The present invention relates generally to hearing prostheses and, more particularly, to a support for bone conduction hearing prostheses.
For persons who cannot benefit from traditional acoustic hearing aids, there are other types of commercially available hearing prostheses such as, for example, bone conduction hearing prostheses(commonly referred to as “bone conduction devices”). Bone conduction devices mechanically transmit sound information to a recipient's cochlea by transferring vibrations to a person's skull. This enables the hearing prosthesis to be effective regardless of whether there is disease or damage in the middle ear.
Traditionally, bone conduction devices transfer vibrations from an external vibrator to the skull through a bone conduction implant that penetrates the skin and is physically attached to both the vibrator and the skull. Typically, the external vibrator is connected to the percutaneous bone conduction implant located behind the outer ear facilitating the efficient transfer of sound via the skull to the cochlea. The bone conduction implant connecting the vibrator to the skull generally comprises two components: a bone attachment piece (e.g., bone fixture/fixture) that is attached or implanted directly to the skull, and a skin penetrating piece attached to the bone attachment piece, commonly referred to as an abutment.
In one aspect of the present invention, there is a prosthetic support, comprising a structure configured to apply a clamping force to a head of a recipient while extending about a back of at least one of a head or neck of the recipient such that output generated by a device supported by the structure is directed into skin of the recipient at a location behind an ear canal of the recipient that covers the mastoid bone of the recipient.
In another aspect of the present invention, there is a headset for a bone conduction device, comprising a headset configured to support at least one bone conduction device and configured provide a clamping force reactive against a head of the recipient sufficient to transmit vibrations from the bone conduction device into skin of the recipient at a location where the skin covers the mastoid bone behind an ear canal of the recipient, wherein the headset is configured such that a center of gravity of the headset, during normal use, is located behind and, with respect to a vertical direction, at least one of about level with or below the location.
In another aspect of the present invention, there is a hearing prosthesis, comprising a bone conduction device; and means for supporting the bone conduction device such that vibrations from the bone conduction device are transferred into skin of a recipient of the bone conduction device covering the mastoid bone at a location behind an ear canal of the recipient, wherein the means is completely external to the recipient.
Embodiments of the present invention are described herein with reference to the attached drawing sheets in which:
In an exemplary embodiment, there is a prosthetic support, such as a support for a bone conduction device. The support is configured to apply a clamping force to a head of a recipient while extending about a back of at least one of a head or neck of the recipient. The clamping force is sufficient to permit, in the case of a support for a bone conduction device, vibrations generated by the bone conduction device to be directed into skin of the recipient at a location behind an ear canal of the recipient covering the mastoid bone of the recipient to stimulate the cochlea of the recipient, thereby providing a hearing percept.
In an exemplary embodiment, the structure of the support is in the form of a resiliently flexible arch that extends from one side of the recipient's head to the other side of the recipient's head. The resilient nature of the arch provides the clamping force when the head of the recipient is interposed inside the arch. The clamping force is sufficient to hold the arch in place without a component that extends in front of the head of the recipient and/or a component that extends above the top of the recipient.
In an exemplary embodiment, the support is configured to enable one or more bone conduction devices to removably snap couple to the support, thus permitting the support to be utilized with existing bone conduction devices (such as, for example, percutaneous bone conduction devices that utilize a snap-couple feature). Further, the support may be adjusted without the use of tools so as to adjust a location of a skin interface portion of the support.
Additional details of the support are provided below, but first, a brief discussion of an exemplary bone conduction device with which some exemplary supports may be utilized will now be provided.
In a fully functional human hearing anatomy, outer ear 101 comprises an auricle 105 and an ear canal 106. A sound wave or acoustic pressure 107 is collected by auricle 105 and channeled into and through ear canal 106. Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107. This vibration is coupled to oval window or fenestra ovalis 210 through three bones of middle ear 102, collectively referred to as the ossicles 111 and comprising the malleus 112, the incus 113 and the stapes 114. The ossicles 111 of middle ear 102 serve to filter and amplify acoustic wave 107, causing oval window 210 to vibrate. Such vibration sets up waves of fluid motion within cochlea 139. Such fluid motion, in turn, activates hair cells (not shown) that line the inside of cochlea 139. Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain (not shown), where they are perceived as sound.
