In order to provide access to certain internal anatomy, such as the heart during an open heart procedure, midline sternotomies are typically performed. A midline sternotomy creates a cut substantially along the midline of the sternum, thereby dividing the ribcage into two halves and allowing the surgeon to move the ribcage so as to provide access to the heart. Upon completion of the open heart procedure, it is desired to approximate and compress the sternum, and rigidly maintain the sternal halves in their approximated position relative to each other so that the sterna halves are restricted from moving with respect to each other to promote bone fusion in the weeks following the surgical procedure.
During normal anatomical function, for instance during respiration, body movement, and carrying of objects, forces can be generated that act on the sternum. One conventional system sternal fixation assembly includes stainless steel wires that are placed either parasternally (around the sternum) or transsternally (through the sternum bone) using a cutting needle that is attached to the wire, and subsequently twisted to tighten the wire against the sternum. However, the twisting generates tensile forces onto the wires that tend to weaken the wire, which can result in breakage both during the closure or post-operatively. Furthermore, this type of system relies on the experience of the surgeon when tightening the wires. If the wires are not tightened enough, the sternal compression can be compromised. If the wires are tightened too much, the wire can cut into or through the sternum and/or can break.
In accordance with one embodiment, a bone fixation instrument has a front end and a rear end spaced from the front end in a rearward direction. The bone fixation instrument can be configured to apply tension to a bone fixation member so as to tighten the bone fixation member about a target bone. The bone fixation instrument can include a grip configured to attach to a free end of the bone fixation member. The bone fixation instrument can further include a traveler that supports the grip such that as the traveler moves in the rearward direction, the grip moves along with the traveler in the rearward direction so as to increase tension in the bone fixation member when the grip is attached to the bone fixation member. The bone fixation instrument can further include a cutter arm that carries a cutter blade and is configured to move the cutter blade to a cutting position whereby the cutter blade severs the free end of the bone fixation member when the grip is attached to the bone fixation member. The bone fixation instrument can further include an actuator configured to be selectively independently coupled to the traveler and the cutter arm. The bone fixation instrument can further include a toggle member that is movable between a first and a second position. When the toggle member is in the first position, the bone fixation instrument can be in a tensioning mode whereby movement of the actuator causes the traveler to move in the rearward direction thereby increasing the tension in the bone fixation member when the grip is attached to the bone fixation member. When the toggle member is in the second position, the bone fixation instrument can be in a cutting mode whereby movement of the actuator causes the cutter arm to move the cutter blade to the cutting position.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the present disclosure, there is shown in the drawings preferred embodiments. It should be understood, however, that the application is not limited to the specific embodiments and methods disclosed, and reference is made to the claims for that purpose. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower” and “upper” designate directions in the drawings to which reference is made. The words “proximally” and “distally” refer to directions toward and away from, respectively, the surgeon using the surgical instrument. The words, “anterior”, “posterior”, “superior”, “inferior” and related words and/or phrases designate preferred positions and orientations in the human body to which reference is made and are not meant to be limiting. The terminology includes the above-listed words, derivatives thereof and words of similar import.
Referring to
In accordance with the illustrated embodiment, each bone fixation member 24 can be substantially configured as a cable tie, and can include a flexible strap 32 defines a strap body 33 and has first end 34a and a second end 34b opposite the first end 34a along the length of the strap 32, a needle tip 36 that extends from the first end 34a, and a locking mechanism 38 that extends from the second end 34b. The strap 32 can be made from any suitable biocompatible material as desired, such as PEEK.
Each bone fixation member 24 can further include a first initiation region 40 that extends from the first end 34a toward the second end 34b along a portion of a length of the strap 32 (for instance, approximately ⅓ the length of the strap 32) and a second locking region 42 that extends between the first initiation region 40 and the second end 34b. In accordance with the illustrated embodiment, the second locking region 42 extends from the first initiation region 40 to the second end 34b. The first initiation region 40 can include a plurality of small protrusions that extend out from the strap body 33 and alternate with recessed regions disposed between adjacent protrusions. Alternatively, the initiation region 40 can be substantially smooth and devoid of protrusions or teeth. The second locking region 42 can include a plurality of locking teeth 48 that extend out from the strap body 33 a distance greater than the protrusions and are separated by recessed regions 51 disposed between adjacent locking teeth. It should be appreciated that the locking region 42 can extend along any portion up to all of the strap body 33 as desired. The locking teeth 48 can extend out from one side of the strap body 33 or both opposed sides of the strap body 33 as desired.
