The present disclosure relates to improvements on a bone conduction speaker and its components, in detail, relates to a bone conduction speaker and its compound vibration device, while the frequency response of the bone conduction speaker has been improved by the compound vibration device, which is composed of vibration boards and vibration conductive plates.
Based on the current technology, the principle that we can hear sounds is that the vibration transferred through the air in our external acoustic meatus, reaches to the ear drum, and the vibration in the ear drum drives our auditory nerves, makes us feel the acoustic vibrations. The current bone conduction speakers are transferring vibrations through our skin, subcutaneous tissues and bones to our auditory nerves, making us hear the sounds.
When the current bone conduction speakers are working, with the vibration of the vibration board, the shell body, fixing the vibration board with some fixers, will also vibrate together with it, thus, when the shell body is touching our post auricles, cheeks, forehead or other parts, the vibrations will be transferred through bones, making us hear the sounds clearly.
However, the frequency response curves generated by the bone conduction speakers with current vibration devices are shown as the two solid lines in
The purpose of the present disclosure is providing a bone conduction speaker and its compound vibration device, to improve the vibration parts in current bone conduction speakers, using a compound vibration device composed of a vibration board and a vibration conductive plate to improve the frequency response of the bone conduction speaker, making it flatter, thus providing a wider range of acoustic sound.
The technical proposal of present disclosure is listed as below:
A compound vibration device in bone conduction speaker contains a vibration conductive plate and a vibration board, the vibration conductive plate is set as the first torus, where at least two first rods in it converge to its center. The vibration board is set as the second torus, where at least two second rods in it converge to its center. The vibration conductive plate is fixed with the vibration board. The first torus is fixed on a magnetic system, and the second torus contains a fixed voice coil, which is driven by the magnetic system.
In the compound vibration device, the magnetic system contains a baseboard, and an annular magnet is set on the board, together with another inner magnet, which is concentrically disposed inside this annular magnet, as well as an inner magnetic conductive plate set on the inner magnet, and the annular magnetic conductive plate set on the annular magnet. A grommet is set on the annular magnetic conductive plate to fix the first torus. The voice coil is set between the inner magnetic conductive plate and the annular magnetic plate.
In the compound vibration device, the number of the first rods and the second rods are both set to be three.
In the compound vibration device, the first rods and the second rods are both straight rods.
In the compound vibration device, there is an indentation at the center of the vibration board, which adapts to the vibration conductive plate.
In the compound vibration device, the vibration conductive plate rods are staggered with the vibration board rods.
In the compound vibration device, the staggered angles between rods are set to be 60 degrees.
In the compound vibration device, the vibration conductive plate is made of stainless steel, with a thickness of 0.1-0.2 mm, and, the width of the first rods in the vibration conductive plate is 0.5-1.0 mm; the width of the second rods in the vibration board is 1.6-2.6 mm, with a thickness of 0.8-1.2 mm.
In the compound vibration device, the number of the vibration conductive plate and the vibration board is set to be more than one. They are fixed together through their centers and/or torus.
A bone conduction speaker comprises a compound vibration device which adopts any methods stated above.
The bone conduction speaker and its compound vibration device as mentioned in the present disclosure, adopting the fixed vibration boards and vibration conductive plates, make the technique simpler with a lower cost. Also, because the two parts in the compound vibration device can adjust low frequency and high frequency areas, the achieved frequency response is flatter and wider, the possible problems like abrupt frequency responses or feeble sound caused by single vibration device will be avoided.
A detailed description of the implements of the present disclosure is stated here, together with attached figures.
As shown in
Obviously the number of the first and second rods can be more than two, for example, if there are two rods, they can be set in a symmetrical position; however, the most economic design is working with three rods. Not limited to this rods setting mode, the setting of rods in the present disclosure can also be a spoke structure with four, five or more rods.
The vibration conductive plate 1 is very thin and can be more elastic, which is stuck at the center of the indentation 120 of the vibration board 2. Below the second torus 121 spliced in vibration board 2 is a voice coil 8. The compound vibration device in the present disclosure also comprises a bottom plate 12, where an annular magnet 10 is set, and an inner magnet 11 is set in the annular magnet 10 concentrically. An inner magnet conduction plate 9 is set on the top of the inner magnet 11, while annular magnet conduction plate 7 is set on the annular magnet 10, a grommet 6 is fixed above the annular magnet conduction plate 7, the first torus 111 of the vibration conductive plate 1 is fixed with the grommet 6. The whole compound vibration device is connected to the outside through a panel 13, the panel 13 is fixed with the vibration conductive plate 1 on its converging center, stuck and fixed at the center of both vibration conductive plate 1 and vibration board 2.
It should be noted that, both the vibration conductive plate and the vibration board can be set more than one, fixed with each other through either the center or staggered with both center and edge, forming a multilayer vibration structure, corresponding to different frequency resonance ranges, thus achieve a high tone quality earphone vibration unit with a gamut and full frequency range, despite of the higher cost.
The bone conduction speaker contains a magnet system, composed of the annular magnet conductive plate 7, annular magnet 10, bottom plate 12, inner magnet 11 and inner magnet conductive plate 9, because the changes of audio-frequency current in the voice coil 8 cause changes of magnet field, which makes the voice coil 8 vibrate. The compound vibration device is connected to the magnet system through grommet 6. The bone conduction speaker connects with the outside through the panel 13, being able to transfer vibrations to human bones.
In the better implement examples of the present bone conduction speaker and its compound vibration device, the magnet system, composed of the annular magnet conductive plate 7, annular magnet 10, inner magnet conduction plate 9, inner magnet 11 and bottom plate 12, interacts with the voice coil which generates changing magnet field intensity when its current is changing, and inductance changes accordingly, forces the voice coil 8 move longitudinally, then causes the vibration board 2 to vibrate, transfers the vibration to the vibration conductive plate 1, then, through the contact between panel 13 and the post ear, cheeks or forehead of the human beings, transfers the vibrations to human bones, thus generates sounds. A complete product unit is shown in
Through the compound vibration device composed of the vibration board and the vibration conductive plate, a frequency response shown in
In some embodiments, the stiffness of the vibration board may be larger than that of the vibration conductive plate. In some embodiments, the resonance peaks of the frequency response curve may be set within a frequency range perceivable by human ears, or a frequency range that a person's ears may not hear. Preferably, the two resonance peaks may be beyond the frequency range that a person may hear. More preferably, one resonance peak may be within the frequency range perceivable by human ears, and another one may be beyond the frequency range that a person may hear. More preferably, the two resonance peaks may be within the frequency range perceivable by human ears. Further preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the peak frequency may be in a range of 80 Hz-18000 Hz. Further preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the peak frequency may be in a range of 200 Hz-15000 Hz. Further preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the peak frequency may be in a range of 500 Hz-12000 Hz. Further preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the peak frequency may be in a range of 800 Hz-11000 Hz. There may be a difference between the frequency values of the resonance peaks. For example, the difference between the frequency values of the two resonance peaks may be at least 500 Hz, preferably 1000 Hz, more preferably 2000 Hz, and more preferably 5000 Hz. To achieve a better effect, the two resonance peaks may be within the frequency range perceivable by human ears, and the difference between the frequency values of the two resonance peaks may be at least 500 Hz. Preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. Moreover, more preferably, the two resonance peaks may be within the frequency range perceivable by human ears, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. One resonance peak may be within the frequency range perceivable by human ears, another one may be beyond the frequency range that a person may hear, and the difference between the frequency values of the two resonance peaks may be at least 500 Hz. Preferably, one resonance peak may be within the frequency range perceivable by human ears, another one may be beyond the frequency range that a person may hear, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, one resonance peak may be within the frequency range perceivable by human ears, another one may be beyond the frequency range that a person may hear, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, one resonance peak may be within the frequency range perceivable by human ears, another one may be beyond the frequency range that a person may hear, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. Moreover, more preferably, one resonance peak may be within the frequency range perceivable by human ears, another one may be beyond the frequency range that a person may hear, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. Both resonance peaks may be within the frequency range of 5 Hz-30000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 400 Hz. Preferably, both resonance peaks may be within the frequency range of 5 Hz-30000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, both resonance peaks may be within the frequency range of 5 Hz-30000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, both resonance peaks may be within the frequency range of 5 Hz-30000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. Moreover, further preferably, both resonance peaks may be within the frequency range of 5 Hz-30000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. Both resonance peaks may be within the frequency range of 20 Hz-20000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 400 Hz. Preferably, both resonance peaks may be within the frequency range of 20 Hz-20000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, both resonance peaks may be within the frequency range of 20 Hz-20000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, both resonance peaks may be within the frequency range of 20 Hz-20000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. And further preferably, both resonance peaks may be within the frequency range of 20 Hz-20000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. Both the two resonance peaks may be within the frequency range of 100 Hz-18000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 400 Hz. Preferably, both resonance peaks may be within the frequency range of 100 Hz-18000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, both resonance peaks may be within the frequency range of 100 Hz-18000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, both resonance peaks may be within the frequency range of 100 Hz-18000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. And further preferably, both resonance peaks may be within the frequency range of 100 Hz-18000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. Both the two resonance peaks may be within the frequency range of 200 Hz-12000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 400 Hz. Preferably, both resonance peaks may be within the frequency range of 200 Hz-12000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, both resonance peaks may be within the frequency range of 200 Hz-12000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, both resonance peaks may be within the frequency range of 200 Hz-12000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. And further preferably, both resonance peaks may be within the frequency range of 200 Hz-12000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. Both the two resonance peaks may be within the frequency range of 500 Hz-10000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 400 Hz. Preferably, both resonance peaks may be within the frequency range of 500 Hz-10000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 1000 Hz. More preferably, both resonance peaks may be within the frequency range of 500 Hz-10000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 2000 Hz. More preferably, both resonance peaks may be within the frequency range of 500 Hz-10000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 3000 Hz. And further preferably, both resonance peaks may be within the frequency range of 500 Hz-10000 Hz, and the difference between the frequency values of the two resonance peaks may be at least 4000 Hz. This may broaden the range of the resonance response of the speaker, thus obtaining a more ideal sound quality. It should be noted that in actual applications, there may be multiple vibration conductive plates and vibration boards to form multi-layer vibration structures corresponding to different ranges of frequency response, thus obtaining diatonic, full-ranged and high-quality vibrations of the speaker, or may make the frequency response curve meet requirements in a specific frequency range. For example, to satisfy the requirement of normal hearing, a bone conduction hearing aid may be configured to have a transducer including one or more vibration boards and vibration conductive plates with a resonance frequency in a range of 100 Hz-10000 Hz.