In an exemplary embodiment, bone conduction device 100 comprises an operationally removable component removably attached to a bone conduction implant. By operationally removably attaches, it is meant that it is removable in such a manner that the recipient can relatively easily attach and remove the operationally removable component during normal use of the bone conduction device 100. This as contrasted with how the bone conduction implant is attached to the skull, which is attached via a bone screw. The bone conduction device includes a sound processor (not shown), a vibrating electromagnetic actuator (not shown) and/or various other operational components, such as sound input device 126. More particularly, sound input device 126 (e.g., a microphone) converts received sound signals into electrical signals. These electrical signals are processed by the sound processor. The sound processor generates control signals which cause the actuator to vibrate. In other words, the actuator converts the electrical signals into mechanical motion to impart vibrations to the recipient's skull.
As illustrated, bone conduction device 100 further includes a coupling apparatus 140 configured to operationally removably attach the bone conduction device to a bone conduction implant (also referred to as an anchor system and/or a fixation system) which is implanted in the recipient. In the embodiment of HG. 1, coupling apparatus 140 is coupled to the bone conduction implant (not shown) implanted in the recipient. Briefly, an exemplary bone conduction implant may include a percutaneous abutment attached to a bone fixture via a screw, the bone fixture being fixed to the recipient's skull bone 136. The abutment extends from the bone fixture which is screwed into bone 136, through muscle 134, fat 128 and skin 232 so that coupling apparatus 140 may be attached thereto. Such a percutaneous abutment provides an attachment location for coupling apparatus 140 that facilitates efficient transmission of mechanical force.
In an embodiment, the coupling 142 corresponds to the coupling described in U.S. patent application Ser. No. 12/177,091 assigned to Cochlear Limited. In an alternate embodiment, a snap coupling such as that described in U.S. patent application Ser. No. 12/167,796 assigned to Cochlear Limited is used. In yet a further alternate embodiment, a magnetic coupling such as that described in U.S. patent application Ser. No. 12/167,851 assigned to Cochlear Limited is used instead of or in addition to coupling 241 or the snap coupling of U.S. patent application Ser. No. 12/167,796.
The coupling apparatus 140 is mechanically coupled, via mechanical coupling shaft 143, to a vibrating actuator (not shown) within the bone conduction device 100. In an exemplary embodiment, the vibrating actuator is a device that converts electrical signals into vibration. In operation, sound input element 126 converts sound into electrical signals. Specifically, the bone conduction device provides these electrical signals to the vibrating actuator, or to a sound processor that processes the electrical signals, and then provides those processed signals to a vibrating actuator. The vibrating actuator converts the electrical signals (processed or unprocessed) into vibrations. Because vibrating actuator is mechanically coupled to coupling apparatus 140, the vibrations are transferred from the vibrating actuator to the coupling apparatus 140 and then to the recipient via the bone fixture system (not shown).
While the just-mentioned examples are described in terms of hearing prostheses, it is noted that other medical device supports consistent with the teachings herein and variations thereof may be practiced to support other types of medical devices or other devices other than hearing prosthesis components.
Referring to
In an exemplary embodiment, the structure is configured to apply a clamping force, where such force may vary with head size, with the force being greater when used with heads of larger size owing to the greater deformation of the structure (for supports of the same design used on different heads). Additional specifics of ergonomic/human factors features pertaining to variations in head size of recipients are discussed in greater detail below.
Elongated structure 310 corresponds to structure that may be made entirely out of a material that is elastically deformable in a manner sufficient to practice embodiments detailed herein and variations thereof. In yet other embodiments, elongated structure 310 may be made out of metal such as aluminum, flexible steel (e.g., spring steel), or other types of metals and/or metal alloys and/or non-metals that will permit the elongated structure 310 to elastically deform in accordance with embodiments detailed herein and variations thereof. In yet other embodiments, the elongated structure 310 may be a composite structure made of metal strands encased in plastic or rubber or some other material that will provide the requisite elastic deformations and/or ergonomic features. Any type of material may be used to form the elongated structure 310 providing the embodiments detailed herein and variations thereof may be practiced.