The locking mechanism 38 includes a housing 50 a strap receiving slot 52 that extends through the housing 50 and is configured to receive the first end 34a of the strap 32. In accordance with the illustrated embodiment, the first end 34a is inserted through the slot 52 so as to define a loop 55 about the target bone 28. The locking mechanism 38 is configured to allow the strap 32 to translate unidirectionally through the slot 52 along the direction of Arrow A so as to reduce the size of the loop 55 about the first and second segments 26a and 26b of the target bone 28. For instance, the needle tip 36 can be inserted through the slot 52 and subsequently removed, for instance by cutting a neck 56 of the strap body 33 that defines reduced thickness at a location adjacent the needle tip 36, such that the strap 32 remains in the slot 52. In accordance with the illustrated embodiment, the locking mechanism 38 includes a locking member such as a tongue 54 that is connected to the housing 50 and includes at least one complementary tooth such as a plurality of locking teeth 58 that extend into the slot 52. The locking teeth 58 define a beveled leading edge 60 that that is configured to cam over complementary beveled leading edges 49 of the locking teeth 48 when the strap 32 is translated through the slot 52 along the direction of Arrow A. The locking teeth 58 and 48 further define trailing edges 62 and 47 that are sloped less than the beveled leading edges 60, such that the trailing edges 62 and 47 engage to prevent the strap 32 from translating through the slot 52 along the direction opposite Arrow A, which would increase the size of the loop 55.
During operation, the strap 32 is wrapped around the first and second segments 26a and 26b of the target bone 28, and the needle tip 36 is inserted through the slot 52 and pulled through the slot 52 so as to cause the strap 32 to subsequently translate through the slot 52. The needle tip 36 can be removed from the strap 32, and the strap 32 can then be further pulled, for instance manually, through the slot 52. As the strap 32 is translated through the locking mechanism 38 along the direction of Arrow A, the small protrusions of the initiation region 40 can slide through the slot 52 without engaging the locking teeth 58 of the locking mechanism 38. As the locking region 42 of the strap 32 is translated through the slot 52 along the direction of Arrow A, the locking teeth 48 and 58 can engage to prevent the tension that is induced in the strap 32 from causing the strap 32 to back out of the slot 52 along a direction opposite Arrow A. For instance, as the strap 32 translates through the locking mechanism 38 along the direction of Arrow A, the size of the loop 55 about the target bone 28 decreases until tactile feedback indicates that tension has been induced in the strap 32.
As illustrated in
The grip 96 can include a first upper grip member 112a and a second lower grip member 112b spaced from the upper grip member 112a so as to define a gap 116 disposed between the upper and lower grip members 112a and 112b. The upper grip member 112a defines a first grip surface 114 that faces the lower grip member 112b, and can further define a plurality of teeth 120a that extend out from the first grip surface 114 toward the lower grip member 112b. The teeth 120a are configured to assist in reliably securing the grip 96 to the strap 32. For instance, the teeth 120a can interlock with complementary teeth 48 of the strap 32. The lower grip member 112b defines a second grip surface 118 that faces the first grip surface 114. The lower grip member 112b can further define a plurality of teeth 120b that extend out from the second grip surface 118 toward the upper grip member 112a. The teeth 120b are configured to assist in reliably securing the grip 96 to the strap 32. For instance, the teeth 120a can interlock with complementary teeth of the strap 32. Thus, it should be appreciated that the grip 96 is configured to engage the free end 35 of the strap 32 whether the strap 32 is oriented such that the teeth of the strap 32 face up or down. The first and second grip surfaces 114 and 118 can be sized and shaped as desired. In accordance with the illustrated embodiment, the first and second grip surfaces 114 and 118 are curved and substantially arc-shaped in accordance with the illustrated embodiment, such that the first and second grip surfaces 114 and 118 are convex with respect to the gap 116.
