam, 10:15-14(May 1997).
European Search Report, from EP07827231.7, mailed Sep. 12, 2011.
International Search Report, from corresponding PCT/IL07/01257, dated Jul. 15, 2008.
Japanese Office Action issued Dec. 6, 2011 for Application No. 2008-524651 (9 pages).
Mendizabal et al., Modeling of the curing kinetics of an acrylic bone cement modified with hydroxyapatite. International Journal of Polymeric Materials. 2003;52:927-938.
Morejon et al., Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements. International Journal of Polymeric Materials. 2003;52(7):637-654.
Sreeja et al., Studies on poly(methyl methacrylate)/polystyrene copolymers for potential bone cement applications. Metals Materials and Processes. 1996;8(4):315-322.
Yang et al., Polymerization of acrylic bone cement investigated by differential scanning calorimetry: Effects of heating rate and TCP content. Polymer Engineering and Science. Jul. 1997;1182-1187.
Japanese Office Action issued Feb. 21, 2012 for Application No. 2009-516062 (6 pages).
[No Author Listed] Plastic Deformation of Metals and Related Properties. New Age Publishers. p. 1-29.
European Search Report for Application No. 12181745.6, issued Sep. 25, 2012. (9 pages).
Japanese Office Action for Application No. 2009-517607, dated Aug. 28, 2012. (4 pages).
Japanese Office Action for Application No. 2009-516062, dated Oct. 16, 2012 (6 pages).
[No Author Listed] Simplex p. Bone Cement. Stryker Corporation, 2 pages, publication date unknown. Retrieved from <http://www.stryker.com/en-us/products/Orthopaedics/BoneCementSubstitutes/index.htm>.
[No Author Listed] Standard Specification for Acrylic Bone Cement. Designation F 451-08, ASTM International :2008), 11 pages.
Australian Office Action issued Mar. 7, 2013 for Application No. 2012203300 (6 pages).
Chinese Office Action for Application No. 201310064546.9, issued Jul. 31, 2014.
European Communication Issued Jul. 1, 2015 for Application No. 10182769.9, enclosing third party observations ,concerning patentability (Submission dated Jun. 25, 2015) (6 pages).
Notice of Opposition to a European Patent for U.S. Pat. No. 2314259, from KIPA AB (EP Application No. 10182769.9), lated Apr. 28, 2016 (72 pages).
Notice of Opposition to a European Patent for U.S. Pat. No. 2,314,259, from Lover & Abello (EP Application No. 10182769.9), dated Apr. 28, 2016 (40 pages).
European Communication for Application No. 10192301.9, issued Sep. 17, 2015, enclosing third party observations concerning patentability (Submission dated Sep. 11, 2015 (22 pages).
European Search Report for Application No. 13174874.1, issued Nov. 13, 2013 (6 pages).
Extended European Search Report for Application No. 14166420.1, issued Jul. 14, 2014 (9 pages).
Extended European Search Report for Application No. 16173186.4, issued Oct. 6, 2016 (11 pages).
Japanese Office Action issued Apr. 9, 2013 for Application No. 2007-556708.
Japanese Interrogation for Application No. 2009-516062 issued Jul. 9, 2013 (9 pages).
Japanese Office Action for Application No. 2009-517607, dated Aug. 27, 2013. (6 pages).
Japanese Office Action for Application No. 2009-517607, dated Feb. 4, 2014. (8 pages).
Kuehn et al., Acrylic bone cements: composition and properties. Orthop Clin North Am. 2005 Jan;36(1):17-28, v.
Lu Orthopedic Bone Cement. Biomechanics and Biomaterials in Orthopedics. Ed. Poitout London: Springer-Verlag London Limited Jul. 2004 86-88.
Su, W.-F, Polymer Size and Polymer Solutions. Principles of Polymer Design and Synthesis. Chapter 2, pp. 9-26, Springer-Verlag Berlin Heidelberg, 2013.
Related Publications (1)
Number Date Country
20100168271 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
60825609 Sep 2006 US