In the better implement examples, but, not limited to these examples, it is adopted that, the vibration conductive plate can be made by stainless steels, with a thickness of 0.1-0.2 mm, and when the middle three rods of the first rods group in the vibration conductive plate have a width of 0.5-1.0 mm, the low frequency resonance oscillation peak of the bone conduction speaker is located between 300 and 900 Hz. And, when the three straight rods in the second rods group have a width between 1.6 and 2.6 mm, and a thickness between 0.8 and 1.2 mm, the high frequency resonance oscillation peak of the bone conduction speaker is between 7500 and 9500 Hz. Also, the structures of the vibration conductive plate and the vibration board is not limited to three straight rods, as long as their structures can make a suitable flexibility to both vibration conductive plate and vibration board, cross-shaped rods and other rod structures are also suitable. Of course, with more compound vibration parts, more resonance oscillation peaks will be achieved, and the fitting curve will be flatter and the sound wider. Thus, in the better implement examples, more than two vibration parts, including the vibration conductive plate and vibration board as well as similar parts, overlapping each other, is also applicable, just needs more costs.
As shown in
For illustration purposes, 801 represents a housing, 802 represents a panel, 803 represents a voice coil, 804 represents a magnetic circuit system, 805 represents a first vibration conductive plate, 806 represents a second vibration conductive plate, and 807 represents a vibration board. The first vibration conductive plate, the second vibration conductive plate, and the vibration board may be abstracted as components with elasticity and damping; the housing, the panel, the voice coil and the magnetic circuit system may be abstracted as equivalent mass blocks. The vibration equation of the system may be expressed as:
m6x6″+R6(x6−x5)′+k6(x6−x5)=F, (1)
x7″+R7(x7−x5)′+k7(x7−x5)=−F, (2)
m5x5″−R6(x6−x5)′−R7(x7−x5)′+R8x5′+k8x5−k6(x6−x5)−k7(x7−x5)=0, (3)
wherein, F is a driving force, k6 is an equivalent stiffness coefficient of the second vibration conductive plate, k7 is an equivalent stiffness coefficient of the vibration board, k8 is an equivalent stiffness coefficient of the first vibration conductive plate, R6 is an equivalent damping of the second vibration conductive plate, R7 is an equivalent damping of the vibration board, R8 is an equivalent damp of the first vibration conductive plate, m5 is a mass of the panel, m6 is a mass of the magnetic circuit system, m7 is a mass of the voice coil, x5 is a displacement of the panel, x6 is a displacement of the magnetic circuit system, x7 is to displacement of the voice coil, and the amplitude of the panel 802 may be:
wherein ω is an angular frequency of the vibration, and f0 is a unit driving force.
The vibration system of the bone conduction speaker may transfer vibrations to a user via a panel (e.g., the panel 730 shown in
The resonance peak may be shifted by changing a parameter of the first vibration conductive plate, such as the size and material, so as to obtain an ideal frequency response eventually. For example, the stiffness coefficient of the first vibration conductive plate may be reduced to a designed value, causing the resonance peak to move to a designed low frequency, thus enhancing the sensitivity of the bone conduction speaker in the low frequency, and improving the quality of the sound. As shown in
When the compound vibration device is applied to the bone conduction speaker, the major applicable area is bone conduction earphones. Thus the bone conduction speaker adopting the structure will be fallen into the protection of the present disclosure.
The bone conduction speaker and its compound vibration device stated in the present disclosure, make the technique simpler with a lower cost. Because the two parts in the compound vibration device can adjust the low frequency as well as the high frequency ranges, as shown in
In the prior art, the vibration parts did not take full account of the effects of every part to the frequency response, thus, although they could have the similar outlooks with the products described in the present disclosure, they will generate an abrupt frequency response, or feeble sound. And due to the improper matching between different parts, the resonance peak could have exceeded the human hearable range, which is between 20 Hz and 20 KHz. Thus, only one sharp resonance peak as shown in
It should be made clear that, the above detailed description of the better implement examples should not be considered as the limitations to the present disclosure protections. The extent of the patent protection of the present disclosure should be determined by the terms of claims.
A bone conduction speaker may include a U-shaped headset bracket/headset lanyard, two vibration units, a transducer connected to each vibration unit. The vibration unit may include a contact surface and a housing. The contact surface may be an outer surface of a silicone rubber transfer layer and may be configured to have a gradient structure including a convex portion. A clamping force between the contact surface and skin due to the headset bracket/headset lanyard may be unevenly distributed on the contact surface. The sound transfer efficiency of the portion of the gradient structure may be different from the portion without the gradient structure.
This example may be different from Example 1 in the following aspects. The headset bracket/headset lanyard as described may include a memory alloy. The headset bracket/headset lanyard may match the curves of different users' heads and have a good elasticity and a better wearing comfort. The headset bracket/headset lanyard may recover to its original shape from a deformed status last for a certain period. As used herein, the certain period may refer to ten minutes, thirty minutes, one hour, two hours, five hours, or may also refer to one day, two days, ten days, one month, one year, or a longer period. The clamping force that the headset bracket/headset lanyard provides may keep stable, and may not decline gradually over time. The force intensity between the bone conduction speaker and the body surface of a user may be within an appropriate range, so as to avoid pain or clear vibration sense caused by undue force when the user wears the bone conduction speaker. Moreover, the clamping force of bone conduction speaker may be within a range of 0.2N˜1.5N when the bone conduction speaker is used.
The difference between this example and the two examples mentioned above may include the following aspects. The elastic coefficient of the headset bracket/headset lanyard may be kept in a specific range, which results in the value of the frequency response curve in low frequency (e.g., under 500 Hz) being higher than the value of the frequency response curve in high frequency (e.g., above 4000 Hz).
The difference between Example 4 and Example 1 may include the following aspects. The bone conduction speaker may be mounted on an eyeglass frame, or in a helmet or mask with a special function.
The difference between this example and Example 1 may include the following aspects. The vibration unit may include two or more panels, and the different panels or the vibration transfer layers connected to the different panels may have different gradient structures on a contact surface being in contact with a user. For example, one contact surface may have a convex portion, the other one may have a concave structure, or the gradient structures on both the two contact surfaces may be convex portions or concave structures, but there may be at least one difference between the shape or the number of the convex portions.
A portable bone conduction hearing aid may include multiple frequency response curves. A user or a tester may choose a proper response curve for hearing compensation according to an actual response curve of the auditory system of a person. In addition, according to an actual requirement, a vibration unit in the bone conduction hearing aid may enable the bone conduction hearing aid to generate an ideal frequency response in a specific frequency range, such as 500 Hz-4000 Hz.
A vibration generation portion of a bone conduction speaker may be shown in
A compound vibration system including the vibration board 914, the first vibration conductive plate 916, and the second vibration conductive plate 917 may generate a smoother frequency response curve, so as to improve the sound quality of the bone conduction speaker. The transducer may be fixed to the housing 919 via the first vibration conductive plate 916 to reduce the vibration that the transducer is transferring to the housing, thus effectively decreasing sound leakage caused by the vibration of the housing, and reducing the effect of the vibration of the housing on the sound quality.
The first vibration conductive plate may be made of the material, for example but not limited to stainless steel, copper, plastic, polycarbonate, or the like, and the thickness may be in a range of 0.01 mm-1 mm.
This example may be different with Example 7 in the following aspects. As shown in
The difference between this example and Example 7 may include the following aspects. As the panel may protrude out of the housing, meanwhile, the panel may be connected to the housing via the first vibration conductive plate, the degree of coupling between the panel and the housing may be dramatically reduced, and the panel may be in contact with a user with a higher freedom to adapt complex contact surfaces (as shown in the right figure of
The vibration efficiency may differ with contacting statuses. A better contacting status may lead to a higher vibration transfer efficiency. As shown in
The difference between this example and Example 7 may include the following aspects. A boarder may be added to surround the housing. When the housing contact with a user's skin, the surrounding boarder may facilitate an even distribution of an applied force, and improve the user's wearing comfort. As shown in
The difference between this example and Example 8 may include the following aspects. As shown in
In some embodiments, the bone conduction speaker may further include a plurality of acoustic-electric transducer that have different frequency responses. The acoustic-transducers may detect an audio signal and generate a plurality of sub-band signals accordingly. The bone conduction speaker uses inherent properties of the acoustic-transducers to generate the sub-band signals, which spares the processing of digital signals and is thus time-saving.
