The invention relates to a bone fixing device and in a particular application to a device for stabilising cervical vertebrae.
A device especially for stabilising cervical vertebrae is known, comprising a plate with at least one bore, having an M-thread, and a bone screw for screwing into the plate. The bone screw has a thread section, having a bone thread, for screwing into the bone and an adjoining thread section with an outer M-thread. In operation the bone screw is guided through the bore and screwed into the bone. Then the second thread section is screwed into the plate. Because the thread pitches are different there is a danger that the bone screw will thereby be loosened from its seat.
From WO 96/05778 a cervical vertebrae stabilising system is known which has a plate with at least one recess, a bone screw with a bone thread section and an adjoining M-thread section and a radial projection provided between the bone thread section and the M-thread section, and also a nut cooperating with the M-thread section. With this known device first the bone screw is screwed into the bone, then the plate with the recess is guided over the M-thread section until it rests against the radial projection and then the nut is inserted into the recess and screwed on to the M-thread section to fix it. The recess can be constructed as an elongated hole.
From WO 00/18312 a stabilising device for the spinal column is known, which has a plate with at least one recess, a bone screw with a bone thread section and an M-thread section and a projection provided between these sections and with a plain washer located on top of the edge of the recess, and also a nut which is screwed on over the M-thread section of the bone screw until it is adjacent to the shim. The plain washer has a lateral recess, so the bone screw can take up various angles.
The known systems are suitable for particular applications in each case. With the first mentioned device, for instance, the plate must always be put in first and then the screw screwed in. With the device known from WO 96/05778, on the other hand, the screw has to be screwed in first and then the plate placed on top. Additionally, with this device it is not possible to change the angle of the screw. The device known from WO 00/18312 admittedly allows different angles of the bone screw, but adjustment of the plate in the longitudinal direction is possible only to a limited extent. Additionally, this device has a relatively high construction.
The object of the invention is to provide a bone fixing device and in particular a device for stabilising cervical vertebrae, which is improved with respect to adjustability and breadth of application compared with the known devices.
This object is achieved by a bone fixing device according to patent claim 1. Further developments of the invention are cited in the dependent claims.
The invention has the particular advantage of a modular system, which considerably enlarges the breadth of application. The apparatus according to the invention is not only usable for cervical vertebrae stabilisation, but also as a bone fixing device for fixing broken bones, e.g. tubular bones. The invention further enables the surgeon in the operating room to make a decision, adapted to the circumstances of the individual case, as to whether the screws should be inserted first and then the plate placed over them and fixed or whether the plate should be put in first and then the bone screws screwed in through the recesses of the plate. The invention further allows monoaxial and polyaxial screws to be used together with one plate or even both types of screws next to one another. In this way adjustment of the angle of the screws to the plate and positioning of the screws for adjusting their longitudinal distance is possible independently for each screw.
Further features and advantages of the invention emerge from the description of embodiment examples with the aid of the figures.
As can be seen from
The plate 2 further has, bordering on areas 5b of the recesses 5, thread bores 8, located opposite one another, with an indentation 9 for screwing in screws 10 with a head 11, which are constructed, for example, as slit screws. The thread bore 8 is provided at such a distance from area 5b of the recess 5, and the indentation 9 and the head 11 of the screw 10 are dimensioned in such a way, that in the screwed in state the head 11 projects just a little into the area of the indentation 7 in area 5b of the recess 5 and thus limits the cross-section of the indentation 7.
As can be seen in particular from
The bone fixing device 1 of the first embodiment further has the bone screw 6, which in this embodiment is constructed in one piece, with a shank 15 with a bone thread for screwing into the bone and with the head 6a, which is shaped as a spherical segment and firmly connected to the shank and on its upper side has a means 16, e.g. one of more slits, for bringing into engagement with a screwing-in tool.