The upper grip member 112a and the lower grip member 112a can be coupled to the traveler 98 as described above. For instance, the upper grip member 112a can be pivotally coupled to the traveler 98 at a first grip pivot location 113a about a first grip pivot pin 115a that defines a first grip pivot axis. The grip 96 can further include a biasing member such as a torsion spring that biases the upper grip member 112a to pivot about the first grip pivot location 113a so as to bias the teeth 120a toward the gap 116. In particular, the first grip surface 114 can extend eccentrically about the first grip pivot location 113a such that the grip surface 114 moves toward the gap 116 under the force of the torsion spring. Similarly, the lower grip member 112b can be pivotally coupled to the traveler 98 at a second grip pivot location 113b about a second grip pivot pin 115b that defines a second grip pivot axis. The grip 96 can further include a biasing member such as a torsion spring that biases the lower grip member 112b to pivot about the second grip pivot location 113b so as to bias the teeth 120b toward the gap 116. In particular, the second grip surface 118 can extend eccentrically about the second grip pivot location 113b such that the second grip surface 118 moves toward the gap 116 under the force of the torsion spring.
Thus, during operation, the gap 116 receives the free end 35 of the strap 32, such that the teeth 48 of the free end 35 face one or both of the upper and lower grip members 112a and 112b. As the free end 35 is received in the gap 116, the upper and lower grip members 112a and 112b pivot about their respective pivot axes, such that the first and second grip surfaces 115 and 118 move away from each other against the force of the respective torsion springs. The torsion springs thus bias the teeth 120a and 120b against the free end 35. The teeth can be oriented such that the teeth 120a and 120b are configured to ratchet over the teeth 48 of the free end 35 as the free end 35 is inserted into the gap 116 in a rearward direction. Subsequent movement of the traveler 98 in the rearward direction relative to the housing 50 of the locking mechanism 38 causes one or both of the teeth 120a and 120b to engage the teeth 48 and bias the free end 35 to move in the rearward direction relative to the housing 50, thereby inducing tension in the strap 32. While each of the grip members 112a and 112b can carry respective teeth, it should be appreciated in one example that only one of the grip members 112a and 112b can carry teeth, such that the free end 35 of the strap 32 engages the grip 96 only in a predetermined orientation.
As illustrated in
Referring now to
The fixation instrument 22 further includes an actuator, such as a trigger 84, that extends down from the body 76 at a location spaced forward from the handle 82, and a nose 86 disposed at the front end 78a of the body 76. The fixation instrument 22 can further include a toggle member 83 that extends rearward from the rear end 78b of the body 76. As will be described in more detail below, actuation of the toggle member 83 can cause the fixation instrument 22 to iterate from a tensioning mode to a cutting mode. The handle 82, the trigger 84, and the nose 86 can be discreetly attached to the body 76 or integral and monolithic with the body 76 as desired. The body 76 can include an outer housing 88 that includes a pair of housing members 90a and 90b that are laterally opposed and define respective outer sides 92 and can be joined together via fasteners 94 such as dowels or screws or the like or any suitable alternative attachment mechanism so as to support the various internal components of the fixation instrument 22 as described below.
The housing 80 can support the tension assembly 70 that is configured to inducing tension in the strap 32 as described above. The housing 88 is further configured to support the cutter assembly 72 that is configured to remove the free end 35 of the strap 32 once the tension assembly 70 has induced a desired level of tension in the strap 32. The traveler 98 is movable relative to the body 76. As described above, the traveler 98 supports the grip 96, such that movement of the traveler 98 in the rearward direction relative to the body 76 likewise causes the grip 96 to move in the rearward direction relative to the body 76. Accordingly, when the nose 86 of the body 76 is braced against the housing 50 and the grip 96 is attached to the strap 32, movement of the traveler in the rearward direction relative to the housing 50 induces tension in the strap 32.
