This disclosure relates to orthopedic surgery, and more specifically to an apparatus and method for near-simultaneous and integrated delivery of bone graft material during the placement of surgical cages or other medical implants in a patient's spine.
According to the American Academy of Orthopedic Surgeons, about 250,000 spinal fusion surgeries are performed every year, mostly on adults between the ages of 45 to 64. Spinal fusion is a process by which two or more of the vertebrae that make up the spinal column are fused together with bone grafts and internal devices (such as rods) that heal into a single solid bone. Spinal fusion can eliminate unnatural motion between the vertebrae and, in turn, reduce pressure on nerve endings. In addition, spinal fusion can be used to treat, for example, injuries to spinal vertebrae caused by trauma; protrusion and degeneration of the cushioning disc between vertebrae (sometimes called slipped disc or herniated disc); abnormal curvatures (such as scoliosis or kyphosis); and weak or unstable spine caused by infections or tumors.
Individuals who suffer degenerative disc disease, natural spine deformations, a herniated disc, spine injuries or other spine disorders may require surgery on the affected region to relieve the individual from pain and prevent further injury to the spine and nerves. Spinal surgery may involve removal of damaged joint tissue, insertion of a tissue implant and/or fixation of two or more adjacent vertebral bodies. In some instances a medical implant is also inserted, such as a fusion cage. The surgical procedure will vary depending on the nature and extent of the injury. Generally, there are five main types of lumbar fusion, including: posterior lumbar fusion (“PLF”), posterior lumbar interbody fusion (“PLIF”), anterior lumbar interbody fusion (“ALIF”), circumferential 360 fusion, and transforaminal lumbar interbody fusion (“TLIF”). More recently, direct lateral interbody fusion (“D-LIF”) has become available. A posterior approach is one that accesses the surgical site from the patient's back, an anterior approach is one that accesses the surgical site from the patient's front or chest, and a direct lateral approach is one that accesses the surgical site from the patient's side. There are similar approaches for fusion in the interbody or cervical spine regions. For a general background on some of these procedures and the tools and apparatus used in certain procedures, see U.S. Prov. Pat. Appl. No. 61/120,260 filed on Dec. 5, 2008, the entire disclosure of which is incorporated by reference in its entirety. In addition, further background on procedures and tools and apparatus used in spinal procedures is found in U.S. patent application Ser. No. 12/632,720 filed on Dec. 7, 2009, now U.S. Pat. No. 8,366,748, the entire disclosure of which is incorporated by reference in its entirety.
Vertebrectomy, or the removal or excision of a vertebra, is another type of spinal surgery that may be necessary to alleviate pain and/or correct spinal defects, such as when disk material above and below a particular vertebra protrudes from the spine and contacts the spinal cord. Once the problematic vertebra is removed, a specialized fusion cage (also called a vertebrectomy cage) may be inserted into its place to restore structural continuity to the spine.
Some disadvantages of traditional methods of spinal surgery include, for example, the pain associated with the procedure, the length of the procedure, the complexity of implements used to carry out the procedure, the prolonged hospitalization required to manage pain, the risk of infection due to the invasive nature of the procedure, and the possible requirement of a second procedure to harvest autograft bone from the iliac crest or other suitable site on the patient for generating the required quantity of cancellous and/or cortical bone.
A variety of semisolid bone graft materials are available on the market which ostensibly increase spinal fusion rates without the morbidity of autograft bone harvest. Each of the manufacturers espouses their product as the most advantageous for healing. Many of these products have similar handling characteristics and the literature reveals that they have similar healing prospects. They come in a syringe and it is up to the surgeon to apply the selected material to the target site. The most common site for application is to the disk space after it has been prepared to a bleeding bed and ready to accept a cage and/or the grafting material. This represents a long and narrow channel even in open procedures. The surgeon is left to his own devices as to how to get the graft from its container to the active site. The devices which have been used have included a “caulking gun” construct and a variety of barrel shaft with a plunger design.
Bone graft typically includes crushed bone (cancellous and cortical), or a combination of these (and/or other natural materials), and may further comprise synthetic biocompatible materials. Bone graft of this type is intended to stimulate growth of healthy bone. As used herein, “bone graft” shall mean materials made up entirely of natural materials, entirely of synthetic biocompatible materials, or any combination of these materials. Bone graft often is provided by the supplier in a gel or slurry form, as opposed to a dry or granule form. Many companies provide various forms of bone graft in varying degrees of liquidity and viscosity, which may cause problems in certain prior art delivery devices in both prepackaged or packaged by the surgeon embodiments. In addition, the method of delivery of bone graft to a particular location varies depending on the form of the bone graft utilized.
Autogenous bone (bone from the patient) or allograft bone (bone from another individual) are the most commonly used materials to induce bone formation. Generally, small pieces of bone are placed into the space between the vertebrae to be fused. Sometimes larger solid pieces of bone are used to provide immediate structural support. Autogenous bone is generally considered superior at promoting fusion. However, this procedure requires extra surgery to remove bone from another area of the patient's body such as the pelvis or fibula. Thus, it has been reported that about 30 percent of patients have significant pain and tenderness at the graft harvest site, which may be prolonged, and in some cases outlast the back pain the procedure intended to correct. Similarly, allograft bone and other bone graft substitutes, although eliminating the need for a second surgery, have drawbacks in that they have yet to be proven as cost effective and efficacious substitutes for autogenous bone fusion.
An alternative to autogenous or allograft bone is the use of growth factors that promote bone formation. For example, studies have shown that the use of bone morphogenic proteins (“BMPs”) results in better overall fusion, less time in the operating room and, more importantly, fewer complications for patients because it eliminates the need for the second surgery. However, use of BMPs, although efficacious in promoting bone growth, can be prohibitively expensive.
Another alternative is the use of a genetically engineered version of a naturally occurring bone growth factor. This approach also has limitations. Specifically, surgeons have expressed concerns that genetically engineered BMPs can dramatically speed the growth of cancerous cells or cause non-cancerous cells to become more sinister. Another concern is unwanted bone creation. There is a chance that bone generated by genetically engineered BMPs could form over the delicate nerve endings in the spine or, worse, somewhere else in the body.
Regenerative medicine, which harnesses the ability of regenerative cells, e.g., stem cells (i.e., the unspecialized master cells of the body) to renew themselves indefinitely and develop into mature specialized cells, may be a means of circumventing the limitations of the prior-art techniques. Stem cells, i.e., both embryonic and adult stem cells, have been shown to possess the nascent capacity to become many, if not all, of the 200+ cell and tissue types of the body, including bone. Recently, adipose tissue has been shown to be a source of adult stem cells (See e.g. Zuk, Patricia Z. et al., “Multilineage Cells from Human Adipose Tissue: Implication for Cell-Based Therapies,” Tissue Engineering, April 2001, 7:211-28; Zuk, Patricia A. et al., “Human Adipose Tissue Is A Source Of Multipotent Stem Cells,” Molecular Biology of the Cell, 2002, 13:4279-4295). Adipose tissue (unlike marrow, skin, muscle, liver and brain) is comparably easy to harvest in relatively large amounts with low morbidity (See e.g. Commons, G. W., Halperin, B., and Chang, C. C. (2001) “Large-volume liposuction: a review of 631 consecutive cases over 12 years” Plast. Reconstr. Surg. 108, 1753-63; Katz, B. E., Bruck, M. C. and Coleman, W. P. 3 (2001b) “The benefits of powered liposuction versus traditional liposuction: a paired comparison analysis” Dermatol. Surg. 27, 863-7). Accordingly, given the limitations of the prior art spinal fusion techniques, there exists a need for a device that incorporates regenerative cells, e.g., stem cells that possess the ability to induce bone formation.
Many different methods and approaches have been attempted to induce bone formation or to promote spinal fusion. The traditional devices for inserting bone graft impair the surgeon's visualization of the operative site, which can lead to imprecise insertion of bone graft and possible harm to the patient. The caulking gun and the collection of large barrel/plunger designs typically present components at the top of their structure which block the view of the surgical site. The surgeon must then resort to applying pressure to the surgical site to approximate the location of the device's delivery area. Such rough maneuvering can result in imprecise placement of bone graft, and in some cases, rupture of the surgical area by penetrating the annulus and entering the abdominal cavity. Also, in some surgical procedures, the devices for inserting bone graft material are applied within a cannula inserted or placed in the surgical area, further limiting the size and/or profile of the bone graft insertion device. When a cannula is involved, some traditional devices such as the large barrel/plunger designs and/or some caulking gun designs simply cannot be used as they cannot be inserted within the cannula.
Traditional devices for inserting bone graft deliver the bone graft material at the bottom of the delivery device along the device's longitudinal axis. Such a delivery method causes the bone grafting material to become impacted at the bottom of the delivery device which jams the device and promotes risk of rupture of the surgical area by penetrating the annulus and entering the abdominal cavity. Further, traditional devices that deliver bone graft material along their longitudinal axis may cause rupture of the surgical area or harm to the patient because of the ensuing pressure imparted by the ejected bone graft material from the longitudinal axis of the device. Furthermore, the graft material is distributed only in the longitudinal axis and does not fill in the peripheral areas of the disk.
As mentioned, the method of delivery of bone graft to a particular location varies depending on the form of the bone graft utilized. For example, in the case of slurry type bone graft, various dispensing devices have been developed having applicators designed to accommodate this type of bone graft. One such device is disclosed by U.S. Pat. No. 5,925,051 issued to Mikhail on Jul. 20, 1999 (“Mikhail”), the disclosure of which is incorporated herein by reference in its entirety. Mikhail provides a caulking gun type dispenser for introducing bone graft in an enlarged bone (e.g. femoral) cavity. The device preferably includes a barrel pre-loaded with bone graft and a cannulated ejector positioned over a multi-section guide wire. This arrangement purports to accomplish both ejecting bone graft from the barrel and compacting the bone graft material while being guided on the guide wire. Mikhail, however, is designed solely for use with slurry-type bone graft, and does not accommodate bone graft in granule form, which often varies in size among granules and does not have the same “flow” or viscosity characteristics as slurry-type bone graft. Thus, the applicator of Mikhail is insufficient for introducing most bone graft to a surgical site in a patient.
U.S. Pat. No. 6,019,765 issued to Thornhill et al. on Feb. 1, 2000 (“Thornhill”) also teaches a bone graft delivery device and is incorporated herein by reference in its entirety. The bone graft device applicator of Thornhill is used to apply bone graft to an artificial joint without having to remove a previously implanted prosthesis component. The applicator device includes a hollow tube with an actuation mechanism for discharging the bone graft from the device via a nozzle coupled to a distal end of the tube. The bone graft delivery device of Thornhill may include various components for loading the device with the bone graft, and may further include a plurality of nozzles each having a geometry suited for a particular application. Like Mikhail, the Thornhill delivery device is designed for use with bone slurry, and requires much custom instrumentation and different sized parts to achieve success in many bone graft delivery applications, which in turn increases the time to assemble and use the delivery device and may create further problems during the surgical operation.
U.S. Pat. No. 5,697,932 issued to Smith et al. on Dec. 16, 1997 (“Smith”) discloses yet another bone graft delivery system and method and is incorporated herein by reference in its entirety. In Smith, a hollow tube of pre-loaded bone graft and a plunger are used to facilitate delivery of the bone graft to a bone graft receiving area. A positioning structure is provided on the plunger to maintain the plunger in a desirable position with respect to the hollow tube. Adjunct positioning means may also be provided to ensure that the plunger remains in the desirable position during the packing of bone graft into the bone graft receiving area. Like the devices of Thornhill and Mikhail, the device disclosed by Smith is clearly designed solely for slurry type bone graft, and does not provide an effective opening for receiving the desired amount of bone graft. Furthermore, the hollow tube shown by Smith is narrow and does not have a footing or other apparatus associated with the delivery device for preventing the device from penetrating, for example, the abdominal region of a patient, which may occur during tamping or packing of the bone graft. This in turn may cause serious injury to a patient if not controlled, and for these reasons the device of Smith is also insufficient for delivery of bone graft to a surgical site.
Traditional devices for inserting a fusion cage or other medical implants into a patient's spine or other surgical area are distinct and separate from traditional devices that deliver bone graft material to the surgical site. For example, once an implant has been positioned, then bone growth material is packed into the internal cavity of the fusion cage. Also, sometimes the process is reversed, i.e., the bone growth is inserted first, and then the implant. These bone growth inducing substances come into immediate contact with the bone from the vertebral bone structures which project into the internal cavity through the apertures. Two devices are thus traditionally used to insert bone graft material into a patient's spine and to position and insert a fusion cage. These devices thus necessitate a disc space preparation followed by introduction of the biologic materials necessary to induce fusion and, in a separate step, application of a structural interbody fusion cage.
The problems associated with separate administration of the biologic material bone graft material and the insertion of a fusion cage include applying the graft material in the path of the cage, restricting and limiting the biologic material dispersed within the disk space, and requiring that the fusion cage be pushed back into the same place that the fusion material delivery device was, which can lead to additional trauma to the delicate nerve structures.
Fusion cages provide a space for inserting a bone graft between adjacent portions of bone. Such cages are often made of titanium and are hollow, threaded, and porous in order to allow a bone graft contained within the interior of the cage of grow through the cage into adjacent vertebral bodies. Such cages are used to treat a variety of spinal disorders, including degenerative disc diseases such as Grade I or II spondylolistheses of the lumbar spine.
Surgically implantable intervertebral fusion cages are well known in the art and have been actively used to perform spinal fusion procedures for many years. Their use became popularized during the mid-1990's with the introduction of the BAK Device from the Zimmer Inc., a specific intervertebral fusion cage that has been implanted worldwide more than any other intervertebral fusion cage system. The BAK system is a fenestrated, threaded, cylindrical, titanium alloy device that is capable of being implanted into a patient as described above through an anterior or posterior approach, and is indicated for cervical and lumbar spinal surgery. The BAK system typifies a spinal fusion cage in that it is a highly fenestrated, hollow structure that will fit between two vertebrae at the location of the intervertebral disc.
Spinal fusion cages may be placed in front of the spine, a procedure known as anterior lumbar interbody fusion, or ALIF, or placed in back of the spine. The cages are generally inserted through a traditional open operation, though laparoscopic or percutaneous insertion techniques may also be used. Cages may also be placed through a posterior lumbar interbody fusion, or PLIF, technique, involving placement of the cage through a midline incision in the back, or through a direct lateral interbody fusion, or D-LIF, technique, involving placement of the cage through an incision in the side.
A typical procedure for inserting a common threaded and impacted fusion cage is as follows. First, the disc space between two vertebrae of the lumbar spine is opened using a wedge or other device on a first side of the vertebrae. The disk space is then prepared to receive a fusion cage. Conventionally, a threaded cage is inserted into the bore and the wedge is removed. A disk space at the first side of the vertebrae is then prepared, and a second threaded fusion cage inserted into the bore. Alternatively, the disk space between adjacent vertebrae may simply be cleared and a cage inserted therein. Often, only one cage is inserted obliquely into the disk space. Use of a threaded cage may be foregone in favor of a rectangular or pellet-shaped cage that is simply inserted into the disk space. Lastly, bone graft material may be inserted into the surgical area using separate tools and devices.
U.S. Pat. No. 4,743,256 issued to Brantigan (“Brantigan”) discloses a traditional spinal surgical method involving the implantation of a spinal fusion cage. The cage surfaces are shaped to fit within prepared endplates of the vertebrae to integrate the implant with the vertebrae and to provide a permanent load-bearing strut for maintaining the disc space. Brantigan teaches that these cages typically consist of a homogeneous nonresorbable material such as carbon-reinforced polymers such as polyether ether ketone (PEEK) or polyether ketone ether ketone (“PEKEKK”). Although these cages have demonstrated an ability to facilitate fusion, a sufficient fusion is sometimes not achieved between the bone chips housed within the cage and the vertebral endplates. In particular, achieving a complete fusion in the middle portion of the cage has been particularly problematic. In any case, Brantigan teaches the separate process and procedure for the insertion of a fusion cage and the insertion of bone graft. Indeed, local bone graft harvested from the channel cuts into the vertebrae to receive the plug supplements the fusion.
U.S. Pat. Appl. Pub. 2007/0043442 of Abernathie et al. (“Abernathie”) discloses another traditional spinal surgical method involving the implantation of a spinal fusion cage. Abernathie relates generally to an implantable device for promoting the fusion of adjacent bony structures, and a method of using the same. More specifically, Abernathie relates to an expandable fusion cage that may be inserted into an intervertebral space, and a method of using the same. Abernathie includes an aperture in the fusion cage to allow bone growth therethrough, as a separate procedure to the insertion of the fusion cage.
Traditional fusion cages are available in a variety of designs and composed of a variety of materials. The cages or plugs are commonly made of an inert metal substrate such as stainless steel, cobalt-chromium-molybdenum alloys, titanium or the like having a porous coating of metal particles of similar substrate metal, preferably titanium or the like as disclosed, for example, in the Robert M. Pilliar U.S. Pat. No. 3,855,638 issued Dec. 24, 1974 and U.S. Pat. No. 4,206,516 issued Jun. 10, 1980. These plugs may take the form of flat sided cubical or rectangular slabs, cylindrical rods, cruciform blocks, and the like.
U.S. Pat. No. 5,906,616 issued to Pavlov et al. (“Pavlov”) discloses a fusion cage of various cylindrical and conical shapes and a method of insertion. Like Brantigan, Pavlov teaches the separate process and procedure for the insertion of a fusion cage and the insertion of bone graft. U.S. Pat. No. 5,702,449 (“McKay”) discloses a spinal implant comprising a cage made of a porous biocompatible material reinforced by an outer sleeve made of a second material which is relatively stronger under the compressive load of the spine than the biocompatible material. U.S. Pat. No. 6,569,201 issued to Moumene et al. (“Moumene”) teaches a bone fusion device having a structural bioresorbable layer disposed upon the outer surface of a non-resorbable support. As the bioresorbable structural layer resorbs over time, the load upon the bone graft housed within the non-resorbable support increases. Published PCT Application No. WO 99/08627 (“Gresser”) discloses a fully bioresorbable interbody fusion device, as well as homogeneous composite devices containing at least 25% resorbable materials. U.S. Pat. No. 7,867,277 issued to Tohmeh discloses a spinal fusion implant of bullet shaped end.
U.S. Pat. No. 7,846,210 issued to Perez-Cruet et al. (“Perez-Cruet”) discloses an interbody device assembly consisting of a fusion device and an insertion device. The insertion device positions the fusion device between two vertebrae, provides bone graft material, and then detaches from the fusion device, leaving the fusion device in place to restore disc space height. However, the Perez-Cruet device is designed to receive bone graft material from its insertion device and distribute the material away from the fusion device. In most embodiments of the fusion device, a center plate is positioned immediately downstream of the received bone graft material and directs the bone graft to opposing sides of the fusion device. (See, for example,
U.S. Pat. No. 7,985,256 issued to Grotz et al. (“Grotz”) discloses an expandable spinal implant for insertion between opposed vertebral end plates. The implant is a cylinder block of slave cylinders; a central cavity between the cylinders receives bone graft material and pistons positioned within the cylinders provide a corrective bone engaging surface for expanding against a first vertebral end plate. The insertion tool used to place the spinal implant includes a handle and hollow interior for housing hydraulic control lines and a bone graft supply line. The Grotz system does not allow precise positioning or delivery of bone graft material without an implant and requires a complex and bulky insertion tool.
U.S. Pat. Appl. Pub. 2010/0198140 to Lawson (“Lawson”) discloses a tool comprising a cannula with an open slot at the distal end and a closed tip. Lawson's tool employs tamps to push bone aside and open up a void for filling; solid bone pellets are then rammed down the hollow interior of the cannula by a tamper and delivered to the surgical site. Lawson does not allow precise positioning or delivery of viscous bone graft material and has no capability to interconnect or integrate with an implant such as a bone graft fusion cage.
U.S. Pat. Appl. Pub. 2010/0262245 to Alfaro et al. (“Alfaro”) discloses a delivery system for an intervertebral spacer and a bone grafting material comprising a spacer disengagingly attached to a hollow handle. The handle comprises a chamber and bone grafting material-advancing means for introducing bone grafting material from the chamber into the spacer and the intervertebral spaces. The Alfaro system does not allow precise positioning or delivery of bone graft material through a distal tip that precisely positions the fusion device and stabilizes the device during delivery of bone graft material, and does not allow primarily lateral injection of bone graft fusion material.
The prior art bone graft delivery devices listed above typically must come pre-loaded with bone graft, or alternatively require constant loading (where permissible) in order to constantly have the desired supply of bone graft available. Moreover, these bone graft delivery devices generally cannot handle particulate bone graft of varying or irregular particulate size. Furthermore, the prior art devices for inserting a fusion cage or other medical implant into a patient's spine or other surgical area are commonly distinct and separate from traditional devices that deliver bone graft material to the surgical site. As such, two devices are traditionally used to insert bone graft material into a patient's spine and to position and insert a fusion cage. The problems associated with separate administration of the biologic material bone graft material and the insertion of a fusion cage include applying the graft material in the path of the cage, restricting and limiting the biologic material dispersed within the disk space, and requiring that the fusion cage be pushed back into the same place that the fusion material delivery device was, which can lead to additional trauma to the delicate nerve structures. These problems can be a great inconvenience, cause avoidable trauma to a patient and make these prior art devices unsuitable in many procedures.