In operation first the plain washer 20 is guided in through area 5b of the recess 5, so the section 22, shaped as a hollow spherical segment, is located on the upper side 2a of the plate. Then the plain washer is pushed in the direction of area 5a, wherein the underside of section 22, shaped as a hollow spherical segment, is lying on top in the indentation 7. In area 5a with the smaller diameter d1 the plain washer 20 is held against falling out owing to the larger diameter of section 22, shaped as a hollow spherical segment, and the projection 23. Then the securing screw 9 is screwed into the bore 8. The edge of the head 11 of the securing screw 9 therein projects, as can be seen in particular from
During an operation the surgeon uses the plate with already inserted plain washers 20, secured against falling out by the screws 10, which thus in each case form an integrated shaped part, and holds them against the bone parts to be fixed and then screws in the bone screws 6. Since the plain washer can be displaced, adjustment of the screwing position is possible before screwing down.
The embodiment shown in
In this embodiment the head of the screw 60 is formed by a separate nut 63, which is shaped in the form of a spherical segment with a radius corresponding to that of section 22, shaped as a hollow spherical segment, of the plain washer 20. The nut 63 has on its upper side facing away from the part shaped as a spherical segment a means 64, such as e.g. slits, for bringing into engagement with a screwing-in tool.
In operation again first the plain washer or the plain washers 20 is/are guided into the recesses 5 of the plate 2 and secured against falling out via the screw 10. During the operation first the plate 2 is held against the bone parts to be fixed and the screwing in position for the bone screws marked. Then the bone screws 60 are screwed in and the plate 2 with the recesses 5 placed over the second thread section 62 projecting from the bone. Then the nut 63 is screwed on to the second thread section until it comes to rest in section 22, shaped as a hollow spherical segment, of the plain washer 20, wherein, owing to the spherical sections of the plain washer 20 and the nut 63, angles of the bone screw are possible in a predetermined range of angles.
The embodiment shown in
In operation with this embodiment the plain washer 20 is pre-fabricated with the nut 63 already inserted and, as with the previously described embodiments, is first inserted into the plate 2 and secured against falling out with the securing screw 10. Further operation is as with the embodiment shown in
In the embodiment shown in
In this embodiment the bone screw 60 is provided with a shoulder 65, arranged between the bone thread shank section 61 and the thread shank cutout 62 with the M-thread, which shoulder is formed, for example, as a ring-shaped projection and serves as a stop during screwing in, as illustrated in particular in
In operation the bone screw or bone screws 60 is/are screwed in at the previously determined positions and then the plate with the recesses 5 is placed over the thread sections 62 and then the nut 30 screwed on.
In the embodiment shown in
In the embodiment illustrated in
The embodiments described can be combined on a plate in any way or the screws, depending on the purpose, can be used for the various embodiments, guaranteeing a modular system with great versatility.
Instead of the securing screw 10, a different securing element can be provided, for example a spring element attached to the plate, which is bent away for inserting the plain washer 20 or the nut 30 and then snaps back to limit the cross-section of the recess.
The term plate is to be understood also to include elements with a not completely flat, for example a bent or in some other way curved, surface.
The device according to the invention can be not only applied to stabilising cervical vertebrae, but is also suitable for the external fixing of broken bones, e.g. tubular bones.
Number | Date | Country | Kind |
---|---|---|---|
101 52 094 | Oct 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5127914 | Calderale et al. | Jul 1992 | A |
5261910 | Warden et al. | Nov 1993 | A |
5578034 | Estes | Nov 1996 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5735853 | Olerud | Apr 1998 | A |
6017345 | Richelsoph | Jan 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6290703 | Ganem | Sep 2001 | B1 |
6533786 | Needham et al. | Mar 2003 | B1 |
6641583 | Shluzas et al. | Nov 2003 | B2 |
6652525 | Assaker et al. | Nov 2003 | B1 |
6692503 | Foley et al. | Feb 2004 | B2 |
7004944 | Gause | Feb 2006 | B2 |
Number | Date | Country |
---|---|---|
672 245 | Nov 1989 | CH |
0 897 697 | Feb 1999 | EP |
0 903 113 | Mar 1999 | EP |
0 903 113 | Mar 1999 | EP |
2 726 461 | May 1996 | FR |
2 778 088 | Nov 1999 | FR |
WO9605778 | Feb 1996 | WO |
WO 9605778 | Feb 1996 | WO |
WO9851226 | Nov 1998 | WO |
WO 0018312 | Apr 2000 | WO |
WO 0126566 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030078583 A1 | Apr 2003 | US |