In one respect, to sample an electric signal 1415 with a wider bandwidth, the sampling module 1420 may request a higher sampling frequency. In another respect, to generate a plurality of sub-band signals, filter circuits of the sub-band filtering module 1430 need to be relatively complex and have a relatively high order. Also, to generate a plurality of sub-band signals, the sub-band filtering module 1430 may perform a digital signal processing process through a software program, which may be time-consuming and may introduce noise during the digital signal processing process. Thus, there is need to provide a system and method to generate sub-band signals.
The acoustic-electric transducing module 1510 may include a plurality of acoustic-electric transducers (e.g., acoustic-electric transducers 1511, 1512, 1513, . . . , 1514 illustrated in
An acoustic-electric transducer (e.g., acoustic-electric transducer 1511, 1512, 1513, and/or 1514) of the acoustic-electric transducing module 1510 may be configured to convert audio signals into electric signals. In some embodiments, one or more parameters of the acoustic-electric transducer 1511 may change in response to the detection of an audio signal (e.g., the audio signal 1505). Exemplary parameters may include capacitance, charge, acceleration, light intensity, or the like, or a combination thereof. In some embodiments, the changes in one or more parameters may correspond to the frequency of the audio signal and may be converted to corresponding electric signals. In some embodiments, an acoustic-electric transducer of the acoustic-electric transducing module 1510 may be a microphone, a hydrophone, an acoustic-optical modulator, or the like, or a combination thereof.
In some embodiments, the acoustic-electric transducer may be a first-order acoustic-electric transducer or a multi-order (e.g., second-order, fourth-order, sixth-order, etc.) acoustic-electric transducer. In some embodiments, the frequency response of a high-order acoustic-electric transducer may have a steeper edge.
In some embodiments, the acoustic-electric transducers in the acoustic-electric transducing module 1510 may include one or more piezoelectric acoustic-electric transducers (e.g., a microphone) and/or one or more piezo-magnetic acoustic-electric transducers. Merely by way of example, each of the acoustic-electric transducers may be a microphone. In some embodiments, the acoustic-electric transducers may include one or more air-conduction acoustic-electric transducers and/or one or more bone-conduction acoustic-electric transducers. In some embodiments, the plurality of acoustic-electric transducers may include one or more high-order wideband acoustic-electric transducers and/or one or more high-order narrow-band acoustic-electric transducers. As used herein, a high-order wideband acoustic-electric transducer may refer to a wideband acoustic-electric transducer having an order larger than 1. As used herein, a high-order narrow-band acoustic-electric transducer may refer to a narrow-band acoustic-electric transducer having an order larger than 1. Detailed descriptions of a wideband acoustic-electric transducer and/or a narrow-band acoustic-electric transducer may be apparent to those in the art, and may not be repeated herein.
In some embodiments, at least two of the plurality of acoustic-electric transducers may have different frequency responses, which may have different center frequencies and/or frequency bandwidths (or referred to as frequency width). For example, the acoustic-electric transducers 1511, 1512, 1513, and 1514 may have a first frequency response, a second frequency response, a third frequency response, and a fourth frequency response, respectively. In some embodiments, the first frequency response, the second frequency response, the third frequency response, and the third frequency response may be different from each other. Alternatively, the first frequency response, the second frequency response, and the third frequency response may be different from each other, while the fourth frequency response may be the same as the third frequency response. In some embodiments, the acoustic-electric transducers in an acoustic-electric transducing module 1510 may have same frequency bandwidth (as illustrated in
In some embodiments, an acoustic-electric transducer that has a center frequency higher than that of another acoustic-electric transducer may have a larger frequency bandwidth than that of the another acoustic-electric transducer.
The acoustic-electric transducers in the acoustic-electric transducing module 1510 may detect an audio signal 1505. The audio signal 1505 may be from an acoustic source capable of generating an audio signal. The acoustic source may be a living object such as a user of the signal processing device 1500 and/or a non-living object such as a CD player, a television, or the like, or a combination thereof. In some embodiments, the audio signal may also include ambient sound. The audio signal 1505 may have a certain frequency band. For example, the audio signal 1505 generated by the user of the signal processing device 1500 may have a frequency band of 10-30,000 HZ. The acoustic-electric transducers may generate, according to the audio signal 1505, a plurality of sub-band electric signals (e.g., sub-band electric signals 1531, 1532, 1533, . . . , and 1534 illustrated in
The frequency response of an acoustic-electric transducing module 1510 may depend on the frequency responses of the acoustic-electric transducers included in the acoustic-electric transducing module 1510. For example, the flatness of the frequency response of an acoustic-electric transducing module 1510 may be related to where the frequency response of the acoustic-electric transducers in the acoustic-electric transducing module 1510 intersect with each other. As illustrated in
In some embodiments, for a certain frequency band, a limited number of acoustic-electric transducers may be allowed in an acoustic-electric transducing module 1510. More acoustic-electric transducers may be included in an acoustic-electric transducing module 1510 when the acoustic-electric transducers are under-damped ones rather than non-underdamping ones. Merely by way of example,
The sampling module 1520 may include a plurality of sampling units (e.g., sampling units 1521, 1522, 1523, . . . , and 1524 illustrated in
A sampling unit (e.g., the sampling unit 1521, the sampling unit 1522, the sampling unit 1523, and/or the sampling unit 1524) in the sampling module 1520 may communicate with an acoustic-electric transducer and be configured to receive and sample the sub-band signal generated by the acoustic-electric transducer. The sampling unit may communicate with the acoustic-electric transducer via a sub-band transmitter. Merely by way of example, the sampling unit 1521 may be connected to the first sub-band transmitter and configured to sample the sub-band electric signal 1531 received therefrom, while the sampling unit 1522 may be connected to the second sub-band transmitter and configured to sample the sub-band electric signal 1532 received therefrom.
In some embodiments, a sampling unit (e.g., sampling unit 1521, sampling unit 1522, sampling unit 1523, and/or sampling unit 1524) in the sampling module may sample the sub-band signal received and generate a digital signal based on the sampled sub-band signal. For example, the sampling unit 1521, the sampling unit 1522, the sampling unit 1523, and the sampling unit 1524 may sample the sub-band signals and generate a digital signal 1551, a digital signal 1552, a digital signal 1553, and a digital signal 1554, respectively.
In some embodiments, the sampling unit may sample a sub-band signal using a band pass sampling technique. For example, a sampling unit may be configured to sample a sub-band signal using band pass sampling with a sampling frequency according to the frequency band of the sub-band signal. Merely by way of example, the sampling unit may sample a sub-band signal with a frequency band that is no less than two times the bandwidth of the frequency band of the sub-band signal. In some embodiments, the sampling unit may sample a sub-band signal with a frequency band that is no less than two times the bandwidth of the frequency band of the sub-band signal and no greater than four times the bandwidth of the frequency band of the sub-band signal. In some embodiments, by using a band pass sampling technique rather than a bandwidth sampling technique or a low-pass sampling technique, a sampling unit may sample a sub-band signal with a relatively low sampling frequency, reducing the difficulty and cost of the sampling process. Also, by using bandpass sampling technique, little noise or signal distortion may be introduced in the sampling process. As described in connection with
The sampling unit may transmit the generated digital signal to the signal processing module 1540. In some embodiments, the digital signals may be transmitted via parallel transmitters. In some embodiments, the digital signals may be transmitted via a transmitter according to a certain communication protocol. Exemplary communication protocol may include AES3 (audio engineering society), AES/EBU (European broadcast union)), EBU (European broadcast union), ADAT (Automatic Data Accumulator and Transfer), I2S (Inter—IC Sound), TDM (Time Division Multiplexing), MIDI (Musical Instrument Digital Interface), CobraNet, Ethernet AVB (Ethernet Audio/VideoBridging), Dante, ITU (International Telecommunication Union)-T G.728, ITU-T G.711, ITU-T G.722, ITU-T G.722.1, ITU-T G.722.1 Annex C, AAC (Advanced Audio Coding)-LD, or the like, or a combination thereof. The digital signal may be transmitted in a certain format including a CD (Compact Disc), WAVE, AIFF (Audio Interchange File Format), MPEG (Moving Picture Experts Group)-1, MPEG-2, MPEG-3, MPEG-4, MIDI (Musical Instrument Digital Interface), WMA (Windows Media Audio), RealAudio, VQF (Transform-domain Weighted Nterleave Vector Quantization), AMR (Adaptive Multi-Rate), APE, FLAC (Free Lossless Audio Codec), AAC (Advanced Audio Coding), or the like, or a combination thereof.
The signal processing module 1540 may process the data received from other components in the signal processing device 1500. For example, the signal processing module 1540 may process the digital signals transmitted from the sampling units in the sampling module 1520. The signal processing module 1540 may access information and/or data stored in the sampling module 1520. As another example, the signal processing module 1540 may be directly connected to the sampling module 1520 to access stored information and/or data. In some embodiments, the signal processing module 1540 may be implemented by a processor such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC), an application specific integrated circuits (ASICs), an application-specific instruction-set processor (ASIP), a central processing unit (CPU), a graphics processing unit (GPU), a physics processing unit (PPU), a microcontroller unit, a digital signal processor (DSP), a field programmable gate array (FPGA), an advanced RISC machine (ARM), a programmable logic device (PLD), any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
It should be noted that the above descriptions of the signal processing device 1500 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For a person having ordinary skill in the art, multiple variations and modifications may be made under the teaching of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the signal processing device 1500 may further include a storage to store the signals received from other components in the signal processing device 1500 (e.g., the acoustic-electric transducing module 1510, and/or the sampling module 1520). Exemplary storage may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM), or the like, or a combination thereof. As another example, one or more transmitters may be omitted. The plurality of sub-band signals may be transmitted by media of wave such as infrared wave, electromagnetic wave, sound wave, or the like, or a combination thereof. As a further example, the acoustic-electric transducing module 1510 may include 2, 3, or 4 acoustic-electric transducers.