Therefore, there is a long-felt need for an apparatus and method for near-simultaneous and integrated precision delivery of bone graft material during the placement of surgical cages or other medical implants in a patient's spine. The present invention solves these needs. The present invention allows biologic material to flow directly to the fusion cage and be dispersed within the disc space in a single step, and can precisely and simply deliver particulate bone graft of varying or irregular particulate size. Thus, the present invention allows application of bone graft material through a detachable fusion cage, eliminates otherwise restriction of the volume of biologic material that may be dispersed within the disk space, and eliminates the requirement that the fusion cage be pushed back into the same place that the fusion material delivery device was, which can lead to additional trauma to the delicate nerve structures.
Certain embodiments of the present disclosure relate to an apparatus and method for near-simultaneous and integrated delivery of bone graft material during the placement of surgical cages or other medical implants in a patient's spine. The integrated fusion cage and delivery device (the “device”) is comprised generally of a tubular member and a plunger for expelling bone graft from the tubular member, through a surgical fusion cage, and into a bone graft receiving area, then disengaging the fusion cage at the surgical site in a human patient. Thus, the apparatus and method allows the biologic material to flow directly into and through the fusion cage and be dispersed within the disc space in a single step, and leave the detachable fusion cage in the surgical area. In one embodiment, the integrated fusion cage is an expandable integrated fusion cage. Other embodiments and alternatives to this device are described in greater detail below.
By way of providing additional background, context, and to further satisfy the written description requirements of 35 U.S.C. § 112, the following references are incorporated by reference in their entireties for the express purpose of explaining the nature of the surgical procedures in which bone graft is used and to further describe the various tools and other apparatus commonly associated therewith: U.S. Pat. No. 6,309,395 to Smith et al.; U.S. Pat. No. 6,142,998 to Smith et al.; U.S. Pat. No. 7,014,640 to Kemppanien et al.; U.S. Pat. No. 7,406,775 to Funk, et al.; U.S. Pat. No. 7,387,643 to Michelson; U.S. Pat. No. 7,341,590 to Ferree; U.S. Pat. No. 7,288,093 to Michelson; U.S. Pat. No. 7,207,992 to Ritland; U.S. Pat. No. 7,077,864 Byrd III, et al.; U.S. Pat. No. 7,025,769 to Ferree; U.S. Pat. No. 6,719,795 to Cornwall, et al.; U.S. Pat. No. 6,364,880 to Michelson; U.S. Pat. No. 6,328,738 to Suddaby; U.S. Pat. No. 6,290,724 to Marino; U.S. Pat. No. 6,113,602 to Sand; U.S. Pat. No. 6,030,401 to Marino; U.S. Pat. No. 5,865,846 to Bryan, et al.; U.S. Pat. No. 5,569,246 to Ojima, et al.; U.S. Pat. No. 5,527,312 to Ray; and U.S. Pat. Appl. Pub. No. 2008/0255564 to Michelson.
By way of providing additional background, context, and to further satisfy the written description requirements of 35 U.S.C. § 112, the following references are incorporated by reference in their entireties for the express purpose of explaining the nature of the surgical procedures in which fusion cages are used and to further describe the various tools and other apparatus commonly associated therewith: U.S. Pat. No. 6,569,201 to Moumene et al.; U.S. Pat. No. 6,159,211 to Boriani et al.; U.S. Pat. No. 4,743,256 to Brantigan; U.S. Pat. Appl. 2007/0043442 to Abernathie et al.; U.S. Pat. Nos. 3,855,638 and 4,206,516 to Pilliar; U.S. Pat. No. 5,906,616 issued to Pavlov et al.; U.S. Pat. No. 5,702,449 to McKay; U.S. Pat. No. 6,569,201 to Moumene et al.; PCT Appl. No. WO 99/08627 to Gresser; U.S. Pat. Appl. Pub. 2012/0022651 to Akyuz et al.; U.S. Pat. Appl. Pub. 2011/0015748 to Molz et al.; U.S. Pat. Appl. Pub. 2010/0249934 to Melkent; U.S. Pat. Appl. Pub. 2009/0187194 to Hamada; U.S. Pat. No. 7,867,277 issued to Tohmeh; U.S. Pat. No. 7,846,210 to Perez-Cruet et al.; U.S. Pat. No. 7,985,256 issued to Grotz et al.; U.S. Pat. Appl. Pub. 2010/0198140 to Lawson; and U.S. Pat. Appl. Pub. 2010/0262245 to Alfaro et al.
By way of providing additional background and context, the following references are also incorporated by reference in their entireties for the purpose of explaining the nature of spinal fusion and devices and methods commonly associated therewith: U.S. Pat. No. 7,595,043 issued to Hedrick et al.; U.S. Pat. No. 6,890,728 to Dolecek et al.; U.S. Pat. No. 7,364,657 to Mandrusov, and U.S. Pat. No. 8,088,163 to Kleiner.
In addition, by way of providing additional background and context, the following references are also incorporated by reference in their entireties for the purpose of explaining the nature of spinal fusion and devices and methods commonly associated therewith: U.S. Pat. No. D647,202 entitled “Bone Marrow Harvesting Device” to Scifert issued Oct. 18, 2011; U.S. Pat. No. 7,897,164 entitled “Compositions and Methods for Nucleus Pulposus Regeneration” to Scifert issued Mar. 1, 2011; U.S. Pat. Appl. Pub. No. 2010/0112029 entitled “Compositions and Methods for Nucleus Pulposus Regeneration” to Seifert issued May 6, 2010; U.S. Pat. Appl. Pub. No. 2010/0021518 entitled “Foam Carrier for Bone Grafting” to Scifert issued Jan. 28, 2010; U.S. Pat. No. 7,824,703 entitled “Medical Implants with Reservoir(s), and Materials Preparable From Same” to Scifert, et al., issued Nov. 2, 2010; U.S. Pat. Appl. Pub. No. 2006/0247791 entitled “Multi-Purpose Medical Implant Devices” to McKay, et al., issued Nov. 2, 2006; U.S. Pat. Appl. Pub. No. 2007/0225811 entitled “Conformable Orthopedic Implant” to Scifert, et al., issued Sep. 27, 2007; U.S. Pat. No. 6,746,487 entitled “Intramedullary Trial Fixation Device” to Scifert, et al., issued Jun. 9, 2004; U.S. Pat. Appl. Pub. No. 2013/0073041 entitled “Medical Implants With Reservoir(s), and Materials Preparable From Same” to Scifert et al., issued Mar. 21, 2013; U.S. Pat. Appl. Pub. No. 2010/0266689 entitled “Tissue Augmentation With Active Agent For Wound Healing” to Simonton et al., issued Oct. 21, 2010; U.S. Pat. Appl. Pub. No. 2011/0028393 entitled “Flowable Paste And Putty Bone Void Filler” to Vickers et al., issued Feb. 3, 2011; U.S. Pat. Appl. Pub. No. 2009/0099660 entitled “Instrumentation To Facilitate Access Into The Intervertebral Disc Space And Introduction Of Materials Therein” to Scifert issued Apr. 16, 2009; U.S. Pat. Appl. Pub. No. 2011/0014587 entitled “System And Methods Of Preserving An Oral Socket” to Spagnoli et al., issued Jan. 20, 2011; U.S. Pat. No. 8,148,326 entitled “Flowable Carrier Matrix and Methods for Delivering to a Patient” to Beals et al., issued Apr. 3, 2012; U.S. Pat. Appl. Pub. No. 2008/0260598 entitled “Devices, Methods and Systems for Hydrating a Medical Implant Material” to Gross et al., issued Oct. 23, 2008; U.S. Pat. Appl. Pub. No. 2007/0265632 entitled “Bone Cutting Template and Method of Treating Bone Fractures” to Scifert et al., issued Nov. 15, 2007; U.S. Pat. No. 8,293,232 entitled “Flowable Carrier Matrix and Methods for Delivering to a Patient” to Beals et al., issued Oct. 23, 2012; U.S. Pat. No. 8,198,238 entitled “Flowable Carrier Matrix and Methods for Delivering to a Patient” to Beals et al., issued Jun. 12, 2012; U.S. Pat. No. 7,939,092 entitled “Cohesive Osteogenic Putty and Materials Therefor” to McKay et al., issued May 10, 2011; U.S. Pat. Appl. Pub. No. 2007/0264300 entitled “Therapeutic Agent Carrier and Method of Treating Bone Fractures” to Scifert et al., issued Nov. 15, 2007; U.S. Pat. Appl. Pub. No. 2011/0020768 entitled “Implantable Screw and System for Socket Preservation” to Spagnoli et al., issued Jan. 27, 2011; U.S. Pat. Appl. Pub. No. 2012/0065687 entitled “Multi-Radius Vertebral Rod with a Varying Stiffness” to Ballard et al., issued Mar. 15, 2012; U.S. Pat. Appl. Pub. No. 2007/0225219 entitled “Intramedullary Drug Delivery Device and Method of Treating Bone Fractures” to Boden et al., issued Sep. 27, 2007; U.S. Pat. No. 7,723,291 entitled “Release of BMP, Bioactive Agents and/or Cells Via a Pump into a Carrier Matrix” to Beals et al., issued May 25, 2010; U.S. Pat. No. 7,671,014 entitled “Flowable Carrier Matrix And Methods For Delivering To A Patient” to Beals et al., issued Mar. 2, 1010; U.S. Pat. No. 7,897,564 entitled “Flowable Carrier Matrix and Methods for Delivering to a Patient” to Beals et al., issued Mar. 1, 2011; U.S. Pat. Appl. Pub. No. 2011/0160777 entitled “System and Methods of Maintaining Space for Augmentation of the Alveolar Ridge” to Spagnoli et al., issued Jun. 30, 2011; U.S. Pat. Appl. Pub. No. 2009/0246244 entitled “Malleable Multi-Component Implants and Materials Therefor” to McKay et al., issued Oct. 1, 2009; U.S. Pat. Appl. Pub. No. 2009/0246244 entitled “Malleable Multi-Component Implants and Materials Therefor” to McKay et al., issued Oct. 1, 2009; U.S. Pat. Appl. Pub. No. 2013/0110169 entitled “Vertebral Rod System and Methods of Use” to Hynes, et al., issued May 2, 2013; U.S. Pat. Appl. Pub. No. 2011/0184412 entitled “Pre-Assembled Construct With One Or More Non-Rotating Connectors For Insertion Into a Patient” to Scifert, et al., issued Jul. 28, 2011; U.S. Pat. No. 7,964,208 entitled “System and Methods of Maintaining Space For Augmentation of the Alveolar Ridge” to Spagnoli, et al., issued Jun. 21, 2011; U.S. Pat. No. 8,080,521 entitled “Flowable Carrier Matrix and Methods for Delivering to a Patient” to Beals, et al., issued Dec. 20, 2011; U.S. Pat. Appl. Pub. No. 2009/0142385 entitled “Compositions for Treating Bone Defects” to Gross, et al., issued Jun. 4, 2009; U.S. Pat. No. 7,578,820 entitled “Devices and Techniques for a Minimally Invasive Disc Space Preparation and Implant Insertion” to Moore, et al., issued Aug. 25, 2009; U.S. Pat. Appl. Pub. No. 2010/0305575 entitled “Methods and Apparatus for Performing Knee Arthroplasty” to Wilkinson, et al., issued Dec. 2, 2010; U.S. Pat. Appl. Pub. No. 2011/0021427 entitled “Biphasic Calcium Phosphate Cement for Drug Delivery” to Amsden, et al., issued Jan. 27, 2011; U.S. Pat. Appl. Pub. No. 2012/0259335 entitled “Patello-Femoral Joint Implant and Instrumentation” to Scifert, et al., issued Oct. 11, 2012; U.S. Pat. Appl. No. 2011/0106162 entitled “Composite Connecting Elements for Spinal Stabilization Systems” to Ballard, et al., issued May 5, 2011; U.S. Pat. Appl. No. 2004/0073314 entitled “Vertebral Body and Disc Space Replacement Devices” to White, et al., issued Apr. 15, 2004; U.S. Pat. No. 7,513,901 entitled “Graft Syringe Assembly” to Scifert, et al., issued Apr. 7, 2009; U.S. Pat. Appl. No. 2010/0004752 entitled “Vertebral Body and Disc Space Replacement Devices” to White, et al., issued Jan. 7, 2010; U.S. Pat. No. 7,615,078 entitled “Vertebral Body and Disc Space Replacement Devices” to White, et al., issued Nov. 10, 2009; U.S. Pat. No. 6,991,653 entitled “Vertebral Body and Disc Space Replacement Devices” to White, et al., issued Jan. 31, 2006; U.S. Pat. Appl. Pub. No. 2010/0331847 entitled “Methods and Apparatus for Performing Knee Arthroplasty” to Wilkinson, et al., issued Dec. 30, 2010; U.S. Pat. Appl. Pub. No. 2006/0116770 entitled “Vertebral Body and Disc Space Replacement Devices” to White, et al., issued Jun. 1, 2006; and U.S. Pat. No. 8,246,572 entitled “Bone Graft Applicator” to Cantor, et al., issued Aug. 21, 2012.
It is one aspect of the present invention to provide a bone graft material delivery system, comprising an elongate hollow tube constructed to receive bone graft material, said elongate hollow tube being generally linear and having an extended axis, a generally rectangular cross-section, a proximal end, a distal end with at least one opening, and a hollow interior extending from said proximal end to said distal end, wherein said distal end of said elongate hollow tube comprises a wedge- or bullet-shaped tip; a plunger adapted to extend in said elongate hollow tube, said plunger having a shaft and a distal portion with an exterior surface contoured to form a substantially congruent fit with said hollow interior of said elongate hollow tube such that said plunger is precluded from rotating within said elongate hollow tube; and a means for advancing bone graft material through the hollow tube.
In embodiments, the system may further comprise indicia formed on an exterior surface of the elongate hollow tube, wherein said indicia are configured to indicate how far said elongate hollow tube has been inserted into a surgical site. Said indicia may, but need not, comprise at least one of a marking, a score, and a groove. Said indicia may, but need not, comprise a radiographic marker.
In embodiments, said at least one opening may comprise two openings.
In embodiments, the system may further comprise teeth formed along a longitudinal axis of the plunger shaft and the means for advancing may be configured to engage said teeth of said plunger to advance said plunger toward said distal end of said elongate hollow tube. The system may, but need not, further comprise a gear to engage said plunger teeth. Rotational motion of said gear may, but need not, be translated into linear movement of said plunger.
In embodiments, said elongate hollow tube may be substantially rigid.
In embodiments, the system may further comprise a funnel configured to be coupled to said proximal end of said hollow tube.
In embodiments, the means for advancing may comprise at least one of (i) a ratchet configured to engage notches of the plunger, (ii) a gear comprising teeth, (iii) a worm gear comprising at least one helical thread, (iv) a handle or grip, and (v) a compressed fluid.
In embodiments, the means for advancing may use at least one of manual force, mechanical force, electric force, and pneumatic force to advance bone graft material through the hollow tube.
It is another aspect of the present invention to provide a bone graft insertion apparatus comprising a hollow tube constructed to receive bone graft, said hollow tube having an extended axis, a proximal end, a distal end that is wedge- or bullet-shaped, an opening to discharge bone graft, and a generally uniform interior rectangular cross-section from said proximal end to said distal end; a plunger adapted for inserting into said proximal end of said hollow tube along the extended axis, said plunger having a shaft and a distal portion of rectangular cross-section contoured to said interior rectangular cross-section of said hollow tube, said plunger distal portion forming a congruent fit with said hollow tube uniform interior rectangular cross-section, said shaft having a longitudinal axis; and a means for advancing bone graft material configured to advance said plunger from said proximal end toward said distal end of said hollow tube to urge the bone graft through said hollow tube and to deliver the bone graft through said opening.
In embodiments, the apparatus may further comprise one or more of (i) indicia on said hollow tube that are configured to indicate how far said hollow tube has been inserted into a surgical site; (ii) teeth that are formed along the shaft longitudinal axis and a gear to engage said plunger teeth, wherein the means for advancing is configured to engage said teeth of said plunger shaft and said gear is associated with said means for advancing and is configured to convert rotational motion of said gear into linear movement of said plunger; and (iii) a funnel configured to be coupled to said proximal end of said hollow tube.
In embodiments, said hollow tube may be generally linear and substantially rigid, and said opening may comprise a first pair of edges and a second pair of edges, wherein the first pair of edges are straight and the second pair of edges are not straight.
In embodiments, the means for advancing may comprise at least one of (i) a ratchet configured to engage notches of the plunger, (ii) a gear comprising teeth, (iii) a worm gear comprising at least one helical thread, (iv) a handle or grip, and (v) a compressed fluid.
In embodiments, the means for advancing may use at least one of manual force, mechanical force, electric force, and pneumatic force to advance bone graft material through the hollow tube.
It is another aspect of the present invention to provide a bone graft delivery device, comprising an elongate tube including a first side opposite to a second side, the first and second sides connected by opposing third and fourth sides such that the elongate tube has a hollow interior with a generally rectangular cross-section, wherein the elongate tube includes a proximal end, at least one opening to discharge bone graft, and a distal end that is wedge or bullet-shaped; a plunger with a distal portion and a shaft, the shaft being generally linear; and a means for applying a force to the plunger to advance the plunger within the elongate tube toward the distal end such that bone graft is delivered through the opening into a surgical site.
In embodiments, the shaft may have a plurality of teeth and the means for applying may include an actuator configured to engage the plurality of teeth of the plunger shaft.
In embodiments, the shaft may have a plurality of teeth and the means for applying may include a gear configured to engage the plurality of teeth of the plunger shaft to convert rotational motion of the gear into linear movement of the plunger.
In embodiments, the at least one opening may include an opening formed through one of the first, second, third, and fourth sides.
In embodiments, the hollow tube may be generally linear and substantially rigid.
In embodiments, the means for applying may comprise at least one of (i) a ratchet configured to engage notches of the plunger, (ii) a gear comprising teeth, (iii) a worm gear comprising at least one helical thread, (iv) a handle or grip, and (v) a compressed fluid.
In embodiments, the force may be at least one of a manual force, a mechanical force, an electric force, and a pneumatic force.
It is another aspect of the present invention to provide a bone graft distribution system, comprising an elongate hollow tube constructed to receive bone graft material, said elongate hollow tube being generally linear and having an extended axis, a generally rectangular cross-section, a proximal end, a distal end with at least one opening, and a hollow interior extending from said proximal end to said distal end, wherein said distal end of said elongate hollow tube comprises a wedge- or bullet-shaped tip; an implant detachably interconnected to the distal end of the hollow tube, said implant constructed to receive bone graft from said hollow tube; a plunger adapted to extend in said elongate hollow tube, said plunger having a shaft and a distal portion with an exterior surface contoured to form a substantially congruent fit with said hollow interior of said elongate hollow tube such that said plunger is precluded from rotating within said elongate hollow tube; and a means for advancing bone graft material through the hollow tube, wherein said hollow tube, said implant, and said plunger are configured to deliver bone graft material into an interior of the implant.
In embodiments, the bone graft distribution system may further comprise indicia formed on an exterior surface of the elongate hollow tube, wherein said indicia are configured to indicate how far said elongate hollow tube has been inserted into a surgical site.
In embodiments, the bone graft distribution system may further comprise teeth formed along a longitudinal axis of the plunger shaft and the means for advancing may be configured to engage said teeth of said plunger to advance said plunger toward said distal end of said elongate hollow tube.
In embodiments, the means for advancing may comprise at least one of (i) a ratchet configured to engage notches of the plunger, (ii) a gear comprising teeth, (iii) a worm gear comprising at least one helical thread, (iv) a handle or grip, and (v) a compressed fluid.
In embodiments, the means for advancing may use at least one of manual force, mechanical force, electric force, and pneumatic force to advance bone graft material through the hollow tube.
It is another aspect of the present invention to provide a method for distributing bone graft, comprising (a) providing an elongate hollow tube constructed to receive bone graft material, said elongate hollow tube being generally linear and having an extended axis, a generally rectangular cross-section, a proximal end, a distal end with at least one opening, and a hollow interior extending from said proximal end to said distal end, wherein said distal end of said elongate hollow tube comprises a wedge- or bullet-shaped tip; (b) providing an implant detachably interconnected to the distal end of the hollow tube, said implant constructed to receive bone graft from said hollow tube; (c) providing a plunger adapted to extend in said elongate hollow tube, said plunger having a shaft and a distal portion with an exterior surface contoured to form a substantially congruent fit with said hollow interior of said elongate hollow tube such that said plunger is precluded from rotating within said elongate hollow tube; (d) providing a means for advancing bone graft material through the hollow tube; (e) delivering bone graft material through said at least one opening of said distal end of said elongate hollow tube into an interior of said implant by operating said means for advancing to urge, via said plunger, bone graft material through said elongate hollow tube; and (f) detaching said implant from the distal end of the hollow tube.