The tension assembly 70 can further include an actuator 100 such as the trigger 84 and a tension limiter 102 connected between the trigger 84 and the traveler 98. The tension assembly 70 can further include a force transfer member 104 (see
The fixation instrument 22 is operable in a tensioning mode whereby the trigger 84 is coupled to the force transfer member 104, such that actuation of the trigger 84 urges the force transfer member 104 to move rearwardly. The fixation instrument 22 is further operable in a cutting mode whereby the trigger 84 is coupled to the cutter arm 106, such that actuation of the trigger 84 urges the cutter arm to move from the disengaged configuration to the cutting configuration. It should be appreciated that when the fixation instrument 22 is in the tensioning mode, the trigger 84 is decoupled from the cutter arm 106. Accordingly, actuation of the trigger 84 does not move the cutter arm 106 to the cutting configuration. Similarly, when the fixation instrument 22 is in the cutting mode, the trigger 84 is decoupled from the force transfer member 104, and thus the traveler 98. Accordingly, actuation of the trigger 84 does not cause the traveler 98 to move rearwardly. The fixation instrument 22 can be placed in the tensioning mode when the toggle member 83 is in an initial position (see
During operation, with further reference to
The tension limiter 102 includes at least one spring member 128 coupled at its rear end to the force transfer member 104, and coupled at its front end to the traveler 98. In one example, the tension limiter 102 can include a pair of spring members 128 coupled to the force transfer member 104 and the traveler 98. The spring members 128 can be coupled to the force transfer member 104 and the traveler 98 in parallel. Alternatively, the spring members 128 can be coupled to the force transfer member 104 and the traveler 98 in series. The spring members 128 can be configured as coil springs or any suitable alternative spring as desired having a spring constant in the longitudinal direction L. As the rear ends of the spring members 128 move in the rearward direction, the spring members 128 bias the traveler 98 to likewise move in the rearward direction.
Operation of the tension assembly 70 will now be described with further reference to
Referring to
The upper securement portion 89 is further configured to be selectively coupled to and decoupled from the force transfer member 104. When the tension assembly 70 is in the tensioning mode, the upper securement portion 89 is coupled to the force transfer member 104. In particular, the trigger 84 includes an actuation pin 64 that extends out from the securement portion 89. For instance, the actuation pin 64 can extend out from the securement portion 89 along the lateral direction A. The force transfer member 104 can define a slot 68 that extends therethrough along the lateral direction A. For instance, the force transfer 104 can include a front inner surface 104a and a rear inner surface 104b that is spaced from the front inner surface 104a in the rearward direction. The front inner surfaces 104a and the rear inner surface 104b can cooperate so as to at least partially define the slot 68. The slot 68 receives the actuation pin 64 when the fixation instrument 22 is in the tensioning mode, such that the actuation pin 64 can bear against the rear inner surface 104b. When the trigger 84 is in the first position, the actuation pin 64 can be disposed at the mouth of the slot 68. The slot 68 can be arcuate in shape or can be otherwise shaped as desired. For instance, the slot 64 can be concave with respect to the forward direction.
When the fixation instrument 22 is in the tensioning mode, the pivot pin 67 is offset from the actuation pin 64 in the forward direction. Further, the actuation pin 64 is offset from the pivot pin 67 in a downward direction. Thus, referring to
It should be appreciated that movement of the force transfer member 104 in the rearward direction causes the at least one spring member 128 to deform. For instance, the at least one spring member 128 can expand in the longitudinal direction L. Thus, the at least one spring member 128 defines a compressive force that is applied to the traveler 98 as a biasing force in the rearward direction. It should be appreciated that the at least one spring member 128, and thus the tension limiter 102, has a spring constant that is configured to apply a predetermined biasing force to the traveler 98 when the force transfer member 104 has translated rearward a distance corresponding to rearward movement of the actuation pin 64 in response to movement of the trigger 84 to the actuated position. Accordingly, so long as the tension in the loop 55 is less than a predetermined maximum tension as defined by the spring constant of the at least one spring member 128 and length of travel of the force transfer member 104, the deformation of the spring member 128 will cause the force applied by the spring member 128 to move the traveler 98 in the rearward direction. However, once the tension induced in the loop 55 reaches the predetermined maximum tension as defined by the tension limiter 102, deformation of the spring member 128 due to rearward movement of the force transfer member will cause the spring member 128 to apply a rearward biasing force against the traveler 98 that is insufficient to overcome the force necessary to move the traveler 98 in the rearward direction and further tighten the loop 55. Thus, at this point, the loop 55 will have reached its maximum predetermined tension as allowed by the fixation instrument 22.