In 1610, an audio signal 1505 may be detected. The audio signal 1505 may be detected by a plurality of acoustic-electric transducers. In some embodiments, the acoustic-electric transducers may have different frequency responses. The plurality of acoustic-electric transducers may be arranged in the same signal processing device 1500 as illustrated in
In 1620, a plurality of sub-band signals may be generated according to the audio signal 1505. The plurality of sub-band signals may be generated by the plurality of acoustic-electric transducers. At least two of the generated sub-band signals may have different frequency bands. Each sub-band signal may have a frequency band that is within the frequency band of the audio signal 1505.
It should be noted that the above description regarding the process 1600 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For a person having ordinary skill in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, one or more operations in process 1600 may be omitted, or one or more additional operations may be added. For example, the process 1600 may further include an operation for sampling the sub-band signals after operation 1620.
The acoustic channel component 1710 may affect the path through which an audio signal is transmitted to the sound sensitive component 1720 by the acoustic channel component 1710's acoustic structure, which may process the audio signal before the audio signal reaches the sound sensitive component 1720. In some embodiments, the audio signal may be an air-conduction-sound signal, and the acoustic structure of the acoustic channel component 1710 may be configured to process the air-conduction-sound signal. Alternatively, the audio signal may be a bone-conduction-sound signal, and the acoustic structure of the acoustic channel component 1710 may be configured to process the bone-conduction-sound signal. In some embodiments, the acoustic structure may include one or more chamber structures, one or more pipe structures, or the like, or a combination thereof.
In some embodiments, the acoustic impedance of an acoustic structure may change according to the frequency of a detected audio signal. In some embodiments, the acoustic impedance of an acoustic structure may change within a certain range. Thus, in some embodiments, the frequency band of an audio signal may cause corresponding changes in the acoustic impedance of an acoustic structure. In other words, the acoustic structure may function as a filter that processes a sub-band of a detected audio signal. In some embodiments, an acoustic structure mainly including a chamber structure may function as a high-pass filter, while an acoustic structure mainly including a pipe structure may function as a low-pass filter.
In some embodiments, the acoustic impedance of an acoustic structure which mainly includes a chamber structure may be determined according to Equation (5) as follows:
Where Z refers to the acoustic impedance, ω refers to the angular frequency (e.g., the chamber structure), j refers to a unit imaginary number Ca refers to the sound capacity, ρ0 refers to the density of air, c0 refers to the speed of sound, and V0 refers to the equivalent volume of the chamber.
In some embodiments, the acoustic impedance of an acoustic structure which mainly includes a pipe structure may be determined according to Equation (6) as follows:
Where Z refers to the acoustic impedance, Ma refers to the acoustic mass, ω refers to the angular frequency of the acoustic structure (e.g., the pipe structure), ρ0 refers to the density of air, l0 refers to the equivalent length of the pipe, and S refers to the cross-sectional area of the orifice.
A chamber-pipe structure is a combination of the sound capacity and the acoustic mass in serial, for example, a Helmholtz resonator, and an inductor-capacitor (LC) resonance circuit may be formed. The acoustic impedance of a chamber-pipe structure may be determined according to Equation (7) as follows:
According to Equation (7), a chamber-pipe structure may function as a bandpass filter. The center frequency of the bandpass filter may be determined according to Equation (8) as follows:
ω0=√{square root over (MaCa)} (8).
If an acoustic resistance material is used in the chamber-pipe structure, a resistor-inductor-capacitor (RLC) series loop may be formed, and the acoustic impedance of the RLC series loop may be determined according to Equation (9) as follows:
where Ra refers to the acoustic resistance of the RLC series loop. The chamber-pipe structure may also function as a band pass filter. The adjustment of the acoustic resistance Ra may change the bandwidth of the band pass filter. The center frequency of the bandpass filter may be determined according to Equation (10) as follows:
ω0=√{square root over (MaCa)} (10).
The sound sensitive component 1720 may convert the audio signal transmitted by the acoustic-channel component to an electric signal. For example, the sound sensitive component 1720 may convert the audio signal into changes in electric parameters, which may be embodied as an electric signal. The structure of the sound sensitive component 1720 may include diaphragms, plates, cantilevers, etc. In some embodiments, the sound sensitive component 1720 may include one or more diaphragms. Details regarding the structure of a sound sensitive component 1720 including a diaphragm may be found elsewhere in this disclosure (e.g.,
As described in connection with the acoustic channel component 1710, the acoustic channel component 1710 or the sound sensitive component 1720 may function as a filter. A structure including an acoustic channel component 1710 and a sound sensitive component 1720 may also function as a filter. Detailed description of the structure may be found in
In some embodiments, by modifying parameter(s) (e.g. structure parameters) of an acoustic channel component 1710 and/or a sound sensitive component 1720, the frequency response of the combination of the acoustic channel component 1710 and the sound sensitive component 1720 may be adjusted accordingly. For example,
In some embodiments, the frequency response of a combination of an acoustic channel component 1710 and a sound sensitive component 1720 may be related to the frequency response of the acoustic channel component 1710 and/or the frequency response of the sound sensitive component 1720. For example, the steepness of the edges of the frequency response of the combination of the acoustic channel component 1710 and the sound sensitive component 1720 may be related to the extent to which the cutoff frequency of the frequency response of the acoustic channel component 1710 is close to the cutoff frequency of the frequency response of the sound sensitive component 1720. The edges of the frequency response of the combination of the acoustic channel component 1710 and the sound sensitive component 1720 may be steeper, when the cutoff frequency of the frequency response of the acoustic channel component 1710 and the cutoff frequency of the frequency response of the sound sensitive component 1720 are closer to each other. For example,
In some embodiments, one or more structure parameters of the acoustic channel component 1710 and/or the sound sensitive component 1720 may be modified or adjusted. For example, the spacing between different elements in the acoustic channel component 1710 and/or the sound sensitive component 1720 may be adjusted by a motor, which is driven by the feedback module illustrated elsewhere in the present disclosure. As another example, the current flowing through the sound sensitive component 1720 may be adjusted under instructions sent, e.g., by the feedback module. The adjustment of one or more structure parameters of the acoustic channel component 1710 and/or the sound sensitive component 1720 may result in changes in the filtering characteristic thereof.
The circuit component 1730 may detect the changes in electric parameters (e.g., an electric signal). In some embodiments, the circuit component 1730 may perform one or more functions on electric signals for further processing. Exemplary functions may include amplification, modulation, simple filtering, or the like, or a combination thereof. In some embodiments, via adjusting one or more parameters of the circuit component 1730, a sensitivity of corresponding pass-bands may be adjusted to match each other. In some embodiments, the circuit components 1730 may adjust the sensitivity of one or more pass-bands according to conditions such as a preset instruction, a feedback signal, or a control signal transmitted by a controller, or the like, or a combination thereof. In some embodiments, the circuit components 1730 may adjust the sensitivity of one or more pass-bands automatically.
In some embodiments, the sound sensitive component 1720 may be a diaphragm.
Where Mm refers to the mass of the diaphragm, Km refers to the elasticity coefficient of the diaphragm, and Rm refers to the damping of the diaphragm. Rm may be adjusted to modify the bandwidth of the filter implemented by the RLC series circuit. In some embodiments, the acoustic structure, which may affect the path through which an audio signal is transmitted to the sound sensitive component 1720, or the sound sensitive component 1720, which may convert the audio signal to an electric signal, may affect the audio signal in both frequency domain and time domain. In some embodiments, one or more characteristics of the sound sensitive component 1720 may be adjusted by adjusting one or more non-linear time-varying characteristics of the materials of the sound sensitive component 1720 to meet certain filtering requirements. Exemplary non-linear time-varying characteristics may include hysteresis delay, creep, non-Newtonian characteristics, or the like, or a combination thereof.
As shown in
In some embodiments, the frequency responses of the first sound sensitive component and the second sound sensitive component may intersect with each other. In some embodiments, the frequency responses of the first sound sensitive component and the second sound sensitive component may intersect at a frequency point that is not near the half-power point. As described in connection with
The center frequency of the second underdamping sound sensitive component (or referred to as a fifth center frequency) is higher than the center frequency of the first underdamping sound sensitive (or referred to as a fourth center frequency), and the center frequency of the third underdamping sound sensitive component (or referred to as a sixth center frequency) is higher than the center frequency of the second underdamping sound sensitive.
In some embodiments, the fourth frequency response and the fifth frequency response intersect at a point which is near a half-power point of the fourth frequency response and a half-power point of the fifth frequency response. That is, the fourth frequency response and the fifth frequency response intersect at a point with a power level no smaller than −5 dB and no larger than −1 dB.
As described in connection with
In some embodiments, three sound sensitive components may be connected in series. As known to those skilled in the art, a sound sensitive component may have a lower cut-off frequency and an upper cut-off frequency. In some embodiments, the center frequency of any of the three sound sensitive components may be larger than the smallest cut-off frequency among the lower cut-off frequencies of the three sound sensitive components, and no larger than the largest cut-off frequency among the upper cut-off frequencies of the three sound sensitive components.