In embodiments, the elongate hollow tube may comprise indicia formed on an exterior surface of the elongate hollow tube, wherein said indicia are configured to indicate how far said elongate hollow tube has been inserted into a surgical site.
In embodiments, the plunger may comprise teeth formed along a longitudinal axis of the plunger shaft and step (e) may comprise engaging said teeth of said plunger with the means for advancing to advance said plunger toward said distal end of said elongate hollow tube.
In embodiments, the means for advancing may comprise at least one of (i) a ratchet configured to engage notches of the plunger, (ii) a gear comprising teeth, (iii) a worm gear comprising at least one helical thread, (iv) a handle or grip, and (v) a compressed fluid.
In embodiments, the means for advancing may use at least one of manual force, mechanical force, electric force, and pneumatic force to advance bone graft material through the hollow tube.
In another embodiment for the integrated fusion cage and graft delivery device, the detachable fusion cage is detachable by way of a Luer taper or Luer fitting connection, such as in a Luer-Lok® or Luer-Slip® configuration or any other Luer taper or Luer fitting connection configuration. For purposes of illustration, and without wishing to be held to any one embodiment, the following U.S. patent application is incorporated herein by reference in order to provide an illustrative and enabling disclosure and general description of means to selectably detach the fusion cage of the integrated fusion cage and graft delivery device: U.S. Patent Appl. No. 2009/0124980 to Chen.
In another embodiment for the integrated fusion cage and graft delivery device, the detachable fusion cage is detachable by way of a pedicle dart by threadable rotation to achieve attachment, detachment, and axial movement. Other ways include a quick key insertion, an external snap detent, or magnetic attraction or any other structure. For purposes of illustration, and without wishing to be held to any one embodiment, the following U.S. patent application is incorporated herein by reference in order to provide an illustrative and enabling disclosure and general description of means to selectably detach the fusion cage of the integrated fusion cage and graft delivery device: U.S. Patent Appl. No. 2009/0187194 to Hamada.
In another embodiment for the integrated fusion cage and graft delivery device, the detachable fusion cage is detachable by use of magnetism. More specifically, the detachable fusion cage can be made to feature a magnetic field pattern and a resulting force R that are adjustable and may be of different character than the rest of the integrated fusion cage and graft delivery device. With permanent magnets, such adjustments can be made mechanically by orienting various permanent magnet polar geometries and corresponding shapes relative to one another. U.S. Pat. No. 5,595,563 to Moisdon describes further background regarding such adjustment techniques, which is hereby incorporated by reference in its entirety. Alternatively, or additionally, electromagnets could be used in combination with permanent magnets to provide adjustability. In further embodiments, the magnets and corresponding fields and the resultant magnetic field pattern can include both attraction forces from placement of opposite pole types in proximity to one another and repulsion forces from placement of like pole types in proximity to one another. As used herein, “repulsive magnetic force” or “repulsive force” refers to a force resulting from the placement of like magnetic poles in proximity to one another either with or without attractive forces also being present due to opposite magnetic poles being placed in proximity to one another, and further refers to any one of such forces when multiple instances are present. U.S. Pat. No. 6,387,096 is cited as a source of additional information concerning repulsive forces that are provided together with attractive magnetic forces, which is hereby incorporated by reference. In another alternative embodiment example, one or more of surfaces of the fusion cage are roughened or otherwise include bone-engaging structures to secure purchase with vertebral surfaces. In yet other embodiments, the selectable detachable feature between the detachable fusion cage and the integrated fusion cage and graft delivery device can include one or more tethers, cables, braids, wires, cords, bands, filaments, fibers, and/or sheets; a nonfabric tube comprised of an organic polymer, metal, and/or composite; an accordion or bellows tube type that may or may not include a fabric, filamentous, fibrous, and/or woven structure; a combination of these, or such different arrangement as would occur to one skilled in the art. Alternatively or additionally, the selectable detachable feature between the detachable fusion cage and the integrated fusion cage and graft delivery device can be arranged to present one or more openings between members or portions, where such openings extend between end portions of the fusion cage. For purposes of illustration, and without wishing to be held to any one embodiment, the following U.S. patent application is incorporated herein by reference in order to provide an illustrative and enabling disclosure and general description of means to selectably detach the fusion cage of the integrated fusion cage and graft delivery device: U.S. Patent Appl. No. 2011/0015748 to Molz et al.
In another embodiment for the integrated fusion cage and graft delivery device, the detachable fusion cage is detachable by use of plasma treatment. The term “plasma” in this context is an ionized gas containing excited species such as ions, radicals, electrons and photons. (Lunk and Schmid, Contrib. Plasma Phys., 28: 275 (1998)). The term “plasma treatment” refers to a protocol in which a surface is modified using a plasma generated from process gases including, but not limited to, O2, He, N2, Ar and N2O. To excite the plasma, energy is applied to the system through electrodes. This power may be alternating current (AC), direct current (DC), radiofrequency (RF), or microwave frequency (MW). The plasma may be generated in a vacuum or at atmospheric pressure. The plasma can also be used to deposit polymeric, ceramic or metallic thin films onto surfaces (Ratner, Ultrathin Films (by Plasma deposition), 11 Polymeric Materials Encyclopedia 8444-8451, (1996)). Plasma treatment is an effective method to uniformly alter the surface properties of substrates having different or unique size, shape and geometry including but not limited to bone and bone composite materials. Plasma Treatment may be employed to effect magnetic properties on elements of the integrated fusion cage and graft delivery device, or to provide selectable detachment of the fusion cage. For purposes of illustration, and without wishing to be held to any one embodiment, the following U.S. patent application is incorporated herein by reference in order to provide an illustrative and enabling disclosure and general description of means to selectably detach the fusion cage of the integrated fusion cage and graft delivery device: U.S. Pat. No. 7,749,555 to Zanella et al.
In one embodiment, the device is not a caulking gun style device, that is the bone graft material and/or the fusion cage are not delivered and/or positioned using a hand-pump and/or hand-squeeze mechanism. Instead, the device delivers graft material and/or a fusion cage using a hollow tube and plunger arrangement which is not a caulking gun style device and further, does not appreciably disrupt or block the user's view of the surgical site and/or enable precision delivery of bone graft material and/or a fusion cage to the surgical site. Indeed, the device of one embodiment of the present disclosure is distinctly unlike the caulking gun device of U.S. Pat. Appl. No. 2004/0215201 to Lieberman (“Lieberman”), which requires an L-shaped base member handle, rack teeth to advance a plunger member, and user action on a lever of the L-shaped base member handle to deploy bone graft material. In one embodiment, the device of this application is not a caulking gun style device and does not comprise rack teeth, a base member handle and at least one component that obscures user viewing of the surgical site. Lieberman is incorporated by reference in its entirety for all purposes.
Similarly, in one embodiment, the device is distinctly unlike the caulking gun device of U.S. Pat. Appl. No. 2002/0049448 to Sand et al (“Sand”), which requires a gun and trigger mechanism in which the user squeezes together a gun-style handle to deploy material into bone. The Sand device obstructs the view of the user of the delivery site. In one embodiment, the device of this application is not a caulking gun style device and does not comprise an opposing-levered, gun-style delivery mechanism and at least one component that obscures user viewing of the surgical site. Sand is incorporated by reference in its entirety for all purposes.
Other caulking gun type devices are described in U.S. Pat. Nos. 8,932,295 and 9,655,748 which are each incorporated herein by reference in their entirety.
However, while in some embodiments the bone graft delivery device of the present invention may not be a caulking gun-style device, it is to be expressly understood that caulking gun-type designs are within the scope of the present invention, and indeed may even be desirable in certain embodiments and applications. By way of non-limiting example, it may be advantageous to provide a caulking gun-type mechanism for the purpose of making it easier for a user to apply pressure against a plunger to facilitate controlled movement of the plunger and/or a hollow tube relative to the plunger. A handle and pivotally mounted trigger attached to a ratchet-type push bar, as are commonly associated with caulking guns and similar devices, may be provided, in these and other embodiments, instead of or in addition to a rack-and-pinion-type linear actuator.
In one embodiment, the device is configured to deliver bone graft material substantially laterally from its delivery end, that is substantially not in the axial direction but rather substantially from the side and/or in a radial direction. This is distinctly different than devices that deliver bone graft material along their vertical axis, that is, along or out their bottom end, and/or obstruct the user view of the bone graft and/or fusion cage delivery site, such as that of U.S. Pat. Appl. No. 2010/0087828 to Krueger et al (“Krueger”), U.S. Pat. Appl. No. 2009/0264892 to Beyar et al (“Beyar”), U.S. Pat. Appl. No. 2007/0185496 to Beckman et al (“Beckman”), U.S. Pat. Appl. No. 2009/0275995 to Truckai et al (“Truckai”) and U.S. Pat. Appl. No. 2006/0264964 to Scifert et al (“Scifert”). Krueger, Beyar, Beckman, Truckai and Scifert are incorporated by reference in their entireties for all purposes.
In one embodiment, the device is configured to deliver bone graft material so as to completely fill the defined interior of its fusion cage and subsequently deliver bone graft material to the surrounding bone graft site, rather than, for example, to contain the bone material as are the fusion cage designs of U.S. Pat. No. 7,846,210 to Perez-Cruet (“Perez-Cruet”). Further, the fusion device of this application features a distal tip that functions to precisely position the fusion device and stabilize the device during delivery of bone graft material. Perez-Cruet is incorporated by reference in its entirety for all purposes.
In addition, by way of providing additional background and context, the following references are also incorporated by reference in their entireties for the purpose of explaining the nature of spinal fusion and devices and methods commonly associated therewith, to include, without limitation, expandable fusion cages: U.S. Pat. No. 4,863,476 to Shepperd; U.S. Pat. No. 6,743,255 to Ferree; U.S. Pat. No. 6,773,460 to Jackson; U.S. Pat. No. 6,835,206 to Jackson; U.S. Pat. No. 6,972,035 to Michelson; U.S. Pat. No. 7,771,473 to Thramann; U.S. Pat. No. 7,850,733 to Baynham; U.S. Pat. No. 8,506,635 to Palmatier; U.S. Pat. No. 8,556,979 to Glerum; U.S. Pat. No. 8,628,576 to Triplett; U.S. Pat. No. 8,709,086 to Glerum; U.S. Pat. No. 8,715,351 to Pinto; U.S. Pat. No. 8,753,347 to McCormack; U.S. Pat. No. 8,753,377 to McCormack; U.S. Design Pat. No. D708,323 to Reyes; U.S. Pat. No. 8,771,360 to Jimenez; U.S. Pat. No. 8,778,025 to Ragab; U.S. Pat. No. 8,778,027 to Medina; U.S. Pat. No. 8,808,383 to Kwak; U.S. Pat. No. 8,814,940 to Curran; U.S. Pat. No. 8,821,396 to Miles; U.S. Patent Application Publication No. 2006/0142858 to Colleran; U.S. Patent Application Publication No. 2008/0086142 to Kohm; U.S. Patent Application Publication No. 2010/0286779 to Thibodean; U.S. Patent Application Publication No. 2011/0301712 to Palmatier; U.S. Patent Application Publication No. 2012/0022603 to Kirschman; U.S. Patent Application Publication No. 2012/0035729 to Glerum; U.S. Patent Application Publication No. 2012/0089185 to Gabelberger; U.S. Patent Application Publication No. 2012/0123546 to Medina; U.S. Patent Application Publication No. 2012/0197311 to Kirschman; U.S. Patent Application Publication No. 2012/0215316 to Mohr; U.S. Patent Application Publication No. 2013/0158664 to Palmatier; U.S. Patent Application Publication No. 2013/0178940; U.S. Patent Application Publication No. 2014/0012383 to Triplett; U.S. Patent Application Publication No. 2014/0156006; U.S. Patent Application Publication No. 2014/0172103 to O'Neil; U.S. Patent Application Publication No. 2014/0172106 to To; U.S. Patent Application Publication No. 2014/0207239 to Barreiro; U.S. Patent Application Publication No. 2014/0228955 to Weiman; U.S. Patent Application Publication No. 2014/0236296 to Wagner; U.S. Patent Application Publication No. 2014/0236297 to Iott; U.S. Patent Application Publication No. 2014/0236298 to Pinto.
Furthermore, by way of providing additional background and context, the following references are also incorporated by reference in their entireties for the purpose of explaining the nature of spinal fusion and devices and methods commonly associated therewith, to include, without limitation, expandable fusion cages: U.S. Pat. No. 7,803,159 to Perez-Cruet et al.; U.S. Pat. No. 8,852,282 to Farley et al.; U.S. Pat. No. 8,858,598 to Seifert et al.; U.S. Pat. No. D714,933 to Kawamura; U.S. Pat. No. 8,795,366 to Varela; U.S. Pat. No. 8,852,244 to Simonson; U.S. Patent Application Publication No. 2012/0158146 to Glerum et al.; U.S. Pat. No. 8,852,242 to Morgenstern Lopez et al.; U.S. Pat. No. 8,852,281 to Phelps; U.S. Pat. No. 8,840,668 to Donahoe et al.; U.S. Pat. No. 8,840,622 to Vellido et al.; U.S. Patent Application Publication No. 2014/0257405; U.S. Patent Application Publication No. 2014/0257490 to Himmelberger et al.; U.S. Pat. No. 8,828,019 to Raymond et al.; U.S. Patent Application Publication No. 2014/0288652 to Boehm et al.; U.S. Patent Application Publication No. 2014/0287055 to Kunjachan; U.S. Patent Application Publication No. 2014/0276896 to Harper; U.S. Patent Application Publication No. 2014/0277497 to Bennett et al.; U.S. Patent Application Publication No. 2012/0029635 to Schoenhoeffer et al.; U.S. Patent Application Publication No. 2014/0303675 to Mishra; U.S. Patent Application Publication No. 2014/0303731 to Glerum; U.S. Patent Application Publication No. 2014/0303732 to Rhoda et al.; U.S. Pat. No. 8,852,279 to Weiman; PCT Pub. WO 2012/031267 to Weiman; U.S. Pat. No. 8,845,731 to Weiman; U.S. Pat. No. 8,845,732 to Weiman; U.S. Pat. No. 8,845,734 to Weiman; U.S. Patent Application Publication No. 2014/0296985 to Balasubramanian et al.; U.S. Patent Application Publication No. 2014/0309268 to Arnou; U.S. Patent Application Publication No. 2014/0309548 to Merz et al.; U.S. Patent Application Publication No. 2014/0309697 to Iott et al.; U.S. Patent Application Publication No. 2014/0309714 to Mercanzini et al.; U.S. Pat. No. 8,282,683 to McLaughlin et al.; U.S. Pat. No. 8,591,585 to McLaughlin et al; U.S. Pat. No. 8,394,129 to Morgenstern Lopez et al.; U.S. Patent Application Publication No. 2011/0208226 to Fatone et al.; U.S. Patent Application Publication No. 2010/0114147 to Biyani; U.S. Patent Application Publication No. 2011/0144687 to Kleiner; U.S. Pat. No. 8,852,243 to Morgenstern Lopez et al.; U.S. Pat. No. 8,597,333 to Morgenstern Lopez et al.; U.S. Pat. No. 8,518,087 to Lopez et al.; U.S. Patent Application Publication No. 2012/0071981 to Farley et al.; U.S. Patent Application Publication No. 2013/0006366 to Farley et al.; U.S. Patent Application Publication No. 2012/0065613 to Pepper et al.; U.S. Patent Application Publication No. 2013/0006365 to Pepper et al.; U.S. Patent Application Publication No. 2011/0257478 to Kleiner et al.; U.S. Patent Application Publication No. 2009/0182429 to Humphreys et al.; U.S. Patent Application Publication No. 2005/0118550 to Turri; U.S. Patent Application Publication No. 2009/0292361 to Lopez; U.S. Patent Application Publication No. 2011/0054538 to Zehavi et al.; U.S. Patent Application Publication No. 2005/0080443 to Fallin et al.; U.S. Pat. No. 8,778,025 to Ragab et al.; U.S. Pat. No. 8,628,576 to Triplett et al; U.S. Pat. No. 8,808,304 to Weiman, and U.S. Pat. No. 8,828,019 to Raymond.
All of the following U.S. patents are also incorporated herein by reference in their entirety: U.S. Pat. Nos. 6,595,998; 6,997,929; 7,311,713; 7,749,255; 7,753,912; 7,780,734; 7,799,034; 7,875,078; 7,931,688; 7,967,867; 8,075,623; 8,123,755; 8,142,437; 8,162,990; 8,167,887; 8,197,544; 8,202,274; 8,206,395; 8,206,398; 8,317,802; 8,337,531; 8,337,532; 8,337,562; 8,343,193; 8,349,014; 8,372,120; 8,394,108; 8,414,622; 8,430,885; 8,439,929; 8,454,664; 8,475,500; 8,512,383; 8,523,906; 8,529,627; 8,535,353; 8,562,654; 8,574,299; 8,641,739; 8,657,826; 8,663,281; 8,715,351; 8,727,975; 8,828,019; 8,845,640; 8,864,830; 8,900,313; 8,920,507; 8,974,464; 9,039,767; 9,084,686; 9,095,446; 9,095,447; 9,101,488; 9,107,766; 9,113,962; 9,114,026; 9,149,302; 9,174,147; 9,216,094; 9,226,777; 9,295,500; 9,358,134; 9,381,094; 9,439,692; 9,439,783; 9,445,921; 9,456,830; 9,480,578; 9,498,200; 9,498,347; 9,498,351; 9,517,140; 9,517,141; 9,517,142; 9,545,250; 9,545,279; 9,545,313; 9,545,318; 9,610,175; 9,629,668; 9,655,660; 9,655,743; 9,681,889; 9,687,360; 9,707,094; 9,763,700; 9,861,395; 9,980,737; 9,993,353; U.S. Pat. Pub. 2014/0088712; U.S. Pat. Pub. 2014/0276581; U.S. Pat. Pub. 2014/0371721; U.S. Pat. Pub. 2016/0296344; U.S. Pat. Pub. 2017/0367846; U.S. Pat. Pub. 2017/0354514.
This Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present disclosure. The present disclosure is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention, and no limitation as to the scope of the present disclosure is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present disclosure will become more readily apparent from the Detailed Description, particularly when taken together with the drawings.
The above-described benefits, embodiments, and/or characterizations are not necessarily complete or exhaustive, and in particular, as to the patentable subject matter disclosed herein. Other benefits, embodiments, and/or characterizations of the present disclosure are possible utilizing, alone or in combination, as set forth above and/or described in the accompanying figures and/or in the description herein below. However, the Detailed Description of the Invention, the drawing figures, and the exemplary claim set forth herein, taken in conjunction with this Summary of the Invention, define the invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the disclosure and together with the general description of the disclosure given above and the detailed description of the drawings given below, serve to explain the principles of the disclosures.
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the disclosure or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the disclosure is not necessarily limited to the particular embodiments illustrated herein.
To provide further clarity to the Detailed Description provided herein in the associated drawings, the following list of components and associated numbering are provided as follows:
The present invention relates to a device and method for integrated and near-simultaneous delivery of bone graft material and a fusion cage to any portion of a patient which requires bone graft material and/or a fusion cage. Thus, for example, the foregoing description of the various embodiments contemplates delivery to, for example, a window cut in a bone, where access to such window for bone grafting is difficult to obtain because of orientation of such window, presence of muscle tissue, risk of injury or infection, etc. The integrated fusion cage and graft delivery device is formed such that the one or more hollow tubes and/or plungers may be helpful in selectively and controllably placing bone graft material and a fusion cage in or adjacent to such window. The integrated fusion cage and graft delivery device is formed to allow delivery of bone graft material and/or a fusion cage in a direction other than solely along the longitudinal axis of the device, and in some embodiments transverse to the primary axis used by the surgeon or operator of the device when inserting the device into a cannula or other conduit to access the surgical site. This same concept applies to other areas of a patient, whether or not a window has been cut in a bone, for example in a vertebral disc space, and may be used whether this is a first surgery to the area or a follow-up surgery. The present invention also contemplates the delivery of bone graft material and/or a fusion cage with or without the use of a plunger, and with or without the use of various other tools described in greater detail herein.
Referring now to
Referring now in detail to
In the embodiment, of
Referring now to
Referring to
According to another embodiment, the plunger 12 shown in
Referring now to
Furthermore, regarding
Referring now to
Referring now to
Referring now to
Referring to
Referring now to
The hollow tube 2 is the same as, or similar to, other embodiments of hollow tubes described herein. Accordingly, the hollow tube 2 generally includes an opening 4 at a proximal end 6. At least one discharge opening 7 is associated with a distal end 8 of the hollow tube. In one embodiment, the discharge opening 7 is positioned transverse to a longitudinal axis of the hollow tube 2. Accordingly, in one embodiment, the distal end 8 is at least partially closed opposite to the proximal opening 4. Alternatively, the distal end 8 may be completely closed. Optionally, a discharge opening 7 may be formed through at least a portion of the distal end. Specifically, in one embodiment, the hollow tube 2 can include a discharge opening 7 aligned with a longitudinal axis of the hollow tube.