It is recognized that after the trigger 84 has been moved to the actuated position, and the traveler 98 has moved in the rearward direction, thereby also causing the free end 35 to move in the rearward direction relative to the housing 50 of the locking mechanism 38, the tension in the loop 55 may or may not have reached the maximum predetermined tension. Whether the tension in the loop 55 is equal to the maximum predetermined tension or less than the maximum predetermined tension can be observed when actuating the trigger 84 to the actuated position. For instance, if when actuating the trigger 84 to the actuated position, the free end 35 of the strap 32 does not translate in the rearward direction or stops translating in the rearward direction, it can be determined that the tension in the loop 55 has reached the maximum predetermined tension. If, on the other hand, the free end 35 of the strap 32 translate in the rearward direction when actuating the trigger 84 to the actuated position, it can be determined that the tension in the loop 55 is less than the maximum predetermined tension.
If the tension in the loop 55 has reached the maximum predetermined tension, then the fixation instrument can be iterated from the tensioning mode to the cutting mode. If, however, the tension in the loop 55 is less than the maximum predetermined tension, then the trigger can again be moved to the actuated position. It should be appreciated that the fixation instrument can include a trigger spring member 146 (see
Accordingly, once a trigger stroke has been completed whereby the trigger 84 has been moved to its actuated position as illustrated in
It should appreciated that the tension limiter 102 can be configured to apply a rearward biasing force against the traveler 98 that is greater than the tension induced in the loop 55 about the target bone 28. For instance, the at least one spring member 128 can apply a force to the traveler 98 in the rearward direction that is sufficient to overcome both the tension of the loop 55 and the additional force that causes one or both of the locking teeth 48 and 58 to deflect as the teeth ride over each other when tightening the loop 55 (see
Referring now to
In one example, the toggle member 83 is pulled away from the housing 88 in the rearward direction as it moves from the first position to the second position. The fixation instrument 22 can include an actuator spring member 109 coupled between the support arm 105 and the housing 88. For instance, the actuator spring member 109 can be attached at a first end to the support arm 105, and attached at a second end to one of the fixation members 94 that extends between opposed sides of the housing 88. The second end can be spaced from the first end in the forward direction, but it should be appreciated that the actuator spring member 109 can be configured such that the second end is spaced from the first end in the rearward direction. As the support arm 105 travels in the rearward direction from the first position to the second position, the first end of the actuator spring member 109 moves away from the second end of the actuator spring member 109, thereby expanding the actuator spring member. Accordingly, the actuator spring member 109 applies a spring force to the support arm 105 that biases the support arm 105 in the forward direction. Accordingly, movement of the toggle member 83 in the rearward direction is against the spring force of the actuator spring member 109.
Referring also to
As illustrated in
Further, when the pivot pin 67 is disposed at the second position in the slot 66, the pivot pin 67 is offset with respect to the actuation pin 64 in the rearward direction. Thus, the actuator is configured to move about a first pivot axis when the bone fixation instrument is in the tensioning mode, and the actuator moves about a second pivot axis spaced from the first pivot axis in the rearward direction when the bone fixation instrument is in the cutting mode. Accordingly, as illustrated in
The cutter pivot pin 121 is supported by the housing such that the cutter arm 106 is configured to pivot about the cutter pivot pin 121. The front portion 106a extends forward from the cutter pivot pin 121, and the rear portion 106b extends rearward from the cutter pivot pin 121. Thus, the cutter pivot pin 121 is disposed between the front portion 106a and the rear portion 106b. The actuation pin 64 abuts the rear portion 106b of the cutter arm 106. The cutter blade 108a extends from the front portion 106a. For instance, the cutter blade 108a can extend up from the front portion 106a of the cutter arm 106. Accordingly, when the trigger 84 is biased to pivot in the first direction from the first position toward the second position, the actuation pin 64 biases the cutter arm 106 to pivot about the cutter pivot pin 121 in a first cutter direction from a first position to a cut position whereby the cutter blade 108 is brought into contact with the free end 35 of the strap 32, thereby severing the free end 35. For instance, the cutter blade 108 can sever the free end 35 at a location such that the housing 50 is disposed between the loop 55 and the cutting blade 108. In accordance with one embodiment, the cutter blade 108 can be spaced from the nose 86 in the rearward direction. Accordingly, the nose 86 can be disposed between the cutter blade 108 and the housing 50.