The frequency response of the transducer 4 intersects with the frequency response of the transducer 5 at a frequency point near the half-power point, and the frequency response of the transducer 5 intersects with the frequency response of the transducer 6 at a frequency point near the half-power point. For example, the frequency response of the transducer 4 and the frequency response of the transducer 5 intersect at a point which is near a half-power point of the frequency response of the transducer 4 and a half-power point of the frequency response of the transducer 5. As illustrated, the frequency response of the transducer 4 and the frequency response of the transducer 5 intersect at a point with a power level no smaller than −5 dB and no larger than −1 dB.
As illustrated in
Frequency responses of the acoustic-electric transducers may intersect with each other at certain frequency points, resulting in a certain overlap range between the frequency responses. As used herein, an overlap range relates to the frequency point at which the frequency responses intersect with each other. The overlap of the frequency responses of acoustic-electric transducers may cause interferences in adjacent channels that are configured to output electric signals generated by the acoustic-electric transducers in the acoustic-electric transducing module 1510. In some cases, the larger the overlap range, the more interference may be. The center frequencies and bandwidths of the response frequencies of the acoustic-electric transducers may be adjusted to obtain a narrower overlap range among frequency responses of the acoustic-electric transducers.
For example, the acoustic-electric transducing module 1510 may include multiple first-order acoustic-electric transducers. The center frequency of each of the acoustic-electric transducers may be adjusted by adjusting structure parameters thereof, to achieve certain overlap ranges. The overlap range between two frequency responses of two adjacent acoustic-electric transducers may relate to the interference range between the sub-band signals output by the acoustic-electric transducers. In an ideal scenario, no overlap range between two frequency responses of two adjacent acoustic-electric transducers. In practice, however, a certain overlap range may exist between two frequency responses of two adjacent acoustic-electric transducers, which may affect the quality of the sub-band signals output by the two acoustic-electric transducers. If a relatively small overlap range between two frequency responses of two adjacent acoustic-electric transducers, the frequency response of a combination of the two adjacent acoustic-electric transducers may decrease within the overlap range. The decrease in the frequency response in a certain frequency band may indicate the decrease of power level in the frequency band. As used herein, the overlap range between two frequency responses may be deemed relatively small when the frequency responses intersect at a frequency point with a power level smaller than −5 dB. If a relatively large overlap band exists between two frequency responses of two adjacent acoustic-electric transducers, the frequency response of a combination of the two adjacent acoustic-electric transducers may increase within the overlap range. The increase in the frequency response in a certain frequency band may indicate a higher power level in the frequency band compared with that in other frequency ranges. The overlap range between two frequency responses may be deemed relatively small when the frequency responses intersect at a frequency point with a power level larger than −1 dB. When the frequency responses of two adjacent acoustic-electric transducers intersect near or at half-power point, the frequency response of each acoustic-electric transducer may contribute to the frequency response of a combination of the two adjacent acoustic-electric transducers in a such a manner that there is no loss nor repetition of energies in certain frequency bands, which may result in a proper overlap band between the frequency responses of two adjacent acoustic-electric transducers. The frequency responses of two adjacent acoustic-electric transducers may be deemed to intersect near or at half-power point when the frequency responses intersect at a frequency point with a power level no smaller than −5 dB and no larger than −1 dB. In some embodiments, via adjusting structure parameters of at least one acoustic-electric transducer of the two adjacent acoustic-electric transducers, the center frequency and the frequency bandwidth of the at least one acoustic-electric transducer of the two adjacent acoustic-electric transducers may be adjusted, resulting in adjusted overlap regions among the acoustic-electric transducers accordingly.
In some embodiments, the acoustic-electric transducers in the acoustic-electric transducing module 1510 may be underdamping bandpass acoustic-electric transducers. In some embodiments, an underdamping bandpass acoustic-electric transducer may have a steeper slope than a non-underdamping bandpass acoustic-electric transducer, near the resonance peak in the frequency response of the acoustic-electric transducer. In some embodiments, the maximum number of acoustic-electric transducers allowed in a certain frequency band may be determined according to the filtering characteristics of the bandpass acoustic-electric transducers. For example, given that the frequency responses of the acoustic-electric transducers intersect with each other at half-power points, for a certain frequency range, the maximum number of the acoustic-electric transducers of certain order that may be allowed to be included in one acoustic-electric transducing module 1510 may be shown in table 1:
For example, for the frequency band 20 Hz-20 kHz, an acoustic-electric transducing module 1510 may include no more than 10 first-order acoustic-electric transducers. In some embodiments, via adjusting of one or more acoustic-electric transducers in an acoustic-electric transducing module 1510 to an under-damped state, the acoustic-electric transducing module 1510 may have a larger order. It is to be expressly understood, however, that Table 1 is for the purpose of illustration and description only and is not intended to limit the scope of the present disclosure. In some embodiments, various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure and are within the spirit and scope of the exemplary embodiments of this disclosure. In some embodiments, the acoustic-electric transducing module 1510 may include a plurality of first acoustic-electric transducers. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 10 first-order acoustic-electric transducers, wherein each first-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 20 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 20 second-order acoustic-electric transducers, wherein each second-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 20 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 30 third-order acoustic-electric transducers, wherein each third-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 20 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 40 fourth-order acoustic-electric transducers, wherein each fourth-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 20 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 8 first-order acoustic-electric transducers, wherein each first-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 8 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 13 second-order acoustic-electric transducers, wherein each second-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 8 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 19 third-order acoustic-electric transducers, wherein each third-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 8 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 26 fourth-order acoustic-electric transducers, wherein each fourth-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 8 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 4 first-order acoustic-electric transducers, wherein each first-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 4 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 8 second-order acoustic-electric transducers, wherein each second-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 4 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 12 third-order acoustic-electric transducers, wherein each third-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 4 kHz. In some embodiments, the acoustic-electric transducing module 1510 includes no more than 15 fourth-order acoustic-electric transducers, wherein each fourth-order acoustic-electric transducer corresponds to a frequency band whose width is no larger than 4 kHz.
In some embodiments, the acoustic-electric transducing module may be regarded as a filter configured to achieve a designated filtering effect. In some embodiments, the filter may be a first-order filter or a multi-order filter. In some embodiments, the filter may be a linear or non-linear filter. In some embodiments, the filter may be a time-varying or non-time-varying filter. The filter may include a resonance filter, a Roex function filter, a Gamatone filter, a Gamachirp filter, etc.
In some embodiments, acoustic-electric transducing module may be a Gamatone filter. Specifically, bandwidths of the frequency responses of acoustic-electric transducers in the acoustic-electric transducing module may be different. Further, the acoustic-electric transducer having a higher center frequency may be set to have a larger bandwidth. Further, in some embodiments, the center frequency fc of an acoustic-electric transducer may be determined according to Equation (12) as follows:
where fH refers to the cutoff frequency, and a refers to the overlap factor.
The bandwidth B of the acoustic-electric transducer may be set according to Equation (13) as follows:
The acoustic channel component 1710 may include a second-order component 2750. The sound sensitive component 1720 may include a second-order bandpass diaphragm 2721, and a closed chamber 2722. The circuit component 1730 may include a capacitance detection circuit 2731, and an amplification circuit 2732.
The acoustic-electric transducer 1511 may be an air-conduction acoustic-electric transducer with two cavities. A diaphragm of the second-order bandpass diaphragm 2721 may be used to convert a change of sound pressure caused by an audio signal on the diaphragm surface into a mechanical vibration of the diaphragm. The capacitance detection circuit 2731 may be used to detect the change of a capacitance between the diaphragm and a plate caused by the vibration of the diaphragm. The amplification circuit 2732 may be used to adjust the amplitude of the output voltage. A sound hole may be provided in a first chamber, and the sound hole may be provided with an acoustic resistance material as needed. A second chamber may be closed. The acoustic impedance of the sound hole and the surrounding air may be inductive. The resistive material may have acoustic impedance. The first chamber may have capacitive acoustic impedance. The second chamber may have capacitive acoustic impedance. As used herein, the first chamber may also be referred to as a front chamber, and the second chamber may be referred to as a rear chamber.
The acoustic force generator may detect an audio signal 2701, and may include a first chamber 1404 and a second chamber 2706. The first chamber 1404 may include a sound hole 2702 and a sound resistance material 2703 embedded in the sound hole 2702. The first chamber 2704 and the second chamber 2706 may be separated by a diaphragm 2707. The diaphragm 2707 may connect an elastic component 2708.
In the circuit, circuit current corresponds to a vibration velocity of the diaphragm 2712. The vibration velocity VMm may be determined according to Equation (14) as follows:
where ω refers to the angular frequency of the acoustic structure (e.g., the acoustic force structure illustrated in
where ω refers to the angular frequency of the acoustic structure (e.g., the acoustic force structure illustrated in
Further, a capacitance change output by the system is related to a distance between the diaphragm and the plate, and the distance between the diaphragm and the plate is related to deformation of the diaphragm (displacement of the diaphragm). Therefore, the displacement of the diaphragm may be determined according to Equation (16) as follows:
Wherein the descriptions of P, S, Ra1, Ma1, and Ca1 may be found in
A transfer function of the system may be determined according to equation (17) as follows:
where ω refers to the angular frequency of the acoustic structure (e.g., the acoustic force structure illustrated in
By performing a Laplace transform, the transfer function may be expressed as follows:
As a result, a combination of the first chamber corporate with a sound hole may function as a multi-order bandpass filter (e.g., a second-order bandpass filter), and a combination of the second chamber, which a closed-chamber and the diaphragm may function as a second-order bandpass filter. The diaphragm, which may function as an acoustic-sensitive element, may convert the audio signal into a change of a capacitance between the diaphragm and the plate. In some embodiments, a fourth-order system may be formed by combining the acoustic channel component and the acoustic-sensitive component.