In one embodiment, the distal end 8 is rounded or smooth with a wedge-shape 50. Specifically, the distal end can have a shape configured to facilitate easy entry into a disc space. In this manner, the shape of the distal end minimizes soft tissue damage or irritation. The wedge-shape 50 enables insertion of the distal end 8 into a collapsed disc space without damaging the endplates or skating off to an unintended location. In contrast, some prior art devices with an open distal end can injure bony end plates of the disc space of a patient.
Optionally, the hollow tube includes two discharge openings 7A, 7B. The two discharge openings 7 can be arranged on opposite sides of the hollow tube to eject graft material. Accordingly, in one embodiment, the hollow tube 2 is operable to dispense bone graft material laterally away from a longitudinal axis of the graft delivery device 1. In one embodiment, the two discharge openings 7 are of substantially the same size and shape. The discharge openings 7 may have a generally oval shape.
In another embodiment, at least one opening 7C (illustrated in
The hollow tube 2 is substantial hollow between the proximal end and the distal end. Specifically, a lumen 28 extends through the hollow tube 2. The lumen 28 has a predetermined cross-sectional shape. In one embodiment, the cross-sectional shape of the lumen is one of round, ovoid, square, rectangular, and approximately rectangular with rounded corners or edges. In another embodiment, the interior of the lumen is not round and is, for example, rectangular. Optionally, the cross-sectional shape of the lumen 28 is substantially uniform along the length of the hollow tube 2. In one embodiment, the lumen 28 has a uniform cross-sectional size along its length. The exterior of the hollow tube 2 may have a shape that is one of round, ovoid, square, and rectangular.
A ramp 9 may be formed within the hollow tube proximate to the opening 7. As described herein, the ramp 9 includes surfaces configured to direct the bone graft material away from the opening 7 into a surgical site, such as a disc space. More specifically, the ramp 9 functions as a reverse funnel to disperse bone graft material ejected from the opening 7 as generally illustrated in
In one embodiment, surfaces of the ramp 9 are linear in shape, that is, forming a triangle in cross-section. In another configuration, surfaces of the ramp 9 are of any shape that urges egress of bone graft material contained in the hollow tube to exit the lumen 28 of the hollow tube 2 through the at least one opening 7 of the device 1.
The hollow tube 2 is configured to receive the plunger 12 of the present disclosure within the lumen 28. Any plunger 12 of the present disclosure may be used with the hollow tube 2. The plunger 12 can be used to push bone graft material positioned in the lumen 28 out of the opening 7 at the distal end 8. Optionally, a stop 16A can be formed on the plunger 12 to engage the proximal end 6 of the hollow tube. In this manner, the stop 16A prevents over insertion of the plunger within the lumen.
Optionally, the plunger 12 may include a plurality of teeth separated by notches 27. The notches 27 can be engaged by a means for advancing bone graft material described herein. In one embodiment, the means for advancing comprises a ratchet configured to engage the notches 27. In operation, the ratchet can engage successive notches to advance or withdraw the plunger within the hollow tube.
Additionally, or alternatively, the means for advancing can include a gear with teeth. The gear is aligned with the plunger and operable to convert rotational movement of the rear to linear movement of the plunger. As the gear rotates, the gear teeth engage the plunger notches 27 to move the plunger toward or away from the hollow tube distal end.
In still another embodiment, the means for advancing comprises a worm gear with at least one helical thread. As the worm gear rotates, the helical thread engages the plunger notches 27. In this manner, the worm gear can advance or retract the plunger within the hollow tube.
The plunger 12 includes a distal end 18. The distal end 18 substantially conforms to inner walls of the lumen 28. Specifically, in one embodiment, the distal end 18 has a cross-sectional shape which corresponds to the interior shape of the lumen 28. Optionally, the plunger distal end 18 is round, ovoid, square, or rectangular. In one embodiment, the distal end 18 is not round. In another embodiment, the plunger distal end is configured to contact the inner walls of the lumen 28 about an entire outer periphery of the plunger distal end. Additionally, or alternatively, the plunger 12 (or a portion of the plunger 12) may be made of rubber silicone to improve the seal with interior surfaces of the lumen 28. In some embodiments, at least the distal end 18 is made of a plastic or an elastomeric rubber.
In one embodiment, the plunger has a length sufficient for the distal end 18 of the plunger to extend beyond the opening 7 as generally illustrated in
Notably at least one vent port 21 may be formed through the hollow tube 2 to the lumen 28. The vent port 21 is configured to release air from the interior of the hollow tube 2 as bone graft material is delivered to the distal end 8 for discharge out of the opening 7. As one of skill in the art will appreciate, air trapped within the lumen 28 of the hollow tube 2 between the distal end 8 and bone graft material may increase the amount of axial force required by the plunger 12 to move the bone graft material to the discharge opening 7 or may cause the plunger to jam or bind in the lumen. Applying excessive force to the plunger to eject the bone graft material can cause soft tissue inflammation or damage. By allowing air to escape from within the lumen 28 of the hollow tube 2 as the plunger 12 is pressed toward the distal end 8, the vent port 21 may decrease the amount of force required to deliver the bone graft material to the discharge opening 7. The possibility of the plunger 12 jamming within the hollow tube 2 is also reduced. Specifically, the vent port 21 eliminates or reduces the risk of jamming the plunger and also reduces the possibility of trapped air being forced into the disc space and into the patient's vascular system causing an air embolism.
The vent ports 21 also prevent introduction of air or other fluids into the surgical site. For example, air may be introduced into, and trapped within, bone graft material as the bone graft material is loaded into the hollow tube. As the plunger presses against the bone graft material, the air may be released from the bone graft material. The air can escape from the lumen 28 through the vent ports 21.
Vent ports 21 can be formed through the hollow tubes 2 of all embodiments of the present disclosure. Vent ports 21 may be formed at any location of the hollow tube 2 along the length of the hollow tube between to proximal end 6 and the distal end 8. Optionally, a vent port 21 is formed on at least one of the first surface 3 and the second surface 5. In one embodiment, vent ports 21 can be formed on more than one surface 3, 5 of the hollow tube.
The at least one vent port 21 is configured to prevent discharge of bone graft material from the lumen 28. Accordingly, the vent port 21 has one or more of a size and a shape selected to prevent passage of bone graft material therethrough. In one embodiment, a width or a diameter of the vent port is less than approximately 2 mm. Optionally, the vent port 21 includes a mesh or screen with apertures which allow passage of air therethrough.
As illustrated in
Any number of vent ports 21 may be formed through the hollow tube 2. In one embodiment, the hollow tube 2 includes at least three vent ports 21. A first vent port 21A can be proximate to the proximal end 6 of the hollow tube 2. A second vent port 21B can be proximate to the distal end 8. A third vent port 21C can be formed between the first and second vent ports 21A, 21B.
Additionally, or alternatively, in another embodiment, the plunger 17 includes a channel 35 (such as generally illustrated in
Optionally, indicia 29 may be formed on one or more surface of the hollow tube 2. The indicia are configured to indicate a depth of insertion of the distal end 8 of the hollow tube into a surgical site. The indicia 29 can include marking and numerals. Optionally, one or more of the indicia 29 may be radiopaque. The indicia 29 may extend along the length of the hollow tube, or a predetermined portion of the length.
In one embodiment, the hollow tube 2 may comprise a first portion 22 and a second portion 23 which are configured to be interconnected. The hollow tube 2 thus includes a joint 24, illustrated in
The first and second portions 22, 23 can be interconnected by any suitable means. In one preferred embodiment, an ultraviolet activated adhesive is used to interconnect the first and second portions 22, 23. This forms a particularly strong bond in combination with optional alignment features 25, 26 (best seen in
In another embodiment, the first and second portions 22, 23 are sonically welded together. Additionally, or alternatively, other glues or adhesives can be used to join the first and second portions 22, 23.
Optionally, the first and second portions can include the alignment features 25, 26. In addition to ensuring alignment of the first portion 22 with respect to the second portion 23 when the hollow tube 2 is assembled, the alignment features 25, 26 can also provide support to the hollow tube 2. In one embodiment, the alignment features 25, 26 have a shape selected to increase rigidity of the hollow tube 2, such as to prevent unintended or inadvertent bending or movement.
The alignment features 25, 26 may comprise a projection 25 formed on one of the first and second portions 22, 23 that is at least partially received in a bore or aperture 26 of another of the first and second portions 22, 23. In one embodiment, the alignment feature 25 comprises a peg or pin. Optionally, alignment feature 26 comprises a recess configured to receive the peg 25. In one embodiment, one of the alignment features 25, 26 comprises a flange. The flange may extend along some or all of the joint 24. The other one of the alignment features 26, 25 may comprise a groove configured to receive the flange. Similar to the flange, the groove may extend along some or all of the joint 24. Other shapes and features of the alignment features 25, 26 are contemplated.
The alignment features 25, 26 can also be configured to lock the first and second portion 22, 23 together. Specifically, in one embodiment, alignment feature 25 comprises a projection configured to engage a corresponding recess in alignment feature 26. Feature 26 can frictionally engage feature 25.
The hollow tube 2 may be made of a flexible, semi-rigid, or rigid material including one or more of a plastic, a composite, a metal. In one embodiment, the hollow tube 2 is formed of polycarbonate resin thermoplastic. Optionally, at least a portion of the hollow tube 2 is radiopaque. In one embodiment, at least the distal end 8 is radiopaque or includes radiopaque markers, such as indicia 29.
In one embodiment, the hollow tube 2 is substantially rigid. Optionally, at least a portion of the hollow tube 2 may be flexible. For example, in one embodiment, at least about one-half of the hollow tube 2 comprising the distal end 8 is flexible.
In one embodiment, the hollow tube 2 is generally linear. Alternatively, the hollow tube 2 can include a portion that is not linear. More specifically, in one embodiment, the hollow tube 2 can have a permanent (or temporary) curve or bend.
Alternatively, in another embodiment, the proximal end 6 of the hollow tube can extend along a first longitudinal axis. At least the distal end 8 of the hollow tube 2 may extend along a second longitudinal axis that is transverse to the first longitudinal axis of the proximal end. The distal end 8 can extend at a predetermined angle from the proximal end 6. Optionally, the angle can be between about 0° and about 75°. In one embodiment, the distal end 8 intersects the proximal end 6 at a joint. The joint may be adjustable such that a user can alter the angle between the proximal end and the distal end. Alternatively, the joint is not adjustable. The proximal end and the distal end may each extend generally linearly to the joint. Alternatively, the hollow tube 2 may include a transition portion between the proximal end and the distal end. The transition portion can have a shape that is curved, such as an elbow joint.
The hollow tube 2 may be made of a substantially transparent or translucent material. Accordingly, in one embodiment, the hollow tube is not opaque. Optionally, at least a portion of the hollow tube 2 is transparent or translucent. In one embodiment, the hollow tube 2 is comprised of a transparent or translucent material, or includes windows of a transparent or translucent material. Accordingly, in embodiments, the plunger 12 is at least partially visible within the lumen 28.
Referring now to
The endoscope, camera, or image sensing device 36 may be oriented to view at least the distal end 8. Optionally, the endoscope, camera, or image sensing device 36 is repositionable with respect to this distal end. In this manner, the endoscope, camera, or image sensing device 36 can be manipulated to view one or more openings 7 of the hollow tube 2, or view the internal aspect of the disc space 172A, or a debrided portion of the disc space 172A, prior to administration of bone graft.
Also, in another embodiment, the hollow tube 2 can include lighting elements 37. The lighting elements may be associated with the optional endoscope, camera, or image sensor 36. Additionally, or alternatively, one or more lighting elements 37 can be fixed to, or integrally formed with, the hollow tube 2. Suitable lighting elements, cameras, and displays that may be used with the integrated fusion cage and graft delivery device 1 of the present disclosure are described in U.S. Pat. Nos. 8,864,654, 9,717,403, and PCT Pub. WO 2012/145048 which are each incorporated herein by reference in their entirety.
As illustrated in
In one embodiment, the funnel 30 is retained on the hollow tube 2 by a friction fit. Alternatively, the funnel can snap onto the hollow tube. Optionally, in one embodiment, the hollow tube 2 include a collar 6A with one or more projection 6B. The funnel 30 has a sleeve 32 that fits over the collar and engages the projection 6B. Optionally, the sleeve 32 includes a slot 33 to engage the projection 6B. The slot 33 and projection 6B form a bayonet mount. In this manner, funnel can be releasably interconnected to the hollow tube.
Optionally, the hollow tube 2 can be configured to receive a fusion cage 60 of one or more of the embodiments described herein. Optionally, the fusion cage 60 may have a fixed height. Alternatively, the fusion cage may be expandable after placement in a disc space.
In one embodiment, the fusion cage includes an opening 65 to discharge bone graft material therethrough. The opening 65 is alignable with the opening 7 of the hollow tube. Optionally, the fusion cage 60 may include two or more openings 65 which each correspond to openings 7A, 7B of the hollow tube. Accordingly, as bone graft material is advanced through the lumen and through the opening 7 of the hollow tube, the bone graft material will be discharged through opening 65 of the fusion cage into a surgical site, such as a disc space.
In one embodiment, a distal end 64 of the fusion cage is closed. The distal end 64 may have a blunt or tapered shape similar to the wedge shaped end 50 of the hollow tube.
In one embodiment of the device 1, the width of the hollow tube second exterior surface 5 is between 9 and 15 mm. In a preferred embodiment, the width of the hollow tube second exterior surface 5 is between 11 and 13 mm. In another embodiment, the width of the hollow tube second exterior surface 5 is between 11.5 mm and 12.5 mm. In yet another embodiment, the width of the hollow tube second exterior surface 5 is 12 mm.
In one embodiment of the device 1, the width of the hollow tube first exterior surface 3 is between 5 and 11 mm. In another embodiment, the width of the hollow tube first exterior surface 3 is between 7 and 9 mm. Optionally, the width of the hollow tube first exterior surface 3 is between 7.5 mm and 8.5 mm. In one embodiment, the width of the hollow tube first exterior surface 3 is 8 mm.
In one embodiment of the device, the ratio of the width of the hollow tube second exterior surface 5 and the width of the hollow tube first exterior surface 3 is between approximately 1.7 and 1.3. In another embodiment, the ratio of the width of the hollow tube second exterior surface 5 and the width of the hollow tube first exterior surface 3 is between 1.6 and 1.4. In still another embodiment, the ratio of the width of the hollow tube second exterior surface 5 and the width of the hollow tube first exterior surface 3 is between 1.55 and 1.45. In one embodiment, the ratio of the width of the hollow tube second exterior surface 5 and the width of the hollow tube first exterior surface 3 is 1.5.
In one embodiment of the device, the width of the interior of the hollow tube major axis (located adjacent the second exterior surface 5) is between 9 and 13 mm. In another embodiment, the width of the interior of the hollow tube major axis is between 10 and 12 mm. Optionally, the width of the interior of the hollow tube major axis is between 10.5 mm and 11.5 mm. In one embodiment, the width of the interior of the hollow tube major axis is 11 mm.
In one embodiment of the device 1, the width of the interior of the hollow tube minor axis (located adjacent the first exterior surface 3) is between 5 and 9 mm. In another embodiment, the width of the interior of the hollow tube minor axis is between 6 and 8 mm. In yet another embodiment, the width of the interior of the hollow tube minor axis is between 6.5 mm and 7.5 mm. In one embodiment, the width of the interior of the hollow tube minor axis is 7 mm.
In one embodiment of the device 1, the ratio of the width of the interior of the hollow tube major axis and the width of the interior of the hollow tube minor axis is between approximately 1.7 and 1.3. In another embodiment, the ratio of the width of the interior of the hollow tube major axis and the width of the interior of the hollow tube minor axis is between 1.6 and 1.4. Optionally, the ratio of the width of the interior of the hollow tube major axis and the width of the interior of the hollow tube minor axis is between 1.55 and 1.45. In one embodiment, the ratio of the width of the interior of the hollow tube major axis and the width of the interior of the hollow tube minor axis is 1.5.
In one embodiment, one or more edges of the device are rounded. For example, the exterior edges of the hollow tube are rounded, and/or the interior edges of the hollow tube are rounded (in which case the edges of the plunger, at least at the plunger distal end, are identically rounded to ensure a congruous or conformal fit between the edges of the plunger and the interior of the hollow tube so as to, among other things, urge the majority of bone graft material to move through the hollow tube).
The device 1 may optionally be printed using a three-dimensional printing process. More specifically, one or more of the hollow tube 2, the plunger 12, the funnel 30, and the fusion cage 60 may be manufactured by one or more three-dimensional printing processes. A variety of materials, including a metal, PEEK, and other plastics may be used in a three-dimensional printer to form the device 1.
Referring now to
The bone graft components 44A, 44B may be mixed together by interconnecting the devices 42A, 42B. Optionally, the devices 42A, 42B may be interconnected with a bayonet mount. In one embodiment, a connecting device 46 is provided to interconnect device 42B to device 42A. Connecting device 46 may include luer locks. The luer locks may include a locking or slip style connector. A bore 48 through the connecting device 46 enables bone graft material to be injected from one syringe to the other syringe 42. In one embodiment, component 44B is injected from device 42B into device 42A to be mixed with bone graft component 44A.
The mixed bone graft material 44A, 44B can subsequently be discharged from device 42A into the hollow tube 2. In one embodiment, the device 42A can be interconnected to the proximal end 6 of the hollow tube 2. Additionally, or alternatively, the bone graft material 44 can be ejected from the device 42A into the funnel 30. Suitable devices 42 that can be used to prepare bone graft material for use with the integrated fusion cage and graft deliver device 1 of the present disclosure are known and described in U.S. Pat. Pub. 2009/0124980, U.S. Pat. Pub. 2014/0088712, U.S. Pat. Pub. 2014/0276581, U.S. Pat. Pub. 2014/0371721, U.S. Pat. Nos. 8,439,929, and 9,174,147 which are each incorporated herein by reference in their entirety.
The integrated fusion cage and graft deliver device 1 of the present invention provides many benefits over other devices. For example, the rectangular or approximately rectangular lumen 28 of embodiments of the hollow tube 2 affords several advantages over conventional circular configurations. For a surgical area with a smallest dimension set at a width of 8 mm and a thickness dimension 0.5 mm, a conventional circular device (with resulting interior diameter of 7 mm or a radius of 3.5 mm) would realize a surface area of 38.48 mm2. Applicants' device would carry interior dimension of 7 mm by 11 mm for a surface area of 77 mm, an increased surface area factor of 2.0, thereby resulting in more bone graft material delivery, because, among other things, a given volume of bone graft encounters less surface area of the interior of a particular device which results in, among other things, reduced chance of jamming of bone graft material within the device.
Referring now to
Referring now to
An additional benefit of some embodiments of devices 1 of the present disclosure is that they avoid injection of bone graft material 44 directly into the path or intended path of a cage, such as illustrated in
Referring now to
In one embodiment, the means for advancing includes a handle or grip 304. The grip 304 is operable to selectively move bone graft material through the lumen of the hollow tube 2 for discharge from an opening 7 at the tube distal end 8.
The hollow tube 2 includes a proximal end 6 configured to releasably interconnect to the grip 304. Bone graft material can be positioned within the lumen of the hollow tube 2, such as with a funnel 30 (illustrated in
The grip 304 can frictionally engage the tube proximal end 6. In one embodiment, the hollow tube 2 or the grip 304 include a lock or a latch to secure the hollow tube 2 to the grip. In another embodiment, a portion of the hollow tube 2 can threadably engage the grip 304. In another embodiment, the proximal end 6 and grip 304 are interconnected with a bayonet mount. Additionally, or alternatively, the grip 304 can optionally include a knob 310 such that the hollow tube 2 can be selectively interconnected to the grip 304. Other means of interconnecting the hollow tube 2 to the grip 304 are contemplated.
A channel 324 is formed through the grip 304. The channel 324 includes a proximal opening 326 and extends through the grip 304 and the knob 310. In one embodiment, the opening 326 is configured to receive a plunger 12. The plunger 12 can extend through the channel 324 into a hollow tube 2 interconnected to the grip 304.
The grip 304 includes a means for advancing bone graft material through the lumen of the hollow tube 2. In one embodiment, the means for advancing comprises a compressed fluid. Specifically, in one embodiment, the grip 304 is configured to advance the bone graft material using the compressed fluid, such as air. Manipulating the grip trigger 306 can release compressed fluid into the proximal end 6 of the lumen. In one embodiment, the hollow tube includes a single vent port 21B at the distal end. When a proximal end of bone graft material within the lumen reaches the vent port 21B, the compressed fluid is released from the lumen. In this manner, the fluid is not introduced into the surgical site.