As noted above and may be seen in
While the Elongated structure 310 of
From
With reference to
It is noted that in the embodiments depicted herein, the elongated structure is depicted as a structure that extends from one side of the support to the other side of the support, in other embodiments, the elongated structure 310 may extend only a portion of the way about the support, where another structure having a different configuration or even the same configuration may be connected to structure 310, this alternate structure extending away from structure 310.
Support 300 includes skin interface portions 320. A portion or all of skin interface portions 320 may be part of the structure of elongated structure 310 (e.g., monolithic therewith) or may be a component that is attached to the structure of the elongated structure 310 (that is, skin interface portions 320 may be separate components mechanically attached to the elongated structure), or may be a combination thereof. Skin interface portions 320 are located at positions on support 300 and configured such that the inner surfaces of the skin interface portions 320 abut skin of the recipient at a location behind the ear canal of the recipient where the skin covers the mastoid bone of the recipient. This may be seen in
Still with reference to the skin interface portions 320, in the embodiment depicted in
Referring to
As may be seen in
It is noted that while the bone conduction device attachment portion 330 is depicted as a separate structure relative to the elongated structure 3110 (e.g., the structure of attachment portion 330 may be interference fitted or screw fitted, etc., into a bore into elongated structure 310) in other embodiments, bone conduction device attachment portion 330 may be part of the elongated structure 310 (e.g., it may be machined directly into metal or plastic or otherwise formed into the metal or plastic of the elongated structure 310).
An exemplary bone conduction device attachment portion 330 corresponds to, at least in part, the receptacle portion of a percutaneous abutment utilized in a percutaneous bone conduction implant. In an exemplary embodiment, bone conduction device attachment portion 330 is configured to enable removable attachment to the coupling in a manner substantially the same as that taught by and/or as would be understood to be a variation consistent with, the teachings of U.S. patent application Ser. No. 12/177,091 and/or Ser. No. 12/167,796 and/or Ser. No. 12/167,851 assigned to Cochlear Limited. By way of example, bone conduction device attachment portion 330 may enable snap-coupling/decoupling to/from a bone conduction device, magnetic coupling/decoupling to/from a bone conduction device, etc. In some embodiments, bone conduction device attachment portion 330 may correspond to any type of attachment portion that will permit a bone conduction device to be attached and/or detached to/from the support 300.
With respect to the embodiment depicted in
In the embodiments of
Any device, system or method that will permit a bone conduction device as detailed herein and in variations thereof to be attached to the support 300 so as to permit embodiments detailed herein and variations thereof to be practiced may be utilized in some embodiments.
In an exemplary embodiment, the support 300 corresponds to a headset configured such that the center of gravity of the headset, during normal use, with and/or without bone conduction devices attached thereto, is located behind and, with respect to a vertical direction, at least one of about level with or below a location where vibrations transmitted from a bone conduction device supported by the headset are transmitted into skin of the recipient where the skin covers the mastoid bone behind an ear canal of the recipient. Such an exemplary support is depicted in
The relationship between skin interface portions 320 and bone conduction devices 100 will now be described. In the embodiment of
The embodiments of
In an alternate embodiment, support 300 may be configured such that the support 300 does not include skin interface portions hut instead the support 300 is configured to attach to bone conduction devices 100 to which separate skin interface portion(s) are attached thereto. That is, vibrations generated by the bone conduction devices 100, at least those utilized to produce the hearing percept, are not transferred through the support 300 as would be the case in the embodiment depicted in
Accordingly, in some embodiments, support 300 is a support configured such that the vibrations generated by bone conduction devices 100 are transferred into the skin of the recipient at locations behind the ear canal of the recipient, where the skin covers the mastoid bone, regardless of whether a substantial amount (including any) of the vibrations generated by the bone conduction devices 100 travel through the support.