An acoustic-electric transducer constructed in accordance with the above-described configuration may function as a bandpass filter. A plurality of the acoustic-electric transducers with different filtering characteristics may be set in the acoustic-electric transducing module 1510 to form a filter group, which may generate a plurality of sub-band signals according to the audio signal. In some embodiments, the acoustic-electric transducer may be adjusted to a non-underdamping state through adjustment of damping of the acoustic resistance material and the diaphragm of the acoustic-electric transducer. A frequency bandwidth of each acoustic-electric transducer may be set to increase as a center frequency increases.
The acoustic-electric transducer 1511 may be an air-conduction acoustic-electric transducer with two cavities. A diaphragm of the multi-order bandpass diaphragm 2921 may be used to convert sound pressure change caused by an audio signal 1505 on the diaphragm surface into a mechanical vibration of the diaphragm. The capacitance detection circuit 2931 may be used to detect a change of a capacitance between the diaphragm and a plate caused by the vibration of the diaphragm. The amplification circuit 2932 may be used to adjust an output voltage to a suitable amplitude. A sound hole may be provided in a first chamber, and the sound hole may be provided with an acoustic resistance material as required. A second chamber may be closed.
As described in connection with
The acoustic-electric transducer 1511 may include a sound sensitive component 1720, and a circuit component 1730. The sound sensitive component 1720 may include a second-order bandpass cantilever 3021. The circuit component 1730 may include a detection circuit 3031, and an amplification circuit in 3032.
A cantilever may obtain audio signals transmitted to the cantilever, and cause changes of electric parameters of a cantilever material. The audio signal may include an air-conduction signal, a bone-conduction signal, a hydro audio signal, a mechanical vibration signal, or the like, or a combination thereof. The cantilever material may include a piezoelectric material. The piezoelectric material may include a piezoelectric ceramic or piezoelectric polymers. The piezoelectric ceramic may include PZT. The detection circuit 3031 may detect changes of electric signals of the cantilever material. The amplification circuit 3032 may adjust the amplitudes of the electric signals.
According to a circuit corresponding to the cantilever (which is similar to the circuit corresponding to the diaphragm in
Where Z refers to the impedance of the cantilever, ω prefers to the angular frequency of the acoustic structure (e.g., the cantilever), j refers to a unit imaginary number, R refers to damping of the cantilever, M refers to the mass of the cantilever, and K refers to then elasticity coefficient of the cantilever.
In some embodiments, the cantilever may function as a second-order system, and an angular frequency may be determined according to Equation (25) as follows:
where ω0 refers to the angular frequency, M refers to the mass of the cantilever, and K refers to then elasticity coefficient of the cantilever.
Cantilever vibration may have a resonant peak at its angular frequency. Thus, the audio signal may be filtered using the cantilever. Further, when a filter bandwidth is calculated at a half-power point, corresponding cutoff frequencies may be determined according to Equation (26) and Equation (27) as follows:
where R refers to damping of the cantilever, M refers to the mass of the cantilever, and K refers to then elasticity coefficient of the cantilever.
A quality factor of the cantilever filtering (referred as Q below) may be determined according to Equation (28) as follows:
where R refers to damping of the cantilever, M refers to the mass of the cantilever, and K refers to then elasticity coefficient of the cantilever.
It can be seen that, after the angular frequency (center frequency) of the cantilever filter is determined, the quality factor Q of the cantilever filtering may be changed by adjusting the damping R. The smaller the damping R is, the larger the quality factor R is, the narrower the filter bandwidth is, and the sharper a filter frequency response curve is.
The acoustic-electric transducing module may include 19 acoustic-electric transducers. 19 dashed lines in
A cantilever may obtain an audio signal, and cause changes of electric parameters of a cantilever material. The audio signal may include an air-conduction signal, a bone-conduction signal, a hydro audio signal, a mechanical vibration signal, etc. The cantilever material may include a piezoelectric material. The piezoelectric material may include a piezoelectric ceramic or piezoelectric polymers. The piezoelectric ceramic may include PZT. The detection circuit 3231 may detect changes of electric signals of the cantilever material. The amplification circuit 3233 may adjust the amplitude of the electric signals. In some embodiments, the suspension structure is connected with a base through an elastic member, and vibration of bone conduction audio signals acts on the suspension structure. The suspension structure and the corresponding elastic member may transmit the vibration to the cantilever and constitute an acoustic channel for transmitting the audio signal, which may function as a second-order bandpass filter. The cantilever attached to the suspension structure may also function as a second-order bandpass filter.
An impedance of the system (referred to as Z below) to the inputted signal may be determined according to Equation (29) as follows:
where ω refers to the angular frequency of the acoustic structure (e.g., the cantilever), j refers to a unit imaginary number, Z1 refers to the impedance of the second cantilever 3201, Z2 refers to the impedance of the first cantilever 3202, R1 refers to the acoustic resistance of the second cantilever 3201, R2 refers to the acoustic resistance of the first cantilever 3202, M1 refers to the mass of the second cantilever 3201, M2 refers to the mass of the first cantilever 3202, K1 refers to the elastic modulus of the second cantilever 3201, and K2 refers to the elastic modulus of the first cantilever 3202.
The amplitude of the current in the circuit may correspond to a vibration velocity of the cantilever M2; therefore, the vibration velocity vM2 of the cantilever M2 may be determined according to Equation (30) and Equation (31) as follows:
where F refers to the sound force of an audio signal received, ω refers to the angular frequency of the acoustic structure (e.g., the cantilever), j refers to an unit imaginary number, Z1 refers to the acoustic impedance of the second cantilever 3201, Z2 refers to the acoustic impedance of the first cantilever 3202, R1 refers to the acoustic resistance of the second cantilever 3201, R2 refers to the acoustic resistance of the first cantilever 3202, M1 refers to the mass of the second cantilever 3201, M2 refers to the mass of the second cantilever 3201, K1 refers to the elastic modulus of the second cantilever 3201, and K2 refers to the elastic modulus of the first cantilever 3202.
In some embodiments, the displacement sM2 of the cantilever under the audio signal may be determined according to Equation (32) and Equation (33) as follows:
where F refers to the sound force of an audio signal received, (prefers to the angular frequency of the acoustic structure (e.g., the cantilever), j refers to an unit imaginary number, R1 refers to the acoustic resistance of the second cantilever 3201, R2 refers to the acoustic resistance of the first cantilever 3202, M1 refers to the mass of the second cantilever 3201, M2 refers to the mass of the second cantilever 3201, K1 refers to the elastic modulus of the second cantilever 3201, and K2 refers to the elastic modulus of the first cantilever 3202.
By performing a Laplace transform, the transfer function may be expressed as follows:
It can be known from the transfer function that it is a fourth-order system, and an order of the band-pass filter can be increased by the above setting method. In addition, the filter circuit 3232 may be added in the circuit component 1730 so that the corresponding electric signal may be filtered. The above setting may cause a slope of the filtering frequency response edge of the sound-electric transducer to the audio signal to be larger, and filtering effect to be better.
The acoustic-electric transducing module 1510 may generate sub-band signals according to an audio signal using a plurality of acoustic-electric transducers. The acoustic-electric transducers may function as bandpass filters. For different frequency bands to be processed, corresponding acoustic-electric transducers may be set to have a different frequency response. In some embodiments, the bandwidths of the acoustic-electric transducers in the acoustic-electric transducing module 1510 may be different. The bandwidth of the acoustic-electric transducer may be set to increase with its center frequency. In some embodiments, the acoustic-electric transducer may be a high-order acoustic-electric transducer. In some embodiments, for a low-middle frequency band, the corresponding acoustic-electric transducer may be high-order narrow-band. In a middle-high frequency band, the acoustic-electric transducer may be high-order wideband.
As shown in
The acoustic-electric transducing module 1510 may obtain an audio signal 1505, and output a plurality of sub-band electric signals, e.g., sub-band electric signals 3321, 3322, 3323, . . . , 3324.
As shown in
The sound sensitive component 1720 may include a plurality of underdamping sound-sensitive sub-components (e.g., underdamping sound-sensitive sub-components 3310, 3330, . . . , 3350). The plurality of underdamping sound-sensitive sub-components may be connected in series. Center frequencies of the underdamping sound-sensitive sub-components may be the same or close to each other. Multiple underdamping sound-sensitive sub-components being connected in series may increase the order of filtering characteristics of the sound sensitive component 1720. Each underdamping sound-sensitive sub-component may reduce bandwidth and achieve narrow-band filtering. In some embodiments, the transducer may function as a high-order narrow-band acoustic-electric transducer. As shown in
As shown in
As shown in
Each of the plurality of acoustic-electric transducer may convert the audio signal 1505 into a sub-band electric signal and output a corresponding sub-band electric signal.
Each of the plurality of sampling modules may sample a corresponding sub-band electric signal, convert the sub-band electric signal into a digital signal, and output the digital signal.