Optionally, a pusher 18A may be positioned in the lumen of the hollow tube 2 after the lumen is loaded with bone graft material. The pusher 18A may be similar to the distal end 18 of a plunger 12, such as generally illustrated in
When a pressurized fluid is introduced into the lumen behind the pusher 18A, the pusher advances toward the distal end 8. The bone graft material is urged toward the distal end 8 and through the opening 7 by the pusher. In one embodiment, when a proximal end of the pusher 18A advances past the vent port 21B, the compressed fluid is released from the lumen and the pusher stops. Alternatively, the pusher may stop advancing by contact with an interior ramp 9 within the hollow tube 2.
In another embodiment, the means for advancing the bone graft material comprises a plunger 12. Accordingly, in one embodiment, the grip 304 is configured to selectively advance a plunger 12 through the lumen to advance the bone graft material. The grip 304 is configured to advance the plunger 12 axially with respect to the lumen of the hollow tube 2. Specifically, the grip can manipulate the plunger 12 such that a distal end of the plunger opposite the plunger handle 16 moves towards the distal end 8 of the hollow tube 2. The grip 304 is configured to manually or automatically apply a force to the plunger 12. The force can be generated by one or more of a user, a motor, a compressed fluid, or any other means of generating a force.
In one embodiment, the plunger 12 includes teeth, notches 27, or depressions which are engageable by the grip 304 to axially adjust the position of the plunger 12. The notches can be substantially evenly spaced along the plunger.
In one embodiment, a motor is positioned within the grip 304 to advance the plunger. Optionally, the motor is operable to rotate a shaft. The shaft may include a gear to translate the rotational movement into a linear movement of the plunger 12. In one embodiment, the gear includes teeth to engage the notches 27 or teeth of the plunger 12. A battery can provide power to the motor. In one embodiment, the battery is housed in the grip 304.
Optionally, the grip includes a gear or a ratchet configured to engage teeth, notches 27, or depressions on the plunger 12. Specifically, in one embodiment, the ratchet of the grip 304 is configured to engage the plurality of notches 27 formed in the plunger. In one embodiment, the channel 324 of the grip 304 includes an aperture or window through which a portion of the gear or ratchet can extend to engage the plunger 12.
In one embodiment, when activated, the ratchet engages a first notch and then a second notch to incrementally advance the plunger distally within the hollow tube 2. Bone graft material within the hollow tube 2 is then pushed by the plunger 12 toward the distal end 8 of the hollow tube. Ratcheting mechanisms that can be used with the grip 304 are known to those of skill in the art. Some examples of ratcheting mechanisms are described in U.S. Pat. App. Pub. 2002/0049448, U.S. Pat. App. Pub. 2004/0215201, U.S. Pat. App. Pub. 2009/0264892, U.S. Pat. Nos. 7,014,640, 8,932,295, 9,655,748, and 9,668,881 which are each incorporated herein by reference in their entirety.
Optionally, the grip 304 can be configured to discharge a predetermined amount of bone graft material each time the plunger 12 is incrementally advanced within the hollow tube. In one embodiment, between about 0.25 and 1.0 cc of bone graft material is discharged from the distal end 8 of the hollow tube 2 each time the plunger is advanced. In another embodiment, between about 0.25 and 1.0 cc of bone graft material is discharged is discharged each time the trigger 306 is actuated by a user.
The grip 304 can optionally be configured to enable vision of a surgical sight by a user. Specifically, the grip 304 may be substantially even with one or more surfaces 3, 5 of the hollow tube. In this manner, in one embodiment, the grip 304 does not obstruction a line of sight along at least one surface 3, 5. In another embodiment, an exterior surface of the grip is about even with a plane defined by one of the side surfaces 3. Additionally, or alternatively, an upper portion of the grip does not extend beyond a plane defined by a top surface 5 of the hollow tube. Optionally, a window or view port is formed in the grip 304 to allow view of the distal end 8 of the hollow tube 2.
Additionally, or alternatively, a visualization system is associated with the hollow tube. In one embodiment, the visualization system includes (but is not limited to) one or more of a camera, a light, an endoscope, and a display. The visualization system may be permanently or removably affixed to the integrated fusion cage and graft delivery device 1.
In one embodiment, the grip 304 includes a motor or other actuator which can be manipulated by a user to advance or withdraw the plunger in the hollow tube 2. The motor or actuator can operate the ratchet.
Optionally, the grip 304 is manually manipulated by a user to move the plunger 12. In one embodiment, the grip 304 includes a trigger 306. The trigger 306 may be hinged or pivotally interconnected to the grip 304. When the trigger 306 is actuated by a user, the plunger 12 is advanced in the hollow tube 2.
Actuating the trigger 306 may include pulling the trigger toward a handle 308 of the grip. The trigger 306 can be biased away from the handle 308 as generally illustrated in
In one embodiment, the ratchet is associated with an upper end of the trigger 306. In this embodiment, pulling the trigger 306 causes the ratchet to move toward the hollow tube 2. Optionally, a lock pawl (not illustrated) can be associated with the grip 304. The lock pawl can engage a notch of the plunger 12 to prevent inadvertent movement of the plunger distally.
The grip 304 can be used to advance or withdraw the plunger 12. Optionally, the grip 304 includes a switch 312 operable to change the direction of movement of the plunger 12. By manipulating the switch 312, a user can cause the plunger 12 to advance into the hollow tube 2 or, alternatively, withdraw from the hollow tube. In one embodiment, to withdraw the plunger 12, the plunger handle 16 can be pulled away from the grip 304. The switch 312 may comprise a button.
The grip 304 can optionally include a loading port 314. The loading port 314 provides access to the lumen of the hollow tube 2. In one embodiment, the loading port 314 is in fluid communication with the channel 324 through the grip 304. Accordingly, bone graft material can be added to the hollow tube through the loading port 314. In one embodiment, the loading port 314 is configured to engage a funnel 30 of any embodiment of the present disclosure. Additionally, or alternatively, a syringe 42 may interconnect to the grip 304 to discharge bone graft material 42 into the lumen through the loading port.
Additionally, or alternatively, a capsule or package 316 of bone graft material can be loaded into the lumen through the loading port 314. The package 316 can include any type of bone graft material, including one or more of: autogenous (harvested from the patient's own body), allogeneic (harvested from another person), and synthetic. A predetermined amount of bone graft material can be included in the package 316. In one embodiment, each package includes between about 0.25 and 1.0 cc of bone graft material. One or more packages 316 may be loaded into the lumen to deliver a desired amount of bone graft material to a surgical site.
Referring now to
In one embodiment, the means for advancing includes a grip 304. The grip 304 is configured to interconnect to a hollow tube 2 of any embodiment of the present disclosure. The grip 304 is operable to selectively move bone graft material through the lumen of the hollow tube 2 for discharge from the tube distal end 8. Bone graft material can be positioned within the lumen while the hollow tube 2 is interconnected to the grip 304.
The grip 304 can frictionally engage a predetermined portion of the hollow tube 2. In one embodiment, the hollow tube 2 or the grip 304 include a lock or a latch to secure the hollow tube 2 to the grip. Optionally, the grip 304 engages at least the two side surfaces 3 of the hollow tube 2. In one embodiment, the grip 304 includes opposing flanges 320. One or more of the flanges 320 can be moved inwardly toward the hollow tube similar to a clamp. In this manner, the flanges 320 can apply a compressive force to the side surfaces 3 to interconnect the hollow tube 2 to the grip. Other means of interconnecting the hollow tube 2 to the grip 304 are contemplated.
The grip 304 includes a means for advancing bone graft material through the lumen of the hollow tube 2. In one embodiment, the means for advancing comprises a compressed fluid. Specifically, in one embodiment, the grip 304 is configured to advance the bone graft material using the compressed fluid, such as air. Manipulating the grip trigger 306 can release compressed fluid into the proximal end 6 of the lumen. When a pressurized fluid is introduced into the lumen, the plunger advances toward the distal end 8. The bone graft material is urged toward the distal end 8 and through the opening 65 by the plunger 12. In one embodiment, the plunger may stop advancing by contact with an interior ramp within the hollow tube 2.
In another embodiment, the means for advancing the bone graft material is configured to selectively advance the plunger 12 through the lumen to advance the bone graft material. Specifically, the grip 304 is configured to manually or automatically apply a force to the plunger 12. The force can be generated by one or more of a user, a motor, a compressed fluid, or any other means of generating a force.
In one embodiment, a motor is positioned within the grip 304 to advance the plunger. Optionally, the motor is operable to rotate a shaft. The shaft may include a gear to translate the rotational movement of the shaft into a linear movement of the plunger 12. In one embodiment, the plunger includes notches to engage the gear of the shaft. A battery can provide power to the motor. In one embodiment, the battery is housed in the grip 304.
In one embodiment, the plunger 12 includes teeth, notches, or depressions which are engageable by the grip 304 to axially adjust the position of the plunger 12. Optionally, the grip includes a gear or a ratchet configured to engage teeth or notches on the plunger 12.
Specifically, in one embodiment, the ratchet of the grip 304 is configured to engage a plurality of notches formed in the plunger. The notches can be substantially evenly spaced along the plunger. The ratchet engages a first notch and then a second notch to incrementally advance the plunger distally within the hollow tube 2. Bone graft material within the hollow tube 2 is then pushed by the plunger 12 toward the distal end 8 of the hollow tube.
The grip 304 is configured to enable vision of a surgical sight by a user. Specifically, in one embodiment, the grip 304 does not extend above a top surface 5 of the hollow tube. In this manner, in one embodiment, the grip 304 does not obstruction a line of sight along at least the top surface 5. In another embodiment, lateral surfaces of the grip are about even with a plane defined by one of the side surfaces 3 of the hollow tube.
In one embodiment, the grip 304 includes a motor or other actuator which can be manipulated by a user to advance or withdraw the plunger in the hollow tube 2. The motor or actuator can operate the ratchet.
Optionally, the grip 304 is manually manipulated by a user to move the plunger 12. In one embodiment, the grip 304 includes a trigger 306. The trigger 306 may be hinged or pivotally interconnected to the grip 304. When the trigger 306 is actuated by a user, the plunger 12 advances in the hollow tube 2. Specifically, in one embodiment, the trigger 306 is functionally interconnected to the plunger 12.
In one embodiment, actuating the trigger 306 includes pulling the trigger toward a handle 308 of the grip. The trigger 306 can be biased away from the handle 308 as generally illustrated in
In one embodiment, the ratchet is associated with an upper end of the trigger 306. In this embodiment, pulling the trigger 306 causes the ratchet to move toward the distal end of the hollow tube 2. Optionally, a lock pawl (not illustrated) can be associated with the grip 304. The lock pawl can engage a notch of the plunger 12 to prevent the plunger from moving distally.
The grip 304 can be used to advance or withdraw the plunger 12. Optionally, the grip 304 includes a switch operable to change the direction of movement of the plunger 12. By manipulating the switch, a user can cause the plunger 12 to advance into the hollow tube 2 or, alternatively, withdraw from the hollow tube. In one embodiment, to withdraw the plunger 12, the plunger handle 16 can be pulled away from the grip 304.
Additionally, or alternatively, the grip 304 can include a knob 318. In one embodiment, the knob 318 is configured to advance or withdraw the plunger 12 within the hollow tube 2. Specifically, rotating the knob in a first direction causes the plunger 12 to advance toward the distal end 8. Rotating the knob 318 in a second direction causes the plunger 12 to withdraw away from the distal end 8.
In one embodiment, the knob 318 includes a gear, such as a pinion. The gear includes teeth that engage notches or teeth extending linearly along the plunger 12, similar to a rack. Rotational movement of the knob 318 is converted into linear motion of the plunger by interaction between the knob pinion with the plunger rack.
Optionally, the hollow tube 2 may discharge a predetermined amount of bone graft material associated with each rotation, or partial rotation of the knob 318. Specifically, a calibrated amount of bone graft material may be discharged from the hollow tube 2 for each quarter, half, or full rotation of the knob 318. In one embodiment, the hollow tube 2 is configured to discharge approximately 1 cc of bone graft material for each half turn of the knob 318.
In one embodiment, the knob 318 is configured to provide tactile feedback to a user after a predetermined amount of rotation. For example, when the knob is rotated one or more of ⅛, ¼, ½, and 1 turn, the knob and/or the grip 304 may vibrate or provide other tactile feedback to the user.
The grip 304 is also operable to expand the fusion cage 60 and separate the fusion cage 60 from the hollow tube. In one embodiment, the knob 318 can slide within a slot 322 to release the fusion cage 60. In one embodiment, pulling the knob 318 away from the distal end 8 of the hollow tube detaches the fusion cage.
A bone graft tamping device may also be provided, which is adapted to be inserted into the hollow tube 2 after the plunger 12 is removed from the hollow tube. The bone graft tamping device, according to this embodiment, may include one or more longitudinal channels along the outer circumference of the bone graft packer for permitting any trapped air to flow from the bone graft receiving area to the graspable end of the hollow tube during packing of bone graft. The bone graft packer may further include a handle at one end designed ergonomically for improving ease of use. The bone graft packer in this embodiment thereby facilitates packing of bone graft within the hollow tube.
The hollow tube 2 may also be fitted with a passageway wherein a surgical tube or other device may be inserted, such as to deliver a liquid to the surgical area or to extract liquid from the surgical area. In such an embodiment, the plunger 12 is adapted in cross-section to conform to the hollow tube's cross-section.
In another embodiment of the present invention, a kit of surgical instruments comprises a plurality of differently sized and/or shaped hollow tubes 2 and a plurality of differently sized and/or shaped plungers 12. Each of the plungers correspond to at least one of the hollow tubes, whereby a surgeon may select a hollow tube and a plunger which correspond with one another depending upon the size and shape of the graft receiving area and the amount or type of bone graft to be implanted at such area. The corresponding hollow tubes and plungers are constructed and arranged such that bone graft can be placed within the hollow tubes with the plungers, and inserted nearly completely into the hollow tubes for removing substantially all of the bone graft material from the hollow tubes, such as in the preferred embodiments for the plunger described above. The use of more than one hollow tube/plunger combination permits at least two different columns of material to be selectively delivered to the targeted site, e.g. one of bone graft material from the patient and another of Bone Morphogenetic Protein (BMP), or e.g. two different types of bone graft material or one delivering sealant or liquid. Also, one or both hollow tubes could be preloaded with bone graft material.
The kit of surgical instruments may comprise a plurality of differently sized and/or shaped graft retaining structures, each corresponding to at least one hollow tube and at least one plunger.
The bone graft receiving area can be any area of a patient that requires delivery of bone graft. In the preferred embodiment, the bone graft is delivered in a partially formed manner, and in accordance with another aspect of the present invention, requires further formation after initial delivery of the bone graft.
Another embodiment of the present invention provides a method by which a hollow tube and a plunger associated with the hollow tube are provided to facilitate delivery of the bone graft to a bone graft receiving area.
According to one embodiment, the present invention provides a bone graft delivery system, by which a hollow tube and/or plunger assembly may be prepared prior to opening a patient, thus minimizing the overall impact of the grafting aspect of a surgical implantation or other procedure. Moreover, the hollow tube 2 may be made to be stored with bone graft in it for a period of time, whether the tube is made of plastic, metal or any other material. Depending upon the surgical application, it may be desirable to only partially fill the tube for storage, so that a plunger can be at least partially inserted at the time of a surgery.
Thus, the integrated fusion cage and graft delivery device 1 may either come with a pre-filled hollow tube, or a non-filled hollow tube, in which the surgeon will insert bone graft received from the patient (autograft), or from another source (allograft). In either case, the surgeon may first remove any wrapping or seals about the hollow tube, and/or the pre-filled bone graft, and insert the hollow tube into the patient such that the second end of the hollow tube is adjacent the bone graft receiving area. Once the hollow tube is in place, and the opening at the second end of the hollow tube is oriented in the direction of the desired placement of bone graft, the surgeon may then insert the second end of the plunger into the opening at the first end of the hollow tube, and begin pressing the second end of the plunger against the bone graft material in the hollow tube. In this fashion, the plunger 12 and hollow tube 2 cooperate similar to that of a syringe, allowing the surgeon to steadily and controllably release or eject bone graft from the second end of the hollow tube as the plunger is placed farther and farther into the opening in the hollow tube. Once the desired amount of bone graft has been ejected from the hollow tube (for in some instances all of the bone graft has been ejected from the hollow tube) the surgeon may remove the plunger from the hollow tube, and complete the surgery. In certain operations, the surgeon may elect to place additional bone graft into the hollow tube, and repeat the steps described above. Furthermore, the pre-filled bone graft elements may be color-coded to readily identify the type of bone graft material contained therein.
According to the embodiment described in the preceding paragraph, the present invention may be carried out by a method in which access is provided to a graft receiving area in a body, bone graft is placed into a hollow tube having a first end and a second end, the hollow tube, together with the bone graft, is arranged so that the first end of the hollow tube is at least adjacent to the graft receiving area and permits lateral or nearly lateral (in relation to the longitudinal axis of the hollow tube and plunger assembly) introduction of bone graft to the graft receiving area. This method prevents loss of bone graft due to improper or limited orientation of the integrated fusion cage and graft delivery device, and further allows a user to achieve insertion of a desired quantity of bone graft by way of the contoured plunger and hollow tube configuration described according to preferred embodiments herein.
The method of the present invention may also be carried out by providing a hollow tube having a first end and a second end, constructed so that it may receive a measurable quantity of bone graft, and so that the first end may be arranged at least adjacent to a bone graft receiving area, and so that bone graft can be delivered from the first end of the hollow tube through the second end of the hollow tube and eventually to the bone graft receiving area upon movement of the plunger in a generally downward direction through the hollow tube (i.e., in a direction from the first end to the second end). According to this embodiment, a graft retaining structure may also be provided for use in connection with the contoured edge of the plunger, such that the graft retaining structure is positioned between the contoured edge of the plunger and the bone graft, but which is adhered to the bone graft and remains at the graft receiving area following removal from the hollow tube. In one embodiment, the bone graft is provided in discrete packages or containers. Furthermore, this graft retaining structure may also be employed with another tool, such as a graft packer, which is employed either before or after the hollow tube is removed from the graft receiving area.
In another embodiment, the one or more plungers corresponding to the one or more hollow tubes are positioned with distal ends near the proximate end of the horizontal tube before use, said plungers having a detent to retain plunger in ready position without undesired movement before surgeon chooses which one or more plungers to extend through hollow horizontal tube and deliver bone graft material and/or desired material to the surgical area.
According to another embodiment of the present invention, a hollow tube and plunger assembly is provided in which the hollow tube and/or the plunger assembly is disposable. Alternatively, the tube may be made of a biocompatible material which remains at least partially in the patient without impairing the final implantation. Thus, the hollow tube may be formed from a material that is resorbable, such as a resorbable polymer, and remain in the patient after implantation, so as not to interfere with the growth of the bone or stability of any bone graft or implant.
The current design preferably comprises a hollow tubular member comprising a rounded edge rectangular shaft, which may be filled or is pre-filled with grafting material. The loading is carried out by the plunger. The rounded edge rectangular design is preferable as it allows the largest surface area device to be placed into the annulotomy site of a disc, but in other embodiments may be formed similar to conventional round shafts. The other preferred feature includes a laterally-mounted exit site for the graft material. The combination of this design feature allows direction-oriented dispersion of the graft material. This allows ejection of the graft material into an empty disc space as opposed to below the hollow tube, which would tend to impact the material and not allow its spread through a disc space.
Another feature of this design is that a rectangular, approximately rectangular, or rounded edge rectangular design allows the user to readily determine the orientation of the device and thereby the direction of entry of the bone graft material into the surgical area. However, such a feature may be obtained alternatively through exterior markings or grooves on the exterior on the hollow tube. Such exterior grooves or markings would allow use of a range of cross-sections for the device, to include a square, circle, or oval while allowing the user to readily determine the orientation of the device relative to the direction of entry of the bone graft material into the surgical area.
A further feature of this design is that an anti-perforation footing or shelf is paced on the bottom of the hollow tube to prevent annular penetration and/or injury to the patient's abdomen or other anatomy adjacent the bone graft receiving area.
In another embodiment of the invention, all or some of the elements of the device or sections of all or some of the device may be disposable. Disposable medical devices are advantageous as they typically have reduced recurring and initial costs of manufacture.
In another embodiment of the device, the distal tip or end of the plunger device is composed of a different material to the rest of the plunger, so as the material at the distal end of the plunger is sponge-like or softer-than or more malleable than the rest of the plunger so as upon engagement with the interior distal end of the hollow tube, the distal end of the plunger substantially conforms to the interior configuration of the hollow tube. Similarly, the plunger distal end may be made of a material that is adaptable to substantially conform to the interior shape of the distal end of the hollow tube. Such configurations enable substantially all of the material contained within the plunger to be delivered to the targeted site.