Still, with regard to the embodiment of
It is further noted that the aforementioned vibration path may also include vibrations traveling through a skin penetrating abutment connected to a bone fixture implanted into the mastoid bone and/or into a bone fixture or a plate implanted beneath the skin of the recipient at the mastoid bone. Such a scenario may exist, for example, where an abutment is being “rested” and vibrations travel through the skin parallel to the mastoid bone and into the abutment. Such a scenario may also exist in an embodiment where the support 300 is used with a passive transcutaneous bone conduction device such as that disclosed in U.S. patent application Ser. No. 13/114,633. In such an exemplary embodiment, skin interface portions may be configured to transfer vibrations from the skin interface portions to the implantable component 350 of that application so as to evoke a hearing percept as disclosed therein. In this regard, in an exemplary embodiment, support 300 functions to support an external device 340 as disclosed therein proximate the implantable component 350. In this regard, support 300 may be further used to support an external device 440 at skin behind the ear canal and covering the mastoid bone as detailed in U.S. patent application Ser. No. 13/114,633 to achieve the hearing percept functionality detailed in that application.
Positioning of the skin interface portions at skin behind the ear canal and covering the mastoid bone will now be described with respect to embodiments that permit adjustment of the skin interface portions relative to other portions of the support.
In the embodiment depicted in
By friction fit, it is meant that a diameter of the module 620 at surfaces of the module 620 that interface with structure 610, in a relaxed state (e.g., not in contact with structure 610), are less than respective dimensions of surfaces of the elongated structure 610 that interface with module 620, in a relaxed state (e.g., not in contact with module 620), and/or visa-versa. Thus, a compressive force is applied by the module 620 to the structure 610 and a tensile force is applied by the structure 610 to the module 620. These forces are sufficient to generate sufficient friction to hold the module 620 in place relative to the structure 610 when a minimal amount of force is applied to module 620 relative to structure 610, but will permit module 620 to move relative to structure 610 upon application of a sufficient force such as may be applied by the hands of a user of bone conduction device support 600. (Some human factors issues relating to the bone conduction device supports detailed herein will be described in further detail below.)
By positive interference fit, it is meant a fit where a portion of module 620 or a component of module 620 is located within a general outer profile of elongated structure 610, or vice-versa, as will be described in greater detail with respect to the embodiment of
An exemplary embodiment of a positive interference fit may include a ratchet mechanism. An exemplary ratchet mechanism that may be used with module 620 includes an elastically deformable tooth that is configured to extend into one of a plurality of grooves located on the outer or inner surface (relative to the head of the recipient) of structure 610. This tooth is of sufficient rigidity to ensure that the module 620 remains fixed in a given location along the structure 610 under the application of a minimal force to module 620, but upon the application of sufficient force to module 620, the tooth elastically deforms (or a support of the tooth elastically deforms) to permit the tooth to be removed from the given groove in structure 610, thereby permitting module 620 to be moved along structure 610 to a desired location where the tooth fits into a new groove. The force required to deform the tooth (or the support) is such that the module 620 will remain at a desired location along structure 610 until the recipient or other user of the support 600 affirmatively attempts to change the location of module 620 relative to structure 610.
In an alternate embodiment, a positive interference includes, for example, a bolt supported by module 620 that may be screwed into a hole of a series of holes in structure 610, or visa versa. In this regard, an alternate embodiment of a friction fit includes a bolt supported by module 620 that may be screwed down onto structure 610 with a sufficient force to prevent module 620 from sliding relative to structure 610, By unscrewing the bolt, the friction created by the friction fit may be adjusted so that the module 620 may slide relative to the structure 610.
Any device, system or method which will permit module 620, and thus skin interface portion, of the bone conduction device support to be adjusted in accordance with the embodiments herein and variations thereof may be used in some embodiments. It is noted that this is also the case with respect to other portions of the support that move relative to one another, as detailed herein and variations thereof.