The cutter arm 106 can include a biasing arm 124 and a spring member 126 that each extends out from the rear portion 106b. The spring member 126 can be in the form of a spring arm that bears against the housing 88 so as to bias the cutter arm 106 to pivot in a second cutter direction opposite the first cutter direction about the cutter pivot pin 121. Thus, after the cutter blade 108 has severed the free end 35 and the trigger 84 is released, the spring member 126 biases the cutter pivot pin 121 to pivot in the second cutter direction. Pivoting of the cutter pivot pin 121 in the second cutter direction causes the biasing arm 124 to bear against a bearing surface 132 of the locking member 110. The pivot pin 130 can be disposed rearward of the bearing surface 132, and forward of both the locking portion 110a and the spring portion 110b. As the biasing arm 124 bears against the biasing surface 132, the locking member 110, the locking member is driven to pivot about the pivot pin 130 until the locking portion 110a is removed from the aperture 123. Accordingly, the force of the actuator spring member 109 biases the support arm 105 and the toggle member 83 to move forward as illustrated in
Although the disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present disclosure is not intended to be limited to the particular embodiments described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, composition of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure.
This claims the benefit of U.S. Patent Application Ser. No. 62/005,552 filed May 30, 2014, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
1641077 | Fouquet | Aug 1927 | A |
3111945 | Von Solbrig | Nov 1963 | A |
3169560 | Caveney et al. | Feb 1965 | A |
3570497 | Lemole | Mar 1971 | A |
3577601 | Mariani et al. | May 1971 | A |
3645302 | Caveney | Feb 1972 | A |
3661187 | Caveney | May 1972 | A |
3830263 | Benfer | Aug 1974 | A |
4093005 | Eberhardt | Jun 1978 | A |
4535764 | Ebert | Aug 1985 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4813416 | Pollak | Mar 1989 | A |
4955913 | Robinson | Sep 1990 | A |
4966600 | Songer | Oct 1990 | A |
5146645 | Dirksing | Sep 1992 | A |
5146654 | Caveney et al. | Sep 1992 | A |
5193250 | Caveney | Mar 1993 | A |
5355913 | Green | Oct 1994 | A |
5356417 | Golds | Oct 1994 | A |
5361475 | Scruggs | Nov 1994 | A |
5366461 | Blasnik | Nov 1994 | A |
5383882 | Buess et al. | Jan 1995 | A |
5392822 | Kraus | Feb 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5437685 | Blasnik | Aug 1995 | A |
5462542 | Alesi, Jr. | Oct 1995 | A |
5496318 | Howland et al. | Mar 1996 | A |
5540698 | Preissman | Jul 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5571105 | Gundolf | Nov 1996 | A |
5607430 | Bailey | Mar 1997 | A |
5636412 | Lodi et al. | Jun 1997 | A |
5665088 | Gill et al. | Sep 1997 | A |
5665089 | Dall et al. | Sep 1997 | A |
5683404 | Johnson | Nov 1997 | A |
5741259 | Chan | Apr 1998 | A |
5772663 | Whiteside et al. | Jun 1998 | A |
5810824 | Chan | Sep 1998 | A |
5915425 | Nilsson | Jun 1999 | A |
5972006 | Sciaino, Jr. | Oct 1999 | A |