Another alternative embodiment to the design described herein includes a navigation aid 29 on one or more surfaces of the hollow tube 2 to permit a surgeon to know how far the device 1 has been inserted or to ensure proper alignment relative to a transverse bone graft delivery site (i.e. disc space). Such capability is particularly important when the patient or surgical area is not positioned immediately below the surgeon, or multiple procedures are being performed. A navigation aid allows more immediate and reliable locating of the surgical area for receiving of bone graft material. In one embodiment, the hollow tube 2 is scored or marked 29 or provides some affirmative indication, actively or passively, to the surgeon to indicate degree of delivery of the material, e.g. bone graft material, to the delivery site, and/or position of the plunger 12. For example, the exterior of the hollow tube could be color-coded and/or provided with bars 29. In another embodiment, a computer and/or electro-mechanical sensor or device is used to provide feedback to the surgeon to indicate degree of delivery of the material, e.g. amount of cc's of bone graft material, to the delivery site, and/or position of the plunger element.
In another alternative embodiment to the design described herein, the plunger 12 could include an activation device, which is often in a liquid or semi-liquid state, and that may be injected once the semi-solid portion of the morphogenic protein has been displaced by the movement of the plunger through the hollow tube 2. That is, the plunger 12 pushes the dry material, and once completed has a bulb or other device on the usable end to insert the liquid portion of the activating agent through the inner lumen 28 within the plunger 12 to evacuate the liquid from the plunger and out an opening at the non-usable end of the plunger so as to contact the dry material already inserted into the disc space).
In one embodiment of the device, all or portions of the device 1 are manufactured using 3-D printing techniques. In another embodiment, all or portions of the device are made by injection molding techniques.
In one embodiment, the ratio of the surface area of the bottom tip of the plunger 12 is approximately half the surface area of the two lateral openings at the distal portion of the hollow tube.
In one embodiment, the device 1 includes a supplemental means of gripping the device, such as a laterally extending cylindrically-shaped handle that engages the hollow tube 2.
In one embodiment, the material inserted into the hollow tube 2 is a non-Newtonian fluid. In one embodiment, the device is adapted to accept and deliver compressible fluids. In another embodiment, the device is adapted to accept and deliver non-compressible fluids. The hollow tube 2 of one embodiment includes a rectangular or approximately rectangular lumen 28 which provides an increased cross-sectional footprint relative to a round lumen of other bone graft delivery devices. The increased cross-sectional footprint decreases friction of the non-Newtonian fluid material against the interior walls of the lumen, resulting in an improved flow of bone graft material through the lumen and eliminating (or reducing) jamming due compression of the bone graft material. The increased cross-section of hollow tube 2 of the present disclosure improves the flow dynamics of a non-Newtonian fluid by 40% compared to a prior art tool with a diameter equal to the height of the rectangular or approximately rectangular lumen of embodiments of the present invention.
In one embodiment, the upper portion of plunger is fitted with one or more protrusions, which extends from the surface of the plunger so as to engage the upper surface of the hollow tube, to prevent the plunger from engaging the distal interior portion of the hollow tube. In one embodiment, the upper portion of plunger is fitted with one or more protrusions to prevent the plunger from engaging the apex of the hollow tube distal interior ramp surface.
In one embodiment, the funnel 30 attaches to the hollow tube 2 by a bayonet connection. In one embodiment, the funnel attaches to the hollow tube by an interference fit. In one embodiment, the funnel attaches to the hollow tube by a threaded connection. In one embodiment, the funnel attaches to the hollow tube by a slot/groove connection.
In one embodiment, the distal end 8 of hollow tube has one opening 7. In one embodiment, the hollow tube 8 has two distal openings 7A, 7B located on opposite sides. In one embodiment, the hollow tube has no more than two openings 7, the openings located on opposite sides.
In one embodiment, after bone graft material 44 is delivered to a surgical site 172, a cavity 174 approximately defined by the volume engaged by the device 1 when inserted into the surgical site is left in the surgical site upon removal of the device from the surgical site. In one embodiment, the cavity 174 is then used as the site for insertion of a fusion cage 60.
The integrated fusion cage 60 with expandable cage feature provides a number of unique and innovative features not provided by conventional or traditional integrated fusion cages. For example, the integrated fusion cage with expandable cage feature of the disclosure is intentionally and deliberately designed to receive bone graft material (or any material suitable for use in surgical applications, as known to those skilled in the art) at its proximal end (i.e. the end generally facing the surgeon and/or the end opposite the end initially directed into a surgical site), such that the bone graft material flows into the fusion cage and also flows out from the fusion cage into the surgical site. Such features as the interior ramps of the fusion cage (e.g. located within the interior of the hollow tube, and/or on the front and/or rear blocks of the fusion cage) function to direct received bone graft material into the surgical site. Additionally, the features of the hollow tube and plunger wherein a greater volume of bone graft material may be reliably (e.g. not prone to blockage as is typical with most convention e.g. round hollow tubes or lumen systems) and readily delivered to a surgical site and/or a fusion cage are unique and not found in the prior art. Among other things, such features encourage improved surgical results by delivering more volume and coverage of bone graft material to the surgical site. Also, such features minimize gaps in bone graft coverage to include gaps between the fusion cage area and the surrounding surgical site. Also, the features of the one or more apertures of the fusion cage of the disclosure enable and encourage delivery of bone graft material, as received by the fusion cage, into the surrounding surgical site.
In contrast, conventional fusion cages, to include expandable fusion cages, do not provide such features and/or functions. For example, U.S. Pat. No. 8,852,242 to Morgenstern Lopez (“Lopez”), discloses a dilation introducer for orthopedic surgery for insertion of an intervertebral expandable fusion cage implant. The Lopez device does not allow receipt of bone graft material from its proximal end, or any end, in contrast to the disclosed fusion cage and fusion cage/bone graft delivery system. That is, the Lopez proximal end includes an array of components, all of which do not allow receipt of bone graft material. Furthermore, the Lopez device requires an elaborate array of components, e.g. upper side portion of the upper body portion and lower side portion of the lower body portion, which also block any egress of bone graft from the inside of the Lopez fusion cage once deployed. Also, the Lopez wedges occupy the entire interior of the cage; there are no ramps to direct graft from the interior to the disk space. In short, the Lopez design is not made with bone graft delivery in mind, and indeed, cannot function to accept let alone deliver bone graft. Additionally, suggestions provided in the Lopez disclosure to deliver bone graft to the surgical site would not provide the integrated and complete fusion cage and surgical site bone graft delivery of the invention, e.g. the Lopez slot of the Lopez lumen and funnel assembly at best provides limited delivery of bone graft material only before and after insertion of the Lopez fusion cage, and then only peripheral to the fusion cage. Also, it appears the Lopez device provides wedges and of similar if not identical interior ramp angles. In contrast, in certain embodiments of the present invention the interior wedged surfaces of the invention, i.e. front block ramp 226 and rear block ramp 236, are not of the same configuration and/or shape, e.g. front block ramp 226 is of a curved profile and rear block ramp 236 is of a linear or straight-line profile. Among other things, the curved profile of the front block ramp 226 urges egress of bone graft as received by the fusion cage 60.
In one embodiment of the fusion cage 60, no anti-torque structures or components are employed. In one embodiment of the invention, the lateral sides of the fusion cage 60 are substantially open to, among other things, allow egress of bone graft material as received to the fusion cage. In one embodiment, the expansion screw 240 is configured with a locking mechanism, such that the fusion cage 60 may be locked at a set expansion state. In one embodiment, such a locking mechanism is provided through a toggle device operated at or on the installer/impactor handle 258.
In one embodiment, the front block ramp 226 and rear block ramp 236 are identical and/or symmetrical.
In addition, it is contemplated that some embodiments of the fusion cage 60 can be configured to include side portions that project therefrom and facilitate the alignment, interconnection, and stability of the components of the fusion cage 60.
Furthermore, complementary structures can also include motion limiting portions that prevent expansion of the fusion cage beyond a certain height. This feature can also tend to ensure that the fusion cage is stable and does not disassemble during use.
In some embodiments, the expansion screw 240 can facilitate expansion of the fusion cage 60 through rotation, longitudinal contract of a pin, or other mechanisms. The expansion screw 240 can also facilitate expansion through longitudinal contraction of an actuator shaft as proximal and distal collars disposed on inner and outer sleeves move closer to each other to in turn move the proximal and distal wedged block members closer together. It is contemplated that in other embodiments, at least a portion of the actuator shaft can be axially fixed relative to one of the proximal and distal wedge block members with the actuator shaft being operative to move the other one of the proximal and distal wedge members via rotational movement or longitudinal contraction of the pin.
Further, in embodiments wherein the engagement screw 240 is threaded, it is contemplated that the actuator shaft can be configured to bring the proximal and distal wedged block members closer together at different rates. In such embodiments, the fusion cage 60 could be expanded to a V-configuration or wedged shape. For example, the actuator shaft can comprise a variable pitch thread that causes longitudinal advancement of the distal and proximal wedged block members at different rates. The advancement of one of the wedge members at a faster rate than the other could cause one end of the implant to expand more rapidly and therefore have a different height that the other end. Such a configuration can be advantageous depending on the intervertebral geometry and circumstantial needs.
In other embodiments, an upper plate 200 can be configured to include anti-torque structures. The anti-torque structures can interact with at least a portion of a deployment tool during deployment of the fusion cage 60 implant to ensure that the implant maintains its desired orientation. For example, when the implant is being deployed and a rotational force is exerted on the actuator shaft, the anti-torque structures can be engaged by a non-rotating structure of the deployment tool to maintain the rotational orientation of the implant while the actuator shaft is rotated. The anti-torque structures can comprise one or more inwardly extending holes or indentations on the rear wedged block member. However, the anti-torque structures can also comprise one or more outwardly extending structures.
According to yet other embodiments, the fusion cage 60 can be configured to include one or more additional apertures to facilitate osseointegration of the fusion cage 60 within the intervertebral space. The fusion cage 60 may contain one or more bioactive substances, such as antibiotics, chemotherapeutic substances, angiogenic growth factors, substances for accelerating the healing of the wound, growth hormones, antithrombogenic agents, bone growth accelerators or agents, and the like. Indeed, various biologics can be used with the fusion cage 60 and can be inserted into the disc space or inserted along with the fusion cage 60 The apertures can facilitate circulation and bone growth throughout the intervertebral space and through the implant. In such implementations, the apertures can thereby allow bone growth through the implant and integration of the implant with the surrounding materials.
In one embodiment, the fusion cage 60 comprises an expandable cage configured to move a first surface vertically from a second surface by rotation of at least one screw that rotates without moving transversely with respect to either said first or second surface, said first plate and second plate having perimeters that overlap with each other in a vertical direction and that move along a parallel line upon rotation of the screw.
In one embodiment, the fusion cage 60 is stackable by any means known to those skilled in the art. For example, each upper plate 200 may be fitted with one or more notches on the lateral edges configured to fit with one or more protrusions on each lower plate 210.
Surprisingly, while conventional practice assumed that the amount of material that would be required, let alone desired, to fill a prepared disc space with bone paste (or BMP, etc.) would be roughly equivalent to the amount of material removed from such space prior to inserting a cage, a present inventor discovered that far more bone graft material can be—and should preferably be—inserted into such space to achieve desired fusion results. The reasons why this basic under appreciation for the volume of bone graft necessary to achieve optimal fusion results vary, but the clinical evidence arrived at via practice of the present invention compellingly demonstrates that more than doubling of the amount of bone graft material (and in some cases increasing the amount by 200%, 300% or 400% or more) than traditionally thought necessary or sufficient, is extremely beneficial to achieving desired results from fusion procedures.
The ramifications of this simple yet dramatic discovery (documented in part below) is part of the overall inventive aspect of the present invention, as it has been—to date—simply missed entirely by the practicing spine surgeons in the field. The prospect of reduced return surgeries, the reduction in costs, time, and physical suffering by patients, as well as the volume of legal complaints against surgeons and hospitals due to failed fusion results, is believed to be significant, as the evidence provided via use of the present invention indicates a vast reduction in the overall costs involved in both economic resources, as well as emotional capital, upon acceptance and wide-spread use of the present invention. Insurance costs should thus decrease as the present invention is adopted by the industry. While the costs of infusing increased amount of bone graft materials into the space of a patient's disc may at first appear to increase the costs of an individual operation, the benefits achieved thereby will be considerable, including the reduction of repeat surgeries to fix non-fused spines. Thus, regardless of the actual tools and devices employed to achieve the end result of attaining up to 100% more bone graft material being utilized in fusion operations, (as well as other surgeries where previously under-appreciated bone graft material delivery volumes have occurred) one important aspect of the present invention is directed to the appreciation of a previously unrecognized problem and the solution thereto, which forms part of the inventive aspects of the present invention described and claimed herein.
In one embodiment, at least twice the amount of disc material removed from a surgical site is replaced with bone graft material. In a preferred embodiment, at least three times the amount of disc material removed from a surgical site is replaced with bone graft material. In a most preferred embodiment, at least three and a half times the amount of disc material removed from a surgical site is replaced with bone graft material.
According to various embodiments of the present disclosure, and as illustrated at least by
In embodiments, a distal end of the hollow tubular member may be at least partially closed, and/or may have a small aperture associated with the lumen. This partial closure and/or small aperture may help to create a consistent and clean break between bone graft material that has been ejected from the hollow tubular member and bone graft material held within the hollow tubular member.
In another embodiment of the present disclosure the distal end of the plunger is flexible to allow, for example, the user to maneuver the distal end and thereby any bone graft material in the hollow tube to the implantation site. One skilled in the art will appreciate that the flexible aspect of certain embodiments can be both passive and active in nature. Active flexibility and manipulation in the distal end of the plunger may incorporate, for example, the manipulative capabilities of an endoscope, including components for manipulation such as guidewires along the longitudinal axis of the shaft of the plunger.
The plunger 12 may be inserted into the hollow tube 2 such that the horizontal face 19 is substantially planar with the opening at the second end 8 of the hollow tube 2. As described above, the geometry of plunger 12 is such that it fits snugly or tightly in the interior of the hollow tube 2. This configuration is such that the sloped or curved surface 10 of the hollow tube 2 is substantially congruent to the sloped or curved surface 20, thereby allowing the plunger to be inserted into the hollow tube 2 and allowing substantially all of bone graft material which is placed into the hollow tube 2 to be ejected by the user.
Another embodiment for the bone graft insertion device comprises a hollow tube constructed to receive bone graft, where the hollow tube has a proximal and distal end, a plunger adapted for insertion at least partially within the hollow tube at the proximal end of the hollow tube, whereby the plunger is constructed and arranged with respect to the hollow tube so as to prevent rotation of the plunger during insertion into said hollow tube, whereby the plunger has a distal end that is contoured to an interior surface of the distal end of the hollow tube for removing substantially all of the bone graft received by the hollow tube and whereby the bone graft is delivered to the graft receiving area. Still another embodiment provides a rifling structure in the hollow tube interior that facilitates rotational movement of the plunger along a lengthwise axis of the hollow tube, therein delivering a substantially steady pressure and/or rate of delivery of the bone graft material as the plunger descends the hollow tube when the plunger is forced through the hollow tube. The rifling or screw-like movement may also translate to a predetermined delivery of material per full rotation, e.g. each 360 degree rotation of the plunger equates to 5 cc of bone graft material delivered to the bone graft site.
In embodiments, teeth may be formed along a longitudinal axis of the shaft of the plunger 12, which may be configured to engage with teeth of the grip 304 and/or knob 318 to facilitate advancement of the plunger 12 when the grip 304 and/or knob 318 is actuated. The engagement of the teeth of the plunger 12 with teeth of the grip 304 and/or knob 318 may thus, by way of non-limiting example, form a rack-and-pinion-type linear actuator that causes the plunger 12 to descend the hollow tube 2 and urge bone graft material through the hollow tube 2 to deliver bone graft material through an opening in a distal end of the hollow tube 2.
The indicia 29 may include one or more radiological or radiographic markers. Such radiological or radiographic markers may be made from known radiopaque materials, including platinum, gold, calcium, tantalum, and/or other heavy metals. At least one radiological or radiographic marker may be placed at or near the distal end of the hollow tube 2, to allow radiological visualization of the distal end within the targeted bone area.
In further embodiments, an actuating means may be provided for applying pressure to the plunger 12, and in particular to the shaft of the plunger 12. Upon actuation thereof, the actuating means may apply pressure against the plunger 12 to facilitate controlled movement of the plunger 12 and/or the hollow tube 2 relative to the plunger 12. The actuating means may, by way of non-limiting example, include a handle and a pivotally mounted trigger attached to a ratchet-type push bar (such as those commonly used with caulking guns) and/or a rack-and-pinion-type linear actuator.
According to a still further aspect of the present invention, the distal end of the spinal fusion implant may have a conical (bullet-shaped) shape including a pair of first tapered (angled) surfaces and a pair of second tapered (angled) surfaces. The first tapered surfaces extend between the lateral surfaces and the distal end of the implant, and function to distract the vertebrae adjacent to the target intervertebral space during insertion of the spinal fusion implant. The second tapered surfaces extend between the top and bottom surfaces and the distal end of the spinal fusion implant, and function to maximize contact with the anterior portion of the cortical ring of each adjacent vertebral body. Furthermore, the second tapered surfaces provide for a better fit with the contour of the vertebral body endplates, allowing for a more anterior positioning of the spinal fusion implant and thus advantageous utilization of the cortical rings of the vertebral bodies.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise a covering or mesh, such as a biodegradable polymer mesh, and/or may be detachably interconnected to the bone graft insertion device by means of, e.g., a hook attachment mechanism, a screw attachment mechanism, a mechanical attachment mechanism, a suture attachment mechanism, a wrap attachment mechanism, and/or an adhesive attachment mechanism. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 10,028,837, issued Jul. 24, 2018 to Wei et al., the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise an expandable portion adapted to expand or inflate when filled with bone graft or other material, and/or may be detachably interconnected to the bone graft insertion device by means of, e.g., an adhesive. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 9,925,060, issued Mar. 27, 2018 to DiMauro et al., the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise any one or more of a nucleus replacement device, a nucleus augmentation device, an anulus augmentation device, an anulus replacement device, a drug carrier device, a carrier device seeded with living cells, a device that stimulates or supports fusion of the surrounding vertebra, and/or a membrane that prevents flow of a material through a defect in a disc of the patient; the implant may be wholly or partially rigid or wholly or partially flexible. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 9,333,087, issued May 10, 2016 to Lambrecht, the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise any one or more of a plate, spacer, rod, or other stabilization device, and in particular may comprise an expandable or non-expandable spacer having an opening for receiving graft material therein, and/or may (but need not) be detachably interconnected to the bone graft insertion device by means of, e.g., a threaded attachment. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 9,827,113, issued Nov. 28, 2017 to Klimek et al., the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise a body portion, a carriage portion, a deployment assembly, and an expandable portion, and/or may be detachably interconnected to the bone graft insertion device by means of, e.g., one or more detents and holes or apertures for receiving the detents. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 10,076,421, issued Sep. 18, 2018 to Dewey, the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise a gear and a threaded shaft, whereby rotation of the gear engages the threaded shaft to expand the implant such that the implant can be inserted in a collapsed configuration and expanded in situ, and/or may (but need not) be detachably interconnected to the bone graft insertion device by means of, e.g., screws, clips, hooks, and/or clamps. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 10,226,358, issued Mar. 12, 2019 to Glerum, the entirety of which is incorporated herein by reference.
In embodiments of bone graft insertion devices and systems of the present invention, a spinal implant adapted for interconnection and use with the bone graft insertion device and/or included in the bone graft insertion system may comprise a plurality of chambers, each of the chambers being configured to receive bone graft material, and/or may include means allowing a surgeon or other user to select a chamber or portion of the interior of the implant into which bone graft material is delivered. Examples of spinal implants of this type, suitable for use in the present invention, include but are not limited to the spinal implants described in U.S. Pat. No. 9,545,282, issued Jan. 17, 2017 to Mathur et al., the entirety of which is incorporated herein by reference.
It is to be expressly understood that spinal implant suitable for use as part of, or in conjunction with, the devices, methods, and systems of the present invention are not limited to the examples described above, and that any type of spinal implant appropriate for a given application may be detachably interconnected to a bone graft delivery device and used in the methods and systems of the present invention. By way of non-limiting example, anterior and/or lateral interbody spinal implants, including but not limited to implants available under the SeaSpine Redondo™, Regatta®, and Vu a•POD™ product lines, may be detachably interconnected to a bone graft delivery device by any suitable means and used in the practice of the present invention. By way of further non-limiting example, posterior interbody spinal implants, including but not limited to implants available under the SeaSpine Hollywood™, Hollywood™ VI, Pacifica™, Steerable Interbody, Ventura®, and Vu L•POD™ product lines, may be detachably interconnected to a bone graft delivery device by any suitable means and used in the practice of the present invention. These and other spinal implants suitable for use in the present invention are described in U.S. Pat. Nos. 7,799,083, 7,976,549, 7,988,695, 8,100,972, 8,142,508, 8,292,958, 8,366,774, 8,409,290, 8,506,636, 8,545,562, 8,673,012, 8,864,829, and 9,522,069, the entirety of each of which is incorporated herein by reference.