As may be seen, the embodiment of
Substructure 711 and substructure 713 are connected to one another via substructure 715. Substructure 715 has overall outer diameters which are less than respective diameters of substructure 711 and 713. As may be seen, substructure 715 includes a plurality of grooves 717 that are located in substructure 715. The embodiment depicted in
The position of substructure 713, relative to substructure 715 and thus substructure 711, is maintained via a positive interference fit in the form of a ratchet system. Grooves 717 of substructure 715 permit a tooth or a plurality of teeth (not shown) attached to substructure 713 to elastically fit into those grooves, thereby maintaining a position of substructure 711 relative to substructure 713 while also permitting the location of substructure 711 to be varied with respect to that of substructure 713 in accordance with the teachings above with respect to an interference fit. In an exemplary embodiment, a recipient or other user of the support 700a holds substructure 713 in one hand and holds substructure 711 in his or her other hand and applies a compressive force and/or a tensile force to the structure 700a to change the position of substructure 711 to move it towards or away from, respectively, substructure 713.
It is noted that in an alternate embodiment, substructure 715 could be originally connected to substructure 713 and substructure 711 could telescope with respect to substructure 715, or both substructure 711 and substructure 713 could telescope with respect to substructure 715. Any device, system or method that will permit the location of substructure 711 to be changed relative to substructure 713, or vice versa, while also permitting the locations of those structures to be maintained as detailed herein and variations thereof, may be used in some embodiments.
From
The embodiment of
In an exemplary embodiment applicable to all embodiments detailed herein and variations thereof, support portion 721 permits the distance between skin interface portion 720 and the rest of the structure of support 700a to be controllably adjusted. Thus, groove 717 of the interference fit permit axial adjustment of the location of the skin interface portion 720 while support portion 721 permits the radial adjustment of the location of the skin interface portion 721. In the embodiments depicted in
It is noted that in embodiments where the skin interface portion and/or other components of the support are adjustable, markings may be included on the support that indicate the extent of adjustment from a baseline. For example, with respect to
In an embodiment utilizing the articulating substructure 723, the location of skin interface portion 320 and an end 701 of substructure 723, relative to the rest of the support, 700b, may be changed to better conform to the head of a recipient relative to the conformance obtained without the articulating ability of the substructures. While the embodiment depicted in
In an exemplary embodiment of the bone conduction device support 700b of
It is noted that in some embodiments, any of the features of the various supports detailed herein may be combined with any other of the features of the various supports detailed herein. By way of example, a support may include the telescoping feature of the embodiment of
As noted above, embodiments detailed herein and variations thereof may be applicable to support devices for other types of hearing prostheses and/or other types of medical devices. By way of example and not by way of limitation, one or more of all of the supports detailed herein and/or variations thereof may be applicable to support an external component of a cochlear implant and or an external component of an active transcutaneous bone conduction device. Such an external component may include a telecoil. The support may be configured to position the telecoil at a location behind the ear canal of the recipient on skin of the recipient covering the mastoid bone at a location proximate to an implantable component of the cochlear implant. This implantable component/a portion of the implantable component may include a telecoil as well. Thus, the supports detailed herein and/or variations thereof may be utilized to position an external telecoil proximate to and in alignment with the implanted telecoil. Such an embodiment may be utilized, by way of example, in a scenario where the implanted magnet is unfeasible and/or where an implanted magnet has otherwise failed for a given reason, where the implanted magnet would otherwise be used to align and/or hold the external component against the skin of the recipient.
Embodiments of the supports detailed herein and/or variations thereof may be utilized in instances where recipients are evaluating bone conduction hearing prosthesis, either in a unilateral and/or a bilateral and/or multilateral configuration. Such supports may be utilized in the case of recipients awaiting surgery for a percutaneous bone conduction implant and/or a transcutaneous bone conduction implant. Such supports may be utilized by way of example for children whose mastoid bones and/or other bones are not of sufficient thickness and/or sufficient strength to receive the implanted portion of a bone conduction prostheses. Indeed in an exemplary embodiment the supports detailed herein and/or variations thereof may be utilized with adults or children who have developed an infection with respect to the implanted portion of the bone conduction device and/or who are simply in need of resting the implant abutment.
