This invention relates to the field of orthopedic surgery and, more particularly, to spinal fixation.
The use of bone pins and plates for reducing fractures is well known in orthopedic medicine. The pins and plates extend across discontinuities in a bone to fix the broken ends in relation to each other to reduce pain and promote rapid healing without deformity. These devices are secured to the bone by bone screws or nails driven into the bone. More recently, pins, rods, plates and cages have been used to stabilize bone and joints that have deteriorated naturally or as a result of prior trauma. The bone plate of this invention is useful in all these situations.
The interface between the bone screws and the bone presents problems of stability and long term usage that have been addressed in different ways. One of the major problems is usually termed as back-out. This defines the condition in which the screws attaching the plate to the bone loosen over time, either relative to the bone or the plate or both. Severe back-out results in the bone screw working itself out of the bone and/or plate resulting in instability of the bone or joint. This situation results in increasing pain and danger from the instability, as well as, the movement of the screw. There may be several reasons for the back-out but anatomical stresses from body movements contributes greatly to the problem.
Prior art devices address the problem of back-out by use of secondary locking screws that hold the bone screws in the plate. The locking device engages the head of the bone screw and is tightened to fix the screw to the plate and, thus, the bone. Such devices are not particularly suited for deployment on the anterior aspect of the spine because of the close proximity of vital soft tissue organs which dictate a smooth, low profile, contoured surface.
Michelson, U.S. Pat. No. 6,454,771, discloses a bone plate for anterior cervical fixation. The plate has several holes for receiving bone screws. A locking screw mechanism is used to overlay the screw heads.
An expandable insert for placement between vertebrae is disclosed by Paes et al, U.S. Pat. No. 6,436,142. The device is in the nature of a lag screw and can expand with the insertion of an expansion screw.
U.S. Pat. No. 6,342,055 to Eisermann et al discloses a bone plate with bone screws having a snap-in retainer securing the heads to the plate.
Geisler, U.S. Pat. No. 6,231,610, discloses a bone plate with diverging bone screws and serrations on the plate to increase holding power.
U.S. Pat. No. 6,224,602 to Hayes discloses a bone plate with multiple bone screw holes which may be covered by a sliding locking plate. The bone plate has an undercut channel to hold the locking plate in contact with the screw heads. The locking plate is held to the plate by a locking screw once it is slid to the desired position.
Aust et al, U.S. Pat. No. 5,603,713, discloses an anterior lumbar plate attached by screws with various angular connections to the spine.
What is needed in the art is a less complicated system with multiple locking components for added security.
It is an objective of this invention to provide a bone plate, suitable for anterior lumbar fixation, having countersunk screw holes, a low profile in cross section allowing the bone plate to be countersunk into the bone and a smooth distal surface to reduce the possibility of traumatizing adjacent soft tissue during use.
A further objective of the invention is to provide threaded tubular bone anchors embedded in bone guided by the screw holes in the plate. The bone anchors being screwed into the bone by external threads.
Another objective of the invention is to provide locking screws extending through the countersunk screw holes into the bone anchors with the leading ends of the screws expanding the ends of the bone anchors to fix the bone screws to the bone anchors and the anchors to the bone.
Yet another objective of the invention is to provide a bone plate with a locking cap which extends over the area of the countersunk screw holes. The locking cap fits into a large countersunk area of the bone plate covering the countersunk screw holes allowing easy and positive assembly and preventing relative lateral movement between the locking cap and the plate. The locking cap has an aperture and the plate has a receptacle which align when the cap is placed in the countersunk area. A cap screw is threaded into the aligned aperture and receptacle to connect the plate and the cap.
A still further objective of the invention is to provide a kit of several interchangeable components including plates, locking screws, anchors, caps and cap screws to permit the assembly of matching components to fit the anatomy of the patient.
Another objective of the invention is to provide a bone plate system with double headed locking screws and a cam on the bone plate to wedge into the double headed screws.
Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
The bone plate system 10 may be made from any materials having requisite strength and being suitable for use in the body. One complete bone plate system is shown in
The bone plate system 10 addresses the problem of back-out by providing several locking features in the connection of the plate 14 with the bone. These locking features all resist the biomechanical loads placed on the implanted system and result in an aggregate resistance to movement of the components. The locking features are disposed over the length of the plate-bone connection such that the same biomechanical force may not act on all locks simultaneously.