While various embodiment of the present disclosure have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present disclosure, as set forth in the following claims.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the present disclosure has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/198,754, filed Nov. 21, 2018 (to issue as U.S. Pat. No. 10,245,159 on Apr. 2, 2019), which is a continuation-in-part of U.S. patent application Ser. No. 15/486,511, filed Apr. 13, 2017 (now U.S. Pat. No. 10,195,053, issued Feb. 5, 2019), which is a continuation of U.S. patent application Ser. No. 14/887,598, filed Oct. 20, 2015 (now U.S. Pat. No. 9,629,729, issued Apr. 25, 2017), which is a continuation-in-part of U.S. patent application Ser. No. 14/263,963, filed Apr. 28, 2014 (now U.S. Pat. No. 9,186,193, issued Nov. 17, 2015), which is a continuation-in-part of U.S. patent application Ser. No. 14/088,148, filed Nov. 22, 2013 (now U.S. Pat. No. 8,709,088, issued Apr. 29, 2014), which is a continuation of U.S. patent application Ser. No. 13/947,255, filed Jul. 22, 2013 (now U.S. Pat. No. 8,685,031, issued Apr. 1, 2014), which is a continuation-in-part of U.S. patent application Ser. No. 13/714,971, filed Dec. 14, 2012 (now U.S. Pat. No. 9,173,694, issued Nov. 3, 2015), which is a continuation-in-part of U.S. patent application Ser. No. 13/367,295, filed Feb. 6, 2012 (now U.S. Pat. No. 9,060,877, issued Jun. 23, 2015), which is a continuation-in-part of U.S. patent application Ser. No. 12/886,452, filed Sep. 20, 2010 (now U.S. Pat. No. 8,906,028, issued Dec. 9, 2014), which claims the benefit of U.S. Provisional Application No. 61/243,664, filed on Sep. 18, 2009. This application also claims the benefit of U.S. Provisional Application No. 62/696,093, filed on Jul. 10, 2018. The disclosures of each of the above-referenced applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D30951 | Saint Cyr, Jr. | Jun 1899 | S |
1867624 | Hoffman | Jul 1932 | A |
2520464 | Hubner | Aug 1950 | A |
3697011 | Christensen et al. | Oct 1972 | A |
3741496 | Beller | Jun 1973 | A |
3836092 | Hull | Sep 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
4039156 | Abraham | Aug 1977 | A |
4041939 | Hall | Aug 1977 | A |
4047524 | Hall | Sep 1977 | A |
4206516 | Pilliar | Jun 1980 | A |
4277164 | Solomon | Jul 1981 | A |
4338925 | Miller | Jul 1982 | A |
4430062 | Henrichsen et al. | Feb 1984 | A |
4462402 | Burgio et al. | Jul 1984 | A |
4467478 | Jurgutis | Aug 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4522270 | Kishi | Jun 1985 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4580978 | Motola et al. | Apr 1986 | A |
4592346 | Jurgutis | Jun 1986 | A |
4743256 | Brantigan | May 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4863476 | Shepperd | Sep 1989 | A |
4877020 | Vich | Oct 1989 | A |
4877399 | Frank et al. | Oct 1989 | A |
4925924 | Silver et al. | May 1990 | A |
D309499 | Bowman et al. | Jul 1990 | S |
D312309 | Michelson | Nov 1990 | S |
4991570 | Bullard | Feb 1991 | A |
5037422 | Hayhurst | Aug 1991 | A |
5053038 | Sheehan | Oct 1991 | A |
5055104 | Ray | Oct 1991 | A |
5058823 | Emura et al. | Oct 1991 | A |
5122130 | Keller | Jun 1992 | A |
5282744 | Meyer | Feb 1994 | A |
5290295 | Querals et al. | Mar 1994 | A |
5311640 | Holland | May 1994 | A |
5312407 | Carter | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5324307 | Jarrett et al. | Jun 1994 | A |
5329834 | Wong | Jul 1994 | A |
5333812 | Sato | Aug 1994 | A |
D351022 | Saito | Sep 1994 | S |
5354292 | Braeuer et al. | Oct 1994 | A |
5395372 | Holt et al. | Mar 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
D360689 | Giampapa | Jul 1995 | S |
5431658 | Moskovich | Jul 1995 | A |
5443514 | Steffee | Aug 1995 | A |
D364462 | Michelson | Nov 1995 | S |
5520611 | Rao et al. | May 1996 | A |
D370531 | Ash et al. | Jun 1996 | S |
5527312 | Ray | Jun 1996 | A |
D372311 | Koros et al. | Jul 1996 | S |
5531749 | Michelson | Jul 1996 | A |
D372781 | Reif | Aug 1996 | S |
5549607 | Olson et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5558674 | Heggeness et al. | Sep 1996 | A |
D374283 | Michelson | Oct 1996 | S |
5562661 | Yoshimi et al. | Oct 1996 | A |
5569246 | Ojima et al. | Oct 1996 | A |
5586989 | Bray | Dec 1996 | A |
5595563 | Moisdon | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
D378409 | Michelson | Mar 1997 | S |
5611800 | Davis et al. | Mar 1997 | A |
5634925 | Urbanski | Jun 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5658335 | Allen | Aug 1997 | A |
5662655 | Laboureau et al. | Sep 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5688285 | Yamada | Nov 1997 | A |
5697932 | Smith et al. | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
D390592 | Agata | Feb 1998 | S |
5741253 | Michelson | Apr 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5762629 | Kambin | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5779642 | Nightengale | Jul 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
D397439 | Koros et al. | Aug 1998 | S |
5797918 | McGuire et al. | Aug 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5836958 | Ralph | Nov 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865746 | Murugesan et al. | Feb 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5865848 | Baker | Feb 1999 | A |
5871462 | Yoder et al. | Feb 1999 | A |
5888228 | Knothe et al. | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5904689 | Jonjic | May 1999 | A |
5904718 | Jefferies | May 1999 | A |
5906616 | Pavlov et al. | May 1999 | A |
5925051 | Mikhail | Jul 1999 | A |
5925056 | Thomas et al. | Jul 1999 | A |
5935129 | McDevitt et al. | Aug 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5947972 | Gage et al. | Sep 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5989257 | Tidwell et al. | Nov 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6004191 | Schur et al. | Dec 1999 | A |
6004326 | Castro et al. | Dec 1999 | A |
6008433 | Stone | Dec 1999 | A |
6013028 | Jho et al. | Jan 2000 | A |
6019765 | Thornhill | Feb 2000 | A |
6030356 | Carlson et al. | Feb 2000 | A |
6030388 | Yoshimi et al. | Feb 2000 | A |
6030390 | Mehdizadeh | Feb 2000 | A |
6030401 | Marino | Feb 2000 | A |
6033408 | Gage et al. | Mar 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6045555 | Smith et al. | Apr 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6059829 | Schlapfer et al. | May 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6090143 | Meriwether et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6113602 | Sand | Sep 2000 | A |
6117174 | Nolan | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123705 | Michelson | Sep 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6142998 | Smith et al. | Nov 2000 | A |
6145998 | Lynch et al. | Nov 2000 | A |
6146420 | McKay | Nov 2000 | A |
6149096 | Hartley | Nov 2000 | A |
6152871 | Foley et al. | Nov 2000 | A |
6159211 | Boriani et al. | Dec 2000 | A |
6159245 | Meriwether et al. | Dec 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6179873 | Zientek | Jan 2001 | B1 |
6180085 | Achilefu | Jan 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6200322 | Branch et al. | Mar 2001 | B1 |
6209886 | Estes et al. | Apr 2001 | B1 |
6214050 | Huene | Apr 2001 | B1 |
6216573 | Moutafis et al. | Apr 2001 | B1 |
6217579 | Koros | Apr 2001 | B1 |
6224599 | Baynham et al. | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6235805 | Chang et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6241733 | Nicholson et al. | Jun 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
D444878 | Walter | Jul 2001 | S |
D445188 | Walter | Jul 2001 | S |
6258094 | Nicholson et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6261293 | Nicholson et al. | Jul 2001 | B1 |
6261295 | Nicholson et al. | Jul 2001 | B1 |
6290724 | Aebi et al. | Jul 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6309395 | Smith et al. | Oct 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6328738 | Suddaby | Dec 2001 | B1 |
H002009 | Martin et al. | Jan 2002 | H |
6336928 | Guerin et al. | Jan 2002 | B1 |
6340369 | Ferree | Jan 2002 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6344058 | Ferree | Feb 2002 | B1 |
6350126 | Levisman | Feb 2002 | B1 |
6352557 | Ferree | Mar 2002 | B1 |
6355069 | DeCarlo, Jr. et al. | Mar 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6375655 | Zdeblick et al. | Apr 2002 | B1 |
6387096 | Hyde, Jr. | May 2002 | B1 |
6409765 | Bianchi et al. | Jun 2002 | B1 |
6416551 | Keller | Jul 2002 | B1 |
6419702 | Ferree | Jul 2002 | B1 |
6436101 | Hamada | Aug 2002 | B1 |
6436140 | Liu et al. | Aug 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6443990 | Aebi et al. | Sep 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6451017 | Moutafis et al. | Sep 2002 | B1 |
6451057 | Chen et al. | Sep 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6467556 | Alsruhe | Oct 2002 | B2 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6478823 | Michelson | Nov 2002 | B1 |
D467657 | Scribner | Dec 2002 | S |
6491724 | Ferree | Dec 2002 | B1 |
6500206 | Bryan | Dec 2002 | B1 |
6506051 | Levisman | Jan 2003 | B2 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
D469871 | Sand | Feb 2003 | S |
6520976 | Gage | Feb 2003 | B1 |
6520991 | Huene | Feb 2003 | B2 |
6524318 | Longhini et al. | Feb 2003 | B1 |
6533791 | Betz et al. | Mar 2003 | B1 |
6562074 | Gerbec et al. | May 2003 | B2 |
6565574 | Michelson | May 2003 | B2 |
6569201 | Moumene et al. | May 2003 | B2 |
6576016 | Hochshuler et al. | Jun 2003 | B1 |
6579290 | Hardcastle et al. | Jun 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6613091 | Zdeblick et al. | Sep 2003 | B1 |
6613093 | DeCarlo, Jr. et al. | Sep 2003 | B2 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6620356 | Wong et al. | Sep 2003 | B1 |
6641613 | Sennett | Nov 2003 | B2 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6645206 | Zdeblick et al. | Nov 2003 | B1 |
6648915 | Sazy | Nov 2003 | B2 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6648918 | Ferree | Nov 2003 | B2 |
6652533 | O'Neil | Nov 2003 | B2 |
6666891 | Boehm, Jr. et al. | Dec 2003 | B2 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673113 | Ralph et al. | Jan 2004 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6695851 | Zdeblick et al. | Feb 2004 | B2 |
6695882 | Bianchi et al. | Feb 2004 | B2 |
6699288 | Moret | Mar 2004 | B2 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6709438 | Dixon et al. | Mar 2004 | B2 |
6719760 | Dorchak et al. | Apr 2004 | B2 |
6719795 | Cornwall et al. | Apr 2004 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6719797 | Ferree | Apr 2004 | B1 |
6723096 | Dorchak et al. | Apr 2004 | B1 |
6723126 | Berry | Apr 2004 | B1 |
6730125 | Lin | May 2004 | B1 |
6730126 | Boehm, Jr. et al. | May 2004 | B2 |
6733535 | Michelson | May 2004 | B2 |
6743255 | Ferree | Jun 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
6746487 | Scifert et al. | Jun 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6773460 | Jackson | Aug 2004 | B2 |
6800093 | Nicholson et al. | Oct 2004 | B2 |
6821298 | Jackson | Nov 2004 | B1 |
6823871 | Schmieding | Nov 2004 | B2 |
6824565 | Muhanna et al. | Nov 2004 | B2 |
6830574 | Heckele et al. | Dec 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6852126 | Ahlgren | Feb 2005 | B2 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6890728 | Dolecek et al. | May 2005 | B2 |
6899712 | Moutafis et al. | May 2005 | B2 |
6905512 | Paes et al. | Jun 2005 | B2 |
6923792 | Staid et al. | Aug 2005 | B2 |
6923814 | Hildebrand et al. | Aug 2005 | B1 |
6929646 | Gambale | Aug 2005 | B2 |
6942665 | Gambale | Sep 2005 | B2 |
6955691 | Chae et al. | Oct 2005 | B2 |
6960182 | Moutafis et al. | Nov 2005 | B2 |
6962592 | Gatturna et al. | Nov 2005 | B2 |
6969523 | Mattern et al. | Nov 2005 | B1 |
6972035 | Michelson | Dec 2005 | B2 |
6974480 | Messerli et al. | Dec 2005 | B2 |
6991653 | White et al. | Jan 2006 | B2 |
6994728 | Zubok et al. | Feb 2006 | B2 |
6997929 | Manzi et al. | Feb 2006 | B2 |
7004946 | Parker et al. | Feb 2006 | B2 |
7008431 | Simonson | Mar 2006 | B2 |
7014640 | Kemppainen et al. | Mar 2006 | B2 |
7025742 | Rubenstein et al. | Apr 2006 | B2 |
7025769 | Ferree | Apr 2006 | B1 |
7033317 | Pruitt | Apr 2006 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7041137 | Fulton et al. | May 2006 | B2 |
7066961 | Hichelson | Jun 2006 | B2 |
D524443 | Blain | Jul 2006 | S |
7070598 | Lim et al. | Jul 2006 | B2 |
7077864 | Byrd, III et al. | Jul 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7122017 | Moutafis et al. | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7135043 | Nakahara et al. | Nov 2006 | B2 |
7156874 | Paponneau et al. | Jan 2007 | B2 |
7169182 | Errico et al. | Jan 2007 | B2 |
7182782 | Kirschman | Feb 2007 | B2 |
7204825 | Cimino et al. | Apr 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7207992 | Ritland | Apr 2007 | B2 |
D541940 | Blain | May 2007 | S |
7211112 | Baynham et al. | May 2007 | B2 |
7214186 | Ritland | May 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7220280 | Kast et al. | May 2007 | B2 |
7223292 | Messerli et al. | May 2007 | B2 |
7232463 | Falahee | Jun 2007 | B2 |
7238186 | Zdeblick et al. | Jul 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7255703 | Mujwid et al. | Aug 2007 | B2 |
7267691 | Keller et al. | Sep 2007 | B2 |
7273498 | Bianchi et al. | Sep 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7288093 | Michelson | Oct 2007 | B2 |
7311713 | Johnson et al. | Dec 2007 | B2 |
7316070 | Green | Jan 2008 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7329283 | Estes et al. | Feb 2008 | B2 |
7337538 | Moutafis et al. | Mar 2008 | B2 |
7341590 | Ferree | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7357284 | Jauvin | Apr 2008 | B2 |
7357804 | Binder, Jr. et al. | Apr 2008 | B2 |
7361178 | Hearn et al. | Apr 2008 | B2 |
7364657 | Mandrusov et al. | Apr 2008 | B2 |
7371239 | Dec et al. | May 2008 | B2 |
7377923 | Purcell et al. | May 2008 | B2 |
7387643 | Michelson | Jun 2008 | B2 |
7399041 | Prentner et al. | Jul 2008 | B2 |
D574495 | Petersen | Aug 2008 | S |
7406775 | Funk et al. | Aug 2008 | B2 |
7410334 | McGrew | Aug 2008 | B2 |
7410478 | Yang | Aug 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7413065 | Gauthier | Aug 2008 | B2 |
7421772 | Gao et al. | Sep 2008 | B2 |
7429270 | Baumgartner et al. | Sep 2008 | B2 |
D579562 | Anderson et al. | Oct 2008 | S |
7430945 | Gauthier et al. | Oct 2008 | B2 |
7431711 | Moutafis et al. | Oct 2008 | B2 |
7431735 | Liu et al. | Oct 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445636 | Michelson | Nov 2008 | B2 |
7455157 | Kimes et al. | Nov 2008 | B2 |
D582552 | Berberich | Dec 2008 | S |
7461803 | Boerner | Dec 2008 | B2 |
7473255 | McGarity et al. | Jan 2009 | B2 |
7476226 | Weikel et al. | Jan 2009 | B2 |
7478577 | Wheeler | Jan 2009 | B1 |
7481766 | Lee et al. | Jan 2009 | B2 |
7481813 | Purcell | Jan 2009 | B1 |
7485145 | Purcell | Feb 2009 | B2 |
D589626 | Petersen | Mar 2009 | S |
7501073 | Wen et al. | Mar 2009 | B2 |
7503933 | Michelson | Mar 2009 | B2 |
7503934 | Eisermann et al. | Mar 2009 | B2 |
7503936 | Trieu | Mar 2009 | B2 |
D590943 | Petersen | Apr 2009 | S |
D590945 | Berberich | Apr 2009 | S |
7513901 | Scifert et al. | Apr 2009 | B2 |
D593202 | Petersen | May 2009 | S |
7531003 | Reindel | May 2009 | B2 |
7534265 | Boyd | May 2009 | B1 |
7534270 | Ball | May 2009 | B2 |
D594119 | Berberich et al. | Jun 2009 | S |
7547308 | Bertagnoli et al. | Jun 2009 | B2 |
7553320 | Molz, IV et al. | Jun 2009 | B2 |
D597669 | Petersen | Aug 2009 | S |
D598096 | Petersen | Aug 2009 | S |
D599015 | Petersen | Aug 2009 | S |
7569074 | Eisermann et al. | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
D600806 | Horton et al. | Sep 2009 | S |
D601251 | Horton et al. | Sep 2009 | S |
7582058 | Miles et al. | Sep 2009 | B1 |
7582107 | Trail et al. | Sep 2009 | B2 |
7588599 | Sweeney | Sep 2009 | B2 |
7595043 | Hedrick et al. | Sep 2009 | B2 |
D603502 | Petersen | Nov 2009 | S |
7615078 | White et al. | Nov 2009 | B2 |
7618423 | Valentine et al. | Nov 2009 | B1 |
7618458 | Biedermann et al. | Nov 2009 | B2 |
7621951 | Glenn et al. | Nov 2009 | B2 |
7621958 | Zdeblick et al. | Nov 2009 | B2 |
7625374 | Branch et al. | Dec 2009 | B2 |
7632276 | Fishbein | Dec 2009 | B2 |
7632281 | Errico et al. | Dec 2009 | B2 |
D608001 | Reardon et al. | Jan 2010 | S |
7655027 | Michelson | Feb 2010 | B2 |
7655043 | Peterman et al. | Feb 2010 | B2 |
7655046 | Dryer et al. | Feb 2010 | B2 |
7658766 | Melkent et al. | Feb 2010 | B2 |
D611147 | Hanson et al. | Mar 2010 | S |
7671014 | Beals et al. | Mar 2010 | B2 |
7674265 | Smith et al. | Mar 2010 | B2 |
7674297 | Falahee | Mar 2010 | B2 |