Some of the embodiments detailed herein and variations thereof may be utilized to provide a bilateral bone conduction hearing prosthesis. Thus, such a support may be utilized to test (evaluate) a bilateral hearing prosthesis. Such may be done, in some embodiments, without any additional parts or connectors to be added to a given support. In this regard, while the supports detailed herein have been detailed in terms of having the ability to connect two or more bone conduction devices thereto (e.g., permitting the establishment of a bilateral bone conduction hearing prosthesis), it is noted that in some embodiments, even though the supports have two or more bone conduction device attachment portions, such supports may be utilized with only one bone conduction device attached thereto thus permitting the same support to be utilized in a unilateral configuration and/or a bilateral configuration.
An embodiment of the supports detailed herein and variations thereof are sized and dimensioned and otherwise configured to permit use of a given support on a child and an adult without any specific adjustments and/or any clinical measurement of the recipient's head. That is, a given support may be issued to a recipient irrespective of whether that recipient is a child or an adult (i.e., irrespective of the size of the child's head/development of the organs of the recipient's head), where the recipient himself or herself or a semi-trained or even untrained person may sufficiently adjust the support so as to obtain a sufficient efficacy of the hearing prosthesis vis-à-vis a hearing percept obtained by a bone conduction device. That is, because the supports detailed herein and variations thereof permit adjustment of the skin interface location and/or permit the entire system to be moved relative to the recipient's head so as to position a given skin interface portion at a desired location, specific training and/or skills may not be needed to utilize some embodiments. Indeed, in some embodiments, a trial and error approach can be recommended for recipients, because the adjustments to the support 300 are relatively easily made compared to other support systems for other bone conduction hearing prostheses.
At least some embodiments of the supports detailed herein and variations thereof are sized and dimensioned and otherwise configured to conform to the head of a statistically average (mean or median) human being in a given population. In an exemplary embodiment, there are supports detailed herein and variations thereof that are sized and dimensioned and otherwise configured to conform to the head of a statistically average sized human as well as the head of a human being falling within one-half of a standard deviation larger and/or smaller from the statistically average sized human. In yet other embodiments, such supports are sized and dimensioned and otherwise configured to conform to the head of a statistically average sized human as well as the head of a human having a head size falling within one standard deviation larger and/or smaller than the average head size.
In exemplary embodiments, there is a support as detailed herein and/or variations thereof that is sized, dimensioned, and/or otherwise configured to conform to a statistically average size head of a human being of a given population and a head larger and/or smaller than that that falls within about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 and 3.0 and/or more standard deviations from the statistically sized average, without additional parts and/or without the need to remove parts (i.e., only adjustments are made as detailed herein)
With respect to a given population, such a population may include, in some embodiments, the population of the entire world. In other embodiments, it may be directed to an ethnic populace such as for example Caucasians, Mongoloids and/or Negroids. In yet other embodiments, the aforementioned population may be limited to a geographic region such as North America, South America, Asia, Europe, Africa and/or Australia. In yet other embodiments, the population may be limited to citizens and/or residents of specific countries, such as the United States, Australia, Canada, the United. Kingdom, France, Germany, Spain, Sweden, Italy, China, India, Japan, Mexico, etc. The population may be limited to adults, may be limited to children, may be limited to adolescents or may be limited to the combination thereof (e.g. adolescents and adults, children and adolescents). In some embodiments, the population may be limited to humans above a certain age, such as, for example above one year old, above 18 months old, above 2 years old, above 2.5 years old, above 3 years old, above 3.5 years old, above 4 years old, above 4.5 years old, above 5 years old, above 5.5 years old, above 6 years old, above 6.5 years old, above 7 years old, above 7.5 years old, above 8 years old, above 9 years old, above 10 years old, above 11 years old, above 12 years old, above 13 years old, above 14 years old, above 15 years old, and or above 16 years old.
It is noted that the just described examples of populations, in some embodiments, are combined in any variety. By way of example, an exemplary population may include Caucasians having U.S. citizenship that are older than 6 years old. It is also noted that the aforementioned populations may be bifurcated between male and female and the above mentioned populations may be further bifurcated into subpopulations (e.g. non-Hispanic Caucasians, Hispanic Caucasians). Any population group may be utilized in some embodiments detailed herein.