The tubular bone anchors 11 are initially inserted into the bone through pilot holes drilled in the bone or by the use of guide wires. The plate 14 may be used as a guide to align the longitudinal axis of the bone anchors with the longitudinal axis of the countersunk screw holes 15′ in the plate. The bone anchors 11 are driven into the bone with a tool (not shown) that engages the slots 27 for rotation of the anchor. The exterior screw threads 21 of the anchor draw the anchor into its seated position in the bone. However, the screw threads 21 produce a mirror image of the toroidal ramp at the bone interface which is a path of least resistence in the opposite direction. The leading or proximal end of the anchor 11 has a number of radial slits 25 through the side wall dividing the proximal circumference into segments 26. Further, the leading end is tapered internally and externally toward a smaller end. This structure of the leading end of the bone anchors 11 creates a change in the bone-anchor interface by expanding, as the locking screws are inserted, to increase the resistence to reverse rotation.
Once the bone anchors 11 are in place, the locking screws 12 are extended through the screw holes 15′ of the bone plate 14 with the threads 22 and 23 threadably engaging the interior threads 24 of the bone anchors. The locking screws are rotated by a tool (not shown) fitted into the receptacle 28. As shown, the locking screw 12 has a smooth unthreaded shank near the head 13. An intermediate length of the locking screw has threads 22 to engage the interior threads of the bone anchor. The leading end of the locking screw has a tapered portion with threads 23 to engage the threaded tapered leading end of the bone anchor. The threaded engagement of the locking screws with the leading ends of the anchors and the resultant expansion of the anchors creates a difference in the threading along the interior length of the anchor which resists rotation in the opposite direction. The leading end of the locking screws may be un-threaded and act as a wedge. The locking screw heads 13 are completely enclosed by the depressions 15 and compressively disposed against the bottoms of the depressions. Therefore, the anchor 11 is locked in place by a new bone-anchor interface and the locking screw and anchor are locked together by compression and threading changes. Of course, other combinations of locking screws and anchor configurations may be used, such as, a constant taper of each.
After the locking screws 12 have been seated in the bone anchors 11 and depressions 15, the locking cap 16 is placed in the complementary countersink 19 formed in the plate 14. The size and thickness of the locking cap and the size and depth of the countersunk area allow ease of assembly of these components and a resulting low profile with a smooth outer or distal surface. The vertebrae V is shaped to form a counter sunk area in which the plate is placed, as shown in
The assembly of the locking plate 16 and the bone plate 14 automatically aligns the receptacle 16 and the aperture 17 for connection by the cap screw 20. The continuous side wall of the enlarged countersunk area and the periphery of the locking cap positively locate the components relative to each other. The cap screw 20 is tightened by a tool (not shown) that fits into receptacle 29. Once the locking cap is secured in place, the heads of the locking screws are prevented from retraction. Because the cap screw 20 is centrally located in the locking cap 16, any reverse rotation of the locking screws is opposed by a leveraging action between the locking cap and the cap screw. This action tends to jam the cap screw and locking cap tighter together.
As an alternative or additional attachment system is shown in
The implanted bone plate system results in a positive lock at the proximal ends of the bone anchors and locking screws and an additional lock at the distal end of the locking screws.
A number of embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiment but only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4013071 | Rosenberg | Mar 1977 | A |
4611581 | Steffee | Sep 1986 | A |
4716893 | Fischer et al. | Jan 1988 | A |
5261911 | Carl | Nov 1993 | A |
5569251 | Baker et al. | Oct 1996 | A |
5578034 | Estes | Nov 1996 | A |
5584832 | Schlapfer | Dec 1996 | A |
5603713 | Aust et al. | Feb 1997 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5624441 | Sherman et al. | Apr 1997 | A |
5643260 | Doherty | Jul 1997 | A |
5688273 | Errico et al. | Nov 1997 | A |
5713900 | Benzel et al. | Feb 1998 | A |
5752957 | Ralph et al. | May 1998 | A |
5810818 | Errico et al. | Sep 1998 | A |
5843082 | Yuan et al. | Dec 1998 | A |
5885286 | Sherman et al. | Mar 1999 | A |
5951558 | Fiz | Sep 1999 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6193720 | Yuan et al. | Feb 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6235034 | Bray | May 2001 | B1 |
6241731 | Fiz | Jun 2001 | B1 |
6306139 | Fuentes | Oct 2001 | B1 |
6331179 | Freid et al. | Dec 2001 | B1 |
6342055 | Eisermann et al. | Jan 2002 | B1 |
6383186 | Michelson | May 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6454771 | Michelson | Sep 2002 | B1 |
6458133 | Lin | Oct 2002 | B1 |
6613053 | Collins et al. | Sep 2003 | B1 |
20020151899 | Bailey et al. | Oct 2002 | A1 |
20020188296 | Michelson | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0 613 664 | Dec 1993 | EP |
Number | Date | Country | |
---|---|---|---|
20040210217 A1 | Oct 2004 | US |