7677418 | Henniges et al. | Mar 2010 | B2 |
7678148 | Peterman | Mar 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7785351 | Gordon et al. | Mar 2010 | B2 |
7691133 | Partin et al. | Apr 2010 | B2 |
7693562 | Marino et al. | Apr 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7703727 | Selness | Apr 2010 | B2 |
7704279 | Moskowitz et al. | Apr 2010 | B2 |
D615653 | Horton | May 2010 | S |
7708761 | Petersen | May 2010 | B2 |
7708778 | Gordon et al. | May 2010 | B2 |
7717685 | Moutafis et al. | May 2010 | B2 |
7722530 | Davison | May 2010 | B2 |
7722613 | Sutterlin et al. | May 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7723291 | Beals et al. | May 2010 | B2 |
7727280 | McLuen | Jun 2010 | B2 |
7728868 | Razzaque et al. | Jun 2010 | B2 |
7730563 | Sklar et al. | Jun 2010 | B1 |
7731751 | Butler et al. | Jun 2010 | B2 |
7734327 | Colquhoun | Jun 2010 | B2 |
7740634 | Orbay et al. | Jun 2010 | B2 |
7740661 | Baratz et al. | Jun 2010 | B2 |
7744555 | DiMauro et al. | Jun 2010 | B2 |
7744637 | Johnson et al. | Jun 2010 | B2 |
7744973 | Schoenle et al. | Jun 2010 | B2 |
D620108 | Eitenmueller et al. | Jul 2010 | S |
7749231 | Bonvallet et al. | Jul 2010 | B2 |
7749253 | Zucherman et al. | Jul 2010 | B2 |
7749255 | Johnson et al. | Jul 2010 | B2 |
7749269 | Peterman et al. | Jul 2010 | B2 |
7749270 | Peterman | Jul 2010 | B2 |
7749273 | Cauthen et al. | Jul 2010 | B2 |
7749274 | Razian | Jul 2010 | B2 |
7749276 | Fitz | Jul 2010 | B2 |
7749279 | Twomey et al. | Jul 2010 | B2 |
7749555 | Zanella et al. | Jul 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7753911 | Ray et al. | Jul 2010 | B2 |
7753912 | Raymond et al. | Jul 2010 | B2 |
7753914 | Ruhling et al. | Jul 2010 | B2 |
7753938 | Aschmann et al. | Jul 2010 | B2 |
7753940 | Veldman et al. | Jul 2010 | B2 |
7753958 | Gordon et al. | Jul 2010 | B2 |
7753962 | Melder | Jul 2010 | B2 |
7758501 | Frasier et al. | Jul 2010 | B2 |
7758616 | LeHuec et al. | Jul 2010 | B2 |
7758617 | Lott et al. | Jul 2010 | B2 |
7758644 | Trieu | Jul 2010 | B2 |
7758648 | Castleman et al. | Jul 2010 | B2 |
7763025 | Assell et al. | Jul 2010 | B2 |
7763028 | Lim et al. | Jul 2010 | B2 |
7763035 | Melkent et al. | Jul 2010 | B2 |
7763055 | Foley | Jul 2010 | B2 |
7763078 | Peterman et al. | Jul 2010 | B2 |
7763080 | Southworth | Jul 2010 | B2 |
D621509 | Lovell | Aug 2010 | S |
D622395 | Iott et al. | Aug 2010 | S |
D622843 | Horton | Aug 2010 | S |
D622851 | Horton | Aug 2010 | S |
7766914 | McCormack et al. | Aug 2010 | B2 |
7766918 | Allard et al. | Aug 2010 | B2 |
7766930 | DiPoto et al. | Aug 2010 | B2 |
7766940 | Kwak et al. | Aug 2010 | B2 |
7766967 | Francis | Aug 2010 | B2 |
7766969 | Justin et al. | Aug 2010 | B2 |
7769422 | DiSilvestro et al. | Aug 2010 | B2 |
7771143 | Bharadwaj et al. | Aug 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7771475 | Michelson | Aug 2010 | B2 |
7771476 | Justis et al. | Aug 2010 | B2 |
7771479 | Humphreys et al. | Aug 2010 | B2 |
7776040 | Markworth et al. | Aug 2010 | B2 |
7776046 | Boyd et al. | Aug 2010 | B2 |
7776047 | Fanger et al. | Aug 2010 | B2 |
7776049 | Curran et al. | Aug 2010 | B1 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
7776091 | Mastrorio et al. | Aug 2010 | B2 |
7776094 | McKinley et al. | Aug 2010 | B2 |
7776095 | Peterman et al. | Aug 2010 | B2 |
7776594 | Bays et al. | Aug 2010 | B2 |
7780707 | Johnson et al. | Aug 2010 | B2 |
7780734 | Johnson et al. | Aug 2010 | B2 |
D623748 | Horton et al. | Sep 2010 | S |
D623749 | Horton et al. | Sep 2010 | S |
7789914 | Michelson | Sep 2010 | B2 |
7794396 | Gattani et al. | Sep 2010 | B2 |
7794480 | Gordon et al. | Sep 2010 | B2 |
7794501 | Edie et al. | Sep 2010 | B2 |
7799034 | Johnson et al. | Sep 2010 | B2 |
7799036 | Davison et al. | Sep 2010 | B2 |
7799053 | Haid et al. | Sep 2010 | B2 |
7799054 | Kwak et al. | Sep 2010 | B2 |
7799055 | Lim | Sep 2010 | B2 |
7799056 | Sankaran | Sep 2010 | B2 |
7799076 | Sybert et al. | Sep 2010 | B2 |
7799078 | Embry et al. | Sep 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7799082 | Gordon et al. | Sep 2010 | B2 |
7799083 | Smith et al. | Sep 2010 | B2 |
7803159 | Perez-Cruet et al. | Sep 2010 | B2 |
7806901 | Stad et al. | Oct 2010 | B2 |
7811327 | Hansell et al. | Oct 2010 | B2 |
7811329 | Ankney et al. | Oct 2010 | B2 |
7815681 | Ferguson | Oct 2010 | B2 |
7819801 | Miles et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
D627460 | Horton | Nov 2010 | S |
D627468 | Richter et al. | Nov 2010 | S |
7824328 | Gattani et al. | Nov 2010 | B2 |
7824332 | Fakhrai | Nov 2010 | B2 |
7824410 | Simonson | Nov 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7824703 | Scifert et al. | Nov 2010 | B2 |
7828804 | Li et al. | Nov 2010 | B2 |
7828845 | Estes et al. | Nov 2010 | B2 |
7828848 | Chauvin et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7837713 | Petersen | Nov 2010 | B2 |
7837732 | Zucherman et al. | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
D628694 | Donnez | Dec 2010 | S |
D629896 | Horton | Dec 2010 | S |
7846188 | Moskowitz et al. | Dec 2010 | B2 |
7846206 | Oglaza et al. | Dec 2010 | B2 |
7846210 | Perez-Cruet | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7850735 | Eisermann et al. | Dec 2010 | B2 |
7850736 | Heinz et al. | Dec 2010 | B2 |
D631156 | Halder et al. | Jan 2011 | S |
7867277 | Tohmeh | Jan 2011 | B1 |
7875034 | Josse et al. | Jan 2011 | B2 |
7875078 | Wysocki et al. | Jan 2011 | B2 |
D631967 | Horton | Feb 2011 | S |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7892261 | Bonutti | Feb 2011 | B2 |
7897164 | Scifert | Mar 2011 | B2 |
7897564 | Beals et al. | Mar 2011 | B2 |
7905840 | Pimenta et al. | Mar 2011 | B2 |
7905886 | Curran et al. | Mar 2011 | B1 |
7909869 | Gordon et al. | Mar 2011 | B2 |
7918891 | Curran et al. | Apr 2011 | B1 |
7922766 | Grob et al. | Apr 2011 | B2 |
7927361 | Oliver et al. | Apr 2011 | B2 |
D637721 | Horton | May 2011 | S |
7935124 | Frey et al. | May 2011 | B2 |
7938857 | Garcia-Bengochea et al. | May 2011 | B2 |
7939092 | McKay et al. | May 2011 | B2 |
7951107 | Staid et al. | May 2011 | B2 |
7951180 | Moskowitz et al. | May 2011 | B2 |
7964208 | Spagnoli et al. | Jun 2011 | B2 |
D641872 | Solingen et al. | Jul 2011 | S |
D641873 | Solingen et al. | Jul 2011 | S |
D641874 | Solingen et al. | Jul 2011 | S |
D642268 | Qureshi | Jul 2011 | S |
7972363 | Moskowitz et al. | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
7985526 | Sweeney et al. | Jul 2011 | B2 |
D643921 | Davila | Aug 2011 | S |
8021430 | Michelson | Sep 2011 | B2 |
D647202 | Scifert | Oct 2011 | S |
8052723 | Gordon et al. | Nov 2011 | B2 |
D650481 | Gottlieb et al. | Dec 2011 | S |
8075623 | Johnson et al. | Dec 2011 | B2 |
8080041 | Boehm, Jr. et al. | Dec 2011 | B2 |
8080521 | Beals et al. | Dec 2011 | B2 |
8088163 | Kleiner | Jan 2012 | B1 |
8097035 | Glenn et al. | Jan 2012 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
D653757 | Binder | Feb 2012 | S |
8118870 | Gordon et al. | Feb 2012 | B2 |
8118871 | Gordon et al. | Feb 2012 | B2 |
8123755 | Johnson et al. | Feb 2012 | B2 |
8123810 | Gordon et al. | Feb 2012 | B2 |
D655414 | Cuschieri et al. | Mar 2012 | S |
D656610 | Kleiner | Mar 2012 | S |
8128700 | Delurio et al. | Mar 2012 | B2 |
8142437 | McLean et al. | Mar 2012 | B2 |
8147550 | Gordon et al. | Apr 2012 | B2 |
8148326 | Beals et al. | Apr 2012 | B2 |
8162990 | Potash et al. | Apr 2012 | B2 |
D660428 | Hohl | May 2012 | S |
8167887 | McLean | May 2012 | B2 |
8172903 | Gordon et al. | May 2012 | B2 |
8187332 | McLuen | May 2012 | B2 |
8197544 | Manzi et al. | Jun 2012 | B1 |
8198238 | Beals et al. | Jun 2012 | B2 |
8202274 | McLean | Jun 2012 | B2 |
8206395 | McLean et al. | Jun 2012 | B2 |
8206398 | Johnson et al. | Jun 2012 | B2 |
8216314 | Richelsoph | Jul 2012 | B2 |
8221501 | Eisermann et al. | Jul 2012 | B2 |
8221502 | Branch, Jr. | Jul 2012 | B2 |
8241331 | Arnin | Aug 2012 | B2 |
8246572 | Cantor et al. | Aug 2012 | B2 |
D667542 | Kleiner | Sep 2012 | S |
8257370 | Moskowitz et al. | Sep 2012 | B2 |
8257440 | Gordon et al. | Sep 2012 | B2 |
8262666 | Baynham et al. | Sep 2012 | B2 |
8262736 | Michelson | Sep 2012 | B2 |
8273129 | Baynham et al. | Sep 2012 | B2 |
8277510 | Kleiner | Oct 2012 | B2 |
8282683 | McLaughlin et al. | Oct 2012 | B2 |
8292960 | Kleiner | Oct 2012 | B2 |
8293232 | Beals et al. | Oct 2012 | B2 |
8303601 | Bandeira et al. | Nov 2012 | B2 |
8303659 | Errico et al. | Nov 2012 | B2 |
8308804 | Krueger | Nov 2012 | B2 |
8317025 | Kolozs et al. | Nov 2012 | B1 |
8317802 | Manzi et al. | Nov 2012 | B1 |
8317866 | Palmatier et al. | Nov 2012 | B2 |
8328818 | Seifert et al. | Dec 2012 | B1 |
8337531 | Johnson et al. | Dec 2012 | B2 |
8337532 | McLean et al. | Dec 2012 | B1 |
8337562 | Landry et al. | Dec 2012 | B2 |
D674900 | Janice et al. | Jan 2013 | S |
8343193 | Johnson et al. | Jan 2013 | B2 |
8349014 | Barreiro et al. | Jan 2013 | B2 |
8353913 | Moskowitz et al. | Jan 2013 | B2 |
8361152 | McCormack et al. | Jan 2013 | B2 |
8366748 | Kleiner | Feb 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8372120 | James | Feb 2013 | B2 |
8377071 | Lim et al. | Feb 2013 | B2 |
8382842 | Greenhalgh et al. | Feb 2013 | B2 |
D677791 | Danacioglu et al. | Mar 2013 | S |
8394108 | McLean et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez et al. | Mar 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
D681205 | Farris et al. | Apr 2013 | S |
8414622 | Potash | Apr 2013 | B2 |
8419795 | Sweeney | Apr 2013 | B2 |
8430885 | Manzi et al. | Apr 2013 | B2 |
8435298 | Weiman | May 2013 | B2 |
8435299 | Chauvin et al. | May 2013 | B2 |
8439929 | Sharratt et al. | May 2013 | B1 |
8444696 | Michelson | May 2013 | B2 |
8444697 | Butler | May 2013 | B1 |
8454621 | DeRidder et al. | Jun 2013 | B2 |
8454664 | McLean | Jun 2013 | B2 |
8460389 | DeLurio et al. | Jun 2013 | B2 |
8475500 | Potash | Jul 2013 | B2 |
8480748 | Poulos | Jul 2013 | B2 |
8491657 | Attia et al. | Jul 2013 | B2 |
8496706 | Ragab et al. | Jul 2013 | B2 |
8506635 | Palmatier et al. | Aug 2013 | B2 |
8512347 | McCormack et al. | Aug 2013 | B2 |
8512348 | Chabansky et al. | Aug 2013 | B2 |
8512383 | McLean | Aug 2013 | B2 |
8512407 | Butler et al. | Aug 2013 | B2 |
8518087 | Lopez et al. | Aug 2013 | B2 |
8518114 | Marik | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8523906 | McLean et al. | Sep 2013 | B2 |
8523946 | Swann | Sep 2013 | B1 |
8529627 | Baynham | Sep 2013 | B2 |
8535353 | Johnson et al. | Sep 2013 | B2 |
D692133 | Steinwachs et al. | Oct 2013 | S |
8545567 | Krueger | Oct 2013 | B1 |
8556975 | Lechoslaw et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8562654 | McLean et al. | Oct 2013 | B2 |
8562685 | Ullrich, Jr. et al. | Oct 2013 | B2 |
8568481 | Olmos et al. | Oct 2013 | B2 |
8574299 | Barreiro et al. | Nov 2013 | B2 |
8574300 | McManus et al. | Nov 2013 | B2 |
8579907 | Lim et al. | Nov 2013 | B2 |
8579980 | DeLurio et al. | Nov 2013 | B2 |
8579981 | Lim et al. | Nov 2013 | B2 |
8585761 | Theofilos | Nov 2013 | B2 |
8591585 | McLaughlin et al. | Nov 2013 | B2 |
D696399 | Kleiner | Dec 2013 | S |
8597333 | Morgenstern Lopez et al. | Dec 2013 | B2 |
8597360 | McLuen et al. | Dec 2013 | B2 |
8603168 | Gordon et al. | Dec 2013 | B2 |
8623054 | McCormack et al. | Jan 2014 | B2 |
8623091 | Suedkamp et al. | Jan 2014 | B2 |
8628576 | Triplett et al. | Jan 2014 | B2 |
8628578 | Miller et al. | Jan 2014 | B2 |
D700322 | Kleiner | Feb 2014 | S |
D700332 | Tyber | Feb 2014 | S |
8641739 | McLean et al. | Feb 2014 | B2 |
8641767 | Landry et al. | Feb 2014 | B2 |
8641769 | Malandain | Feb 2014 | B2 |
8647386 | Gordon et al. | Feb 2014 | B2 |
8657826 | McLean et al. | Feb 2014 | B2 |
8663281 | McLean et al. | Mar 2014 | B2 |
8685031 | Kleiner | Apr 2014 | B2 |
8685095 | Miller et al. | Apr 2014 | B2 |
8696720 | Lazarof | Apr 2014 | B2 |
8702798 | Matthis et al. | Apr 2014 | B2 |
8709086 | Glerum | Apr 2014 | B2 |
8709088 | Kleiner et al. | Apr 2014 | B2 |
8715351 | Pinto | May 2014 | B1 |
8727975 | Pfabe et al. | May 2014 | B1 |
8747444 | Moskowitz et al. | Jun 2014 | B2 |
8753345 | McCormack et al. | Jun 2014 | B2 |
8753347 | McCormack et al. | Jun 2014 | B2 |
8753377 | McCormack et al. | Jun 2014 | B2 |
8753398 | Gordon et al. | Jun 2014 | B2 |
8758443 | Ullrich, Jr. et al. | Jun 2014 | B2 |
D708323 | Reyes et al. | Jul 2014 | S |
D708747 | Curran et al. | Jul 2014 | S |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8778025 | Ragab et al. | Jul 2014 | B2 |
8778027 | Medina | Jul 2014 | B2 |
8784450 | Moskowitz et al. | Jul 2014 | B2 |
8790407 | Chauvin et al. | Jul 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8808304 | Weiman et al. | Aug 2014 | B2 |
8808305 | Kleiner | Aug 2014 | B2 |
8808383 | Kwak et al. | Aug 2014 | B2 |
8814940 | Curran et al. | Aug 2014 | B2 |
8821396 | Miles et al. | Sep 2014 | B1 |
8828019 | Raymond et al. | Sep 2014 | B1 |
8828062 | McCormack et al. | Sep 2014 | B2 |
8828066 | Lazarof | Sep 2014 | B2 |
8834472 | McCormack et al. | Sep 2014 | B2 |
8840622 | Vellido et al. | Sep 2014 | B1 |
8840668 | Donahoe et al. | Sep 2014 | B1 |
8845640 | McLean et al. | Sep 2014 | B2 |
8845727 | Gottlieb et al. | Sep 2014 | B2 |
8845731 | Weiman | Sep 2014 | B2 |
8845732 | Weiman | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
D714933 | Kawamura | Oct 2014 | S |
8852242 | Morgenstern Lopez et al. | Oct 2014 | B2 |
8852243 | Morgenstern Lopez et al. | Oct 2014 | B2 |
8852244 | Simonson | Oct 2014 | B2 |
8852279 | Weiman | Oct 2014 | B2 |
8852281 | Phelps | Oct 2014 | B2 |
8852282 | Farley et al. | Oct 2014 | B2 |
8858598 | Seifert et al. | Oct 2014 | B2 |
8858638 | Michelson | Oct 2014 | B2 |
8864830 | Malandain | Oct 2014 | B2 |
8864833 | Glerum et al. | Oct 2014 | B2 |
8870882 | Kleiner | Oct 2014 | B2 |
8870959 | Arnin | Oct 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8894652 | Seifert et al. | Nov 2014 | B2 |
8894708 | Thalgott | Nov 2014 | B2 |
8894711 | Varela | Nov 2014 | B2 |
8894712 | Varela | Nov 2014 | B2 |
8900313 | Barreiro et al. | Dec 2014 | B2 |
8906028 | Kleiner | Dec 2014 | B2 |
8906099 | Poulos | Dec 2014 | B2 |
8920507 | Malandain | Dec 2014 | B2 |
D721808 | Oi | Jan 2015 | S |
8926701 | De Lurio et al. | Jan 2015 | B2 |
8926704 | Glerum et al. | Jan 2015 | B2 |
8932295 | Greenhalgh | Jan 2015 | B1 |
8940048 | Butler et al. | Jan 2015 | B2 |
8945137 | Greenhalgh et al. | Feb 2015 | B1 |
D723682 | Kleiner | Mar 2015 | S |
D724213 | Tyber | Mar 2015 | S |
8968406 | Arnin | Mar 2015 | B2 |
8968408 | Schaller et al. | Mar 2015 | B2 |
8974464 | Johnson et al. | Mar 2015 | B2 |
8974534 | Krueger | Mar 2015 | B2 |
8986389 | Lim et al. | Mar 2015 | B2 |
8992621 | Chauvin et al. | Mar 2015 | B2 |
8992622 | Ullrich, Jr. et al. | Mar 2015 | B2 |
8998992 | Seifert et al. | Apr 2015 | B2 |
9005293 | Moskowitz et al. | Apr 2015 | B2 |
9034040 | Seifert et al. | May 2015 | B2 |
9034041 | Wolters et al. | May 2015 | B2 |
9039767 | Raymond et al. | May 2015 | B2 |
9039771 | Glerum et al. | May 2015 | B2 |
9055985 | Lazarof | Jun 2015 | B2 |
9060877 | Kleiner | Jun 2015 | B2 |
D735336 | Lovell | Jul 2015 | S |
9078769 | Farin | Jul 2015 | B2 |
9084686 | McLean et al. | Jul 2015 | B1 |
9095446 | Landry et al. | Aug 2015 | B2 |
9095447 | Barreiro et al. | Aug 2015 | B2 |
9101488 | Malandain | Aug 2015 | B2 |
9107766 | McLean et al. | Aug 2015 | B1 |
9113962 | McLean et al. | Aug 2015 | B2 |
9114026 | McLean et al. | Aug 2015 | B1 |
9119730 | Glerum et al. | Sep 2015 | B2 |
9125757 | Weiman | Sep 2015 | B2 |
9138277 | Fitzpatrick | Sep 2015 | B2 |
9149302 | McLean et al. | Oct 2015 | B2 |
9149364 | McManus et al. | Oct 2015 | B2 |
9173694 | Kleiner | Nov 2015 | B2 |
9174147 | Hoogenakker et al. | Nov 2015 | B2 |
9180017 | Poulos | Nov 2015 | B2 |
9186193 | Kleiner et al. | Nov 2015 | B2 |
9186262 | McLuen et al. | Nov 2015 | B2 |
9192484 | Landry et al. | Nov 2015 | B2 |
9204974 | Glerum et al. | Dec 2015 | B2 |
9211196 | Glerum et al. | Dec 2015 | B2 |
9216094 | McLean et al. | Dec 2015 | B2 |
9216095 | Glerum et al. | Dec 2015 | B2 |
9226777 | Potash et al. | Jan 2016 | B2 |
9233007 | Sungarian et al. | Jan 2016 | B2 |
D750249 | Grimberg et al. | Feb 2016 | S |
9247943 | Kleiner | Feb 2016 | B1 |
9271846 | Lim et al. | Mar 2016 | B2 |
9283089 | McKay | Mar 2016 | B2 |
9295500 | Marigowda | Mar 2016 | B2 |
9301854 | Moskowitz et al. | Apr 2016 | B2 |
9320610 | Alheidt et al. | Apr 2016 | B2 |
9320615 | Suedkamp et al. | Apr 2016 | B2 |
9351848 | Glerum et al. | May 2016 | B2 |
9358123 | McLuen et al. | Jun 2016 | B2 |
9358126 | Glerum et al. | Jun 2016 | B2 |
9358128 | Glerum et al. | Jun 2016 | B2 |
9358129 | Weiman | Jun 2016 | B2 |
9358134 | Malandain | Jun 2016 | B2 |
9381094 | Barreiro et al. | Jul 2016 | B2 |
9398961 | Malandain | Jul 2016