The feedback analysis module 1530 may obtain a plurality of digital signals (e.g., digital signals 1551, 1552, 1553, 1554) transmitted by the plurality of sampling modules. The feedback analysis module 1530 may analyze each digital signal corresponding to the sub-band electric signal, output a plurality of feedback signals (e.g., feedback signals 1, 2, 3, . . . , N) and transmit each feedback signal to a corresponding acoustic-electric transducer. The corresponding acoustic-electric transducer may adjust its parameters based on the feedback signal.
The signal processing module 1540 may obtain a plurality of digital signals (e.g., digital signals 3655, 3656, 3657, 3658) transmitted by the feedback analysis module 1530. A transmission mode of digital signals may be separately output through different parallel lines or may share one line according to a specific transmission protocol.
The feedback processing component 1760 may be configured to obtain a feedback signal 1770 from the feedback analysis module 1530 and adjust parameters of the acoustic-electric transducer 1511.
In some embodiments, the feedback processing component 1760 may adjust at least one of the acoustic channel component 1710, the sound sensitive component 1720, and the circuit component 1730.
In some embodiments, the feedback processing component 1760 may adjust parameters (e.g., size, position, and connection manner) of the acoustic channel component to adjust filtering characteristics of the acoustic channel component 1710 using electromechanical control systems. Exemplary electromechanical control systems may include pneumatic mechanisms, motor-driven mechanisms, hydraulic actuators, or the like, or a combination thereof.
In some embodiments, the feedback processing component 1760 may adjust parameters (e.g., size, position, or connection manner) of the sound sensitive component 1720 to adjust filtering characteristics of the sound sensitive component using electromechanical control systems.
In some embodiments, the feedback processing component 1760 may include a feedback circuit that is directly coupled to the circuit component 1730 to adjust the circuit component 1730.
The acoustic-electric transducing module 1510 may include a plurality of acoustic-electric transducers, (e.g., acoustic-electric transducers 1511, 1512, 1513, . . . , 1514).
As shown in
Each of the plurality of acoustic-electric transducer may convert the audio signal 1505 into a corresponding sub-band electric signal output the corresponding sub-band electric signal. Each of the plurality of sampling units may sample a corresponding sub-band electric signal, convert the sub-band electric signal into a digital signal, and output the digital signal.
The signal processing module 1540 may obtain the plurality of digital signals (e.g., digital signals 1551, 1552, 1553, 1554) transmitted by the plurality of sampling units. Digital signals may be separately output through different parallel lines or may share one line according to a specific transmission protocol.
The feedback analysis module 1530 may obtain a plurality of digital signals (e.g., digital signals 3655, 3656, 3657, 3658) transmitted by the signal processing module 1540. The feedback analysis module 1530 may analyze each digital signal corresponding to a sub-band electric signal, output a plurality of feedback signals (e.g., feedback signals 1, 2, 3, . . . , N) and transmit each feedback signal to a corresponding acoustic-electric transducer. The corresponding acoustic-electric transducer may adjust its parameters based on the feedback signal.
The acoustic-electric transducer 1511 in the signal processing device 3500 may be similar to the acoustic-electric transducer 1511 in the signal processing device 3400. More detailed descriptions about the acoustic-electric transducer 1511 in the signal processing device 3500 may be found elsewhere in the present disclosure (e.g.,
The acoustic-electric transducing module 1510 may include a plurality of acoustic-electric transducers (e.g., acoustic-electric transducers 1511, 1512, 1513, . . . , 1514).
As shown in
Air-conduction acoustic-electric transducers may detect the audio signal and output a plurality of sub-band electric signals. Each air-conduction acoustic-electric transducer may output a corresponding sub-band electric signal. For example, the air-conduction acoustic-electric transducer 3715, 2517, 3718 may detect the audio signal respectively, and correspondingly output sub-band electric signals 3721, 3722, 3723.
Bone-conduction acoustic-electric transducers may detect the audio signal and output a plurality of sub-band electric signals. Each bone-conduction acoustic-electric transducer may output a corresponding sub-band electric signal. For example, the bone-conduction acoustic-electric transducer 3718 and 3719 may detect the audio signal respectively, and correspondingly output the sub-band electric signals 3724 and 3715.
In some embodiments, at the same frequency band, the sub-band electric signal output by the bone-conduction acoustic-electric transducer may be used to enhance the signal-to-noise ratio (SNR) of the sub-band electric signals output by the air-conduction acoustic-electric transducer. For example, the sub-band electric signal 3722 generated by the air-conduction acoustic-electric transducer 3716 may superpose the sub-band electric signal 3724 generated by the bone-conduction acoustic-electric transducer 3718. The sub-band electric signal 3724 may have higher SNR with respect to the sub-band electric signal 3722. The sub-band electric signal 3723 output by the air-conduction acoustic-electric transducer 3717 may superpose the sub-band electric signal 3725 output by the bone-conduction acoustic-electric transducer 3719. The sub-band electric signal 3725 may have a higher SNR than that of the sub-band electric signal 3723.
In some embodiments, the air-conduction acoustic-electric transducer 2401 may be used to supplement a frequency band that cannot be covered by the sub-band electric signals output by the bone-conduction acoustic-electric transducer 2402.
Each sub-band electric signal may be considered as a signal (or referred to as a modulation signal) having a frequency domain envelope (which is the same as the frequency domain envelope 3801) that is modulated by a corresponding center frequency signal as a carrier to the center frequency 3802. That is, the sub-band electric signal may include two parts. One part is a signal having a frequency domain envelope (which is same as the frequency domain envelope 3801) as a modulation signal, and the other part is a signal having a center frequency (which is the same as the center frequency 3802) as a carrier.
Main information of the sub-band electric signal is concentrated in the frequency domain envelope. Therefore, when the sub-band electric signal is sampled, it is necessary to ensure that the frequency domain envelope is effectively sampled, and a sampling frequency is not less than 2 times a bandwidth of the sub-band electric signal. After sampling, the second signal having a frequency (which is the same as the center frequency 3802) may be used as the carrier to restore the sub-band electric signal. Thus, the sub-band electric signal may be sampled using the bandpass sampling module. Specifically, the sampling frequency may be not less than 2 times the bandwidth and not more than 4 times the bandwidth. The sampling frequency fs is set according to Equation (40) as follows:
fs=2fB(r1/r2) (40),
where fB refers to the bandwidth of the sub-band electric signal, and
where f0 refers to the center frequency of the sub-band electric signal, and r2 is a largest integer less than r1.
To implement various modules, units, and their functionalities described in the present disclosure, computer hardware platforms may be used as the hardware platform(s) for one or more of the elements described herein. A computer with user interface elements may be used to implement a personal computer (PC) or any other type of work station or terminal device. A computer may also act as a server if appropriately programmed.
The embodiments described above are merely implements of the present disclosure, and the descriptions may be specific and detailed, but these descriptions may not limit the present disclosure. It should be noted that those skilled in the art, without deviating from concepts of the bone conduction speaker, may make various modifications and changes to, for example, the sound transfer approaches described in the specification, but these combinations and modifications are still within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201110438083.9 | Dec 2011 | CN | national |