6049949 | Guthke | Apr 2000 | A |
6050998 | Fletcher | Apr 2000 | A |
6099527 | Hochschuler et al. | Aug 2000 | A |
6302889 | Keller | Oct 2001 | B1 |
6443955 | Ahrend | Sep 2002 | B1 |
6489246 | Summa et al. | Dec 2002 | B1 |
6514255 | Ferree | Feb 2003 | B1 |
6520965 | Chervitz et al. | Feb 2003 | B2 |
6589246 | Hack et al. | Jul 2003 | B1 |
6752810 | Gao | Jun 2004 | B1 |
7008429 | Golobek | Mar 2006 | B2 |
7112221 | Harris | Sep 2006 | B2 |
7164360 | Schiebler | Jan 2007 | B2 |
7229444 | Boyd | Jun 2007 | B2 |
7481828 | Mazda et al. | Jan 2009 | B2 |
7582089 | Schiebler | Sep 2009 | B2 |
7648504 | Heino et al. | Jan 2010 | B2 |
8992543 | Yamaguchi | Mar 2015 | B2 |
20030236538 | Aikens | Dec 2003 | A1 |
20040059357 | Koseki | Mar 2004 | A1 |
20040068292 | Koseki | Apr 2004 | A1 |
20050137608 | Hearn | Jun 2005 | A1 |
20050178461 | Magno | Aug 2005 | A1 |
20060135958 | Marissen | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060271060 | Gordon | Nov 2006 | A1 |
20070055258 | Hansen | Mar 2007 | A1 |
20070093825 | Ferree | Apr 2007 | A1 |
20070260251 | Weier | Nov 2007 | A1 |
20080027440 | Marissen | Jan 2008 | A1 |
20080300599 | Anapliotis et al. | Dec 2008 | A1 |
20090012569 | Dall et al. | Jan 2009 | A1 |
20090082776 | Cresina | Mar 2009 | A1 |
20090138048 | Baccelli | May 2009 | A1 |
20090270923 | Tormala et al. | Oct 2009 | A1 |
20090326585 | Baccelli et al. | Dec 2009 | A1 |
20100057091 | Oosterom | Mar 2010 | A1 |
20100087836 | Jaramillo | Apr 2010 | A1 |
20100087837 | Jaramillo | Apr 2010 | A1 |
20110112537 | Bernstein | May 2011 | A1 |
20120197256 | Knueppel | Aug 2012 | A1 |
20120197257 | Knueppel | Aug 2012 | A1 |
20130116736 | De Oliveira | May 2013 | A1 |
20130167334 | Gephart | Jul 2013 | A1 |
20130261625 | Koch | Oct 2013 | A1 |
20140142638 | Goodwin | May 2014 | A1 |
20140155906 | Pratt | Jun 2014 | A1 |
20150127003 | Songer | May 2015 | A1 |
20150313656 | Hulliger | Nov 2015 | A1 |
20150342657 | Voisard | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
3244680 | Jun 1984 | DE |
3538645 | May 1987 | DE |
4021246 | Jan 1992 | DE |
4024334 | Feb 1992 | DE |
4200757 | Jul 1992 | DE |
4127550 | Feb 1993 | DE |
4314185 | Nov 1993 | DE |
19716504 | Dec 1998 | DE |
19806628 | Aug 1999 | DE |
0009327 | Apr 1980 | EP |
0201905 | Nov 1986 | EP |
0299387 | Jan 1989 | EP |
0512297 | Nov 1992 | EP |
0597257 | May 1994 | EP |
0608592 | Aug 1994 | EP |
0780096 | Jun 1997 | EP |
0876798 | Nov 1998 | EP |
0587635 | Mar 1999 | EP |
0937930 | Aug 1999 | EP |
0858419 | Jul 2000 | EP |
1564144 | Aug 2005 | EP |
2381603 | Sep 1978 | FR |
2677536 | Dec 1992 | FR |
2690727 | Nov 1993 | FR |
2702951 | Sep 1994 | FR |
2906704 | Apr 2008 | FR |
2266557 | Nov 1993 | GB |
2414936 | Dec 2005 | GB |
2004298501 | Oct 2004 | JP |
WO 8806022 | Aug 1988 | WO |
WO 2006062419 | Jun 2006 | WO |
WO 2006136938 | Dec 2006 | WO |
WO 2009013397 | Jan 2009 | WO |
WO 2009091313 | Jul 2009 | WO |
WO 2010041101 | Apr 2010 | WO |
WO 2010108050 | Sep 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20150342657 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62005552 | May 2014 | US |