At least some of the embodiments of the supports detailed herein and variations thereof are configured to provide a clamping force to one or more of the aforementioned populations and/or combinations and/or sub-combinations thereof of recipients such that the support retained relative to the head of the recipient is retained at substantially the same place on the recipient being subjected to an acceleration in the horizontal and/or vertical direction (up or down) and/or in vectors between such that the medical device supported by the support maintains efficacy. By way of example only and not by way of limitation, an exemplary support may retain itself (and the medical device it supports) to the head of the recipient without substantially moving (where substantially moving results in a significant degradation of the performance of the hearing prosthesis of which the support is a part) when subjected to an upward and/or downward and/or horizontal forward and/or horizontal backward acceleration that corresponds to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and/or 10.0 G-forces, at least some of which may be experienced in the event of the recipient standing from a seated position and/or visa-versa, the recipient walking and/or running up or down stairs. Such G-forces may be experienced, for example, where the recipient is subjected to even greater accelerations, such as may be obtained in the event of the recipient jumping up or down (which may be experienced while running, playing basketball, jumping from a jungle gym, etc.).
At least in some embodiments of the present invention, where the support arches around the back of the recipient's head passing through a location, in the vertical direction, between the head and the shoulders of the recipients/in the neck region (vertically speaking) of the recipient, improved cosmetic results are obtained vis-à-vis supports that arch about the top of the head. For example, because the support is not worn across the entire head, such as in the case with headphones and the like, the support is less visible than other types of supports used for other devices and or devices detailed herein. In an exemplary embodiment, the supports detailed herein and variations thereof may be configured such that the support maintains a position of the device supported thereon to permit efficacious functionality of the device vis-à-vis the recipient without a component extending about a top of the head. Such an embodiment may be configured to maintain its position relative to the recipient after the recipient is subjected to 2G-forces in the vertical direction. It is noted that the aforementioned performance features, vis-à-vis retention when subjected to G-forces, are achieved without ancillary support of the support (e.g., the recipient is not holding the support to his or her head, etc.), By normal use, it is meant use as prescribed, for example, by an audiologist, a surgeon, the manufacturer of the device as approved by a major underwriting entity (e.g., Underwriters Laboratory in the U.S.), etc.
It is noted that in the embodiments of the supports detailed herein having adjustable components such that, for example, the location of the skin interface portion may be adjusted relative to the rest of the support, such adjustment permits at least in some embodiments the supports to be applicable to the above mentioned populations without reconstructing the support/adding components/removing components from the support, Thus, in an exemplary embodiment there is a self-contained support that may be issued to a wide range of populations of recipients without medical measurement of the recipient's head. That is, an exact size of a recipient's head need not be determined.
In some embodiments of the supports detailed herein and variations thereof, sides of the support may be labeled to indicate which sides of the support should be positioned relative to a side of a recipient. Such labeling may be in words and/or in symbols (e.g., L, R, sides of the head depicted in a pictorial, etc.).
In some embodiments, the supports detailed herein and variations thereof are configured to be single use products and/or disposable products. That is, at least some supports detailed herein and variations thereof are configured such that they are to be disposed of after utilization of the support by a recipient is completed. That is, such supports need not be shared between different recipients. Such an exemplary embodiment reduces the need for enhanced cleaning of such supports as might otherwise be the case for shared supports.
An exemplary method further includes repeating some or all of steps 810 for a number of different recipients, where the respective provided bone conduction device hearing prostheses are of a design that is duplicative. Further, in practicing such a method, such a method may include providing such hearing prostheses to recipients having different sized heads. By way of example, the recipients of a first group of, say, 10 recipients, may be adult males having heads with circumferences in a horizontal plane bisecting an opening of an ear canal of the recipient of a first value or more. Further by way of example, the recipients of a second group may be of, say, 10 recipients, may be child males having heads with circumferences in a horizontal plane bisecting an opening of an ear canal of the recipient of a second value or less, where the second value is about two-thirds the value of the first value. Because of at least some features as detailed herein and variations thereof of at least some embodiments of the supports detailed herein and variations thereof, the same hearing prosthesis may be provided to both children and adults of substantially different head sizes.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 14627626 | Feb 2015 | US |
Child | 15875960 | US | |
Parent | 13270735 | Oct 2011 | US |
Child | 14627626 | US |