This application is a continuation-in-part application of U.S. patent application Ser. No. 17/170,817, filed on Feb. 8, 2021, which is a continuation of U.S. patent application Ser. No. 17/161,717, filed on Jan. 29, 2021, which is a continuation-in-part application of U.S. patent application Ser. No. 16/159,070 (issued as U.S. Pat. No. 10,911,876), filed on Oct. 12, 2018, which is a continuation of U.S. patent application Ser. No. 15/197,050 (issued as U.S. Pat. No. 10,117,026), filed on Jun. 29, 2016, which is a continuation of U.S. patent application Ser. No. 14/513,371 (issued as U.S. Pat. No. 9,402,116), filed on Oct. 14, 2014, which is a continuation of U.S. patent application Ser. No. 13/719,754 (issued as U.S. Pat. No. 8,891,792), filed on Dec. 19, 2012, which claims priority to Chinese Patent Application No. 201110438083.9, filed on Dec. 23, 2011; U.S. patent application Ser. No. 17/161,717, filed on Jan. 29, 2021 is also a continuation-in-part application of U.S. patent application Ser. No. 16/833,839, filed on Mar. 30, 2020, which is a continuation of U.S. application Ser. No. 15/752,452 (issued as U.S. Pat. No. 10,609,496), filed on Feb. 13, 2018, which is a national stage entry under 35 U.S.C. § 371 of International Application No. PCT/CN2015/086907, filed on Aug. 13, 2015; this application is also a continuation-in-part of U.S. patent application Ser. No. 16/822,151 filed on Mar. 18, 2020, which is a continuation of International Application No. PCT/CN2018/105161 filed on Sep. 12, 2018. Each of the above-referenced applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2075198 | Hand | Mar 1937 | A |
4418248 | Mathis | Nov 1983 | A |
5127060 | Paddock | Jun 1992 | A |
5673328 | Wandl et al. | Sep 1997 | A |
5734132 | Proni | Mar 1998 | A |
5790684 | Niino et al. | Aug 1998 | A |
6389148 | Yoo et al. | May 2002 | B1 |
6449596 | Ejima | Sep 2002 | B1 |
6738485 | Boesen | May 2004 | B1 |
6850138 | Sakai | Feb 2005 | B1 |
7283967 | Nishio et al. | Oct 2007 | B2 |
8891792 | Qi et al. | Nov 2014 | B2 |
9084048 | Gottlieb | Jul 2015 | B1 |
9226075 | Lee | Dec 2015 | B2 |
9253563 | Fukuda | Feb 2016 | B2 |
9479884 | Kim | Oct 2016 | B2 |
9742887 | Hosoi et al. | Aug 2017 | B2 |
20010024508 | Croft, III | Sep 2001 | A1 |
20030012395 | Fukuda | Jan 2003 | A1 |
20030053651 | Koura et al. | Mar 2003 | A1 |
20040105566 | Matsunaga et al. | Jun 2004 | A1 |
20040131218 | Dedieu et al. | Jul 2004 | A1 |
20060098829 | Kobayashi | May 2006 | A1 |
20060165246 | Lee et al. | Jul 2006 | A1 |
20060262954 | Lee et al. | Nov 2006 | A1 |
20070053536 | Westerkull | Mar 2007 | A1 |
20080166007 | Hankey et al. | Jul 2008 | A1 |
20080174665 | Enstad et al. | Jul 2008 | A1 |
20080208538 | Visser et al. | Aug 2008 | A1 |
20090060224 | Hayakawa | Mar 2009 | A1 |
20090097681 | Puria | Apr 2009 | A1 |
20090209806 | Hakansson | Aug 2009 | A1 |
20090226004 | Sørensen | Sep 2009 | A1 |
20090240495 | Ramakrishnan et al. | Sep 2009 | A1 |
20090245553 | Parker | Oct 2009 | A1 |
20090285417 | Shin et al. | Nov 2009 | A1 |
20090304198 | Herre et al. | Dec 2009 | A1 |
20100046783 | Huang | Feb 2010 | A1 |
20100272289 | Kornagel et al. | Oct 2010 | A1 |
20100322423 | Fukui et al. | Dec 2010 | A1 |
20100329485 | Fukuda | Dec 2010 | A1 |
20110022119 | Parker | Jan 2011 | A1 |
20120020501 | Lee | Jan 2012 | A1 |
20120083860 | Hakansson | Apr 2012 | A1 |
20120243715 | Pedersen | Sep 2012 | A1 |
20120281861 | Lin | Nov 2012 | A1 |
20120286765 | Van den Heuvel | Nov 2012 | A1 |
20120302822 | Van Himbeeck et al. | Nov 2012 | A1 |
20130121513 | Adachi | May 2013 | A1 |
20130156241 | Jinton | Jun 2013 | A1 |
20130163791 | Qi | Jun 2013 | A1 |
20130185035 | Tsujino et al. | Jul 2013 | A1 |
20130308796 | Lee | Nov 2013 | A1 |
20130315402 | Visser et al. | Nov 2013 | A1 |
20140064533 | Kasic, II | Mar 2014 | A1 |
20140270293 | Ruppersberg et al. | Sep 2014 | A1 |
20150130945 | Yu et al. | May 2015 | A1 |
20150208183 | Bern | Jul 2015 | A1 |
20150264473 | Fukuda | Sep 2015 | A1 |
20150281865 | Gottlieb | Oct 2015 | A1 |
20160037243 | Lippert et al. | Feb 2016 | A1 |
20160127839 | French et al. | May 2016 | A1 |
20160127841 | Horii | May 2016 | A1 |
20170006385 | Kim | Jan 2017 | A1 |
20170374479 | Qi et al. | Dec 2017 | A1 |
20180130485 | Park et al. | May 2018 | A1 |
20180146284 | Benattar et al. | May 2018 | A1 |
20180227692 | Lee et al. | Aug 2018 | A1 |
20190014425 | Liao et al. | Jan 2019 | A1 |
20190103088 | Zheng et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1842019 | Oct 2006 | CN |
1976541 | Jun 2007 | CN |
101227763 | Jul 2008 | CN |
101276587 | Oct 2008 | CN |
202435598 | Sep 2012 | CN |
102737646 | Oct 2012 | CN |
105007551 | Oct 2015 | CN |
105101019 | Nov 2015 | CN |
105101020 | Nov 2015 | CN |
105142077 | Dec 2015 | CN |
204887455 | Dec 2015 | CN |
205142506 | Apr 2016 | CN |
1404146 | Mar 2004 | EP |
2234413 | Nov 2020 | EP |
S5574290 | Jun 1980 | JP |
H06261389 | Sep 1994 | JP |
07007797 | Jan 1995 | JP |
2003264882 | Sep 2003 | JP |
2004064457 | Feb 2004 | JP |
2004158961 | Jun 2004 | JP |
2005151183 | Jun 2005 | JP |
2006025333 | Jan 2006 | JP |
2007129364 | May 2007 | JP |
2008017398 | Jan 2008 | JP |
2008054063 | Mar 2008 | JP |
2010078941 | Apr 2010 | JP |
2011160175 | Aug 2011 | JP |
2012019322 | Jan 2012 | JP |
2013243564 | Dec 2013 | JP |
20010111653 | Dec 2001 | KR |
20050930183 | Mar 2005 | KR |
20070122104 | Dec 2007 | KR |
20080101166 | Nov 2008 | KR |
20090091378 | Jun 2009 | KR |
20090082999 | Aug 2009 | KR |
20110037483 | Apr 2011 | KR |
200476572 | Mar 2015 | KR |
2439719 | Jan 2012 | RU |
0219759 | Mar 2002 | WO |
2006088410 | Aug 2006 | WO |
2009042385 | Apr 2009 | WO |
2010114195 | Oct 2010 | WO |
Entry |
---|
Notice of Reasons for Rejection in Japanese Application No. 2020-088413 dated Aug. 3, 2021, 7 pages. |
The Extended European Search Report in European Application No. 18933628.2 dated Jul. 28, 2021, 8 pages. |
Notice of Preliminary Rejection in Korean Application No. 10-2022-7003237 dated Apr. 13, 2022, 14 pages. |
Notice of Reasons for Rejection in Japanese Applcation No. 2021-514610 dated Aprii 26, 2022, 8 pages |
Decision to Grant a Patent in Japanese Application No. 2021-514610 dated Aug. 16, 2022; 5 pages. |
M. Gripper et al., Using the Callsign Acquisition Test (CAT) to Compare the Speech Intelligibility of Air Versus Bone Conduction, international Journal of Industrial Ergonomics, 37(7): 631-641, 2007. |
Martin L. Lenhardt et al., Measurement of Bone Conduction Levels for High Frequencies, International Tinnitus Journal, 8(1): 9-12, 2002. |
The Extended European Search Report in European Application No. 21186537.3 dated Nov. 9, 2021, 9 pages. |
First Office Action in Chinese Application No. 201110438083.9 dated Sep. 27, 2012, 10 pages. |
The Extended European Search Report in European Application No. 12860348.7 dated Apr. 28, 2015, 7 pages. |
International Search Report in PCT/CN2012/086513 dated Mar. 14, 2013, 5 pages. |
Written Opinion in PCT/CN2012/086513 dated Mar. 14, 2013, 10 pages. |
International Search Report in PCT/CN2015/086907 dated May 6, 2016, 10 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2018-506985 dated Sep. 3, 2019, 8 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2018-146019 dated Jul. 23, 2019, 8 pages. |
Decision of Final Rejection in Japanese Application No. 2018-146019 dated Jan. 21, 2020, 9 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2018-146020 dated Jul. 23, 2019, 8 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2018-146021 dated Jul. 30, 2019, 8 pages. |
Decision to Grant a Patent in Japanese Application No. 2018-146021 dated Jul. 21, 2020, 5 pages. |
Brief Summary of a Notice of Preliminary Rejection in Republic of Korea Application No. 10-2018-7007115 dated May 20, 2021, 9 pages. |
International Search Report in PCT/CN2018/105161 dated Jun. 13, 2019, 6 pages. |
Written Opinion in PCT/CN2018/105161 dated Jun. 13, 2019, 4 Pages. |
Decision of Grant in Russian Application No. 2022112225 dated Nov. 16, 2022, 23 pages. |
Notice of Reasons for Refusal in Japanese Application No. 2020-088413 dated Sep. 6, 2022, 11 pages. |
The Second Notice of Preliminary Rejection in Korean Application No. 10-2022-7003237 dated Oct. 11, 2022, 14 pages. |
Notice of Reasons for Refusal in Japanese Application No. 2021-179711 dated Oct. 18, 2022, 8 pages. |
The Office Action in Brazilian Application No. BR112018002854-1 dated Feb. 24, 2023, 8 pages. |
Paula Henry et al., Bone Conduction: Anatomy, Physiology, and Communication, Army Research Laboratory, 2007, 206 pages. |
Notice of Preliminary Rejection in Korean Application No. 10-2021-7010769 dated Mar. 2, 2023, 12 pages. |
Ian Daniel Hasler, Circuits and Systems for Intelligent Hearing Aids, The University of Liverpool, 2009, 179 pages. |
Number | Date | Country | |
---|---|---|---|
20210258696 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17161717 | Jan 2021 | US |
Child | 17170817 | US | |
Parent | 15197050 | Jun 2016 | US |
Child | 16159070 | US | |
Parent | 14513371 | Oct 2014 | US |
Child | 15197050 | US | |
Parent | 13719754 | Dec 2012 | US |
Child | 14513371 | US | |
Parent | 15752452 | US | |
Child | 16833839 | US | |
Parent | 17219777 | US | |
Child | 16833839 | US | |
Parent | PCT/CN2018/105161 | Sep 2018 | US |
Child | 16822151 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17170817 | Feb 2021 | US |
Child | 17219777 | US | |
Parent | 16159070 | Oct 2018 | US |
Child | 17161717 | US | |
Parent | 16833839 | Mar 2020 | US |
Child | 17161717 | US | |
Parent | 16822151 | Mar 2020 | US |
Child | 17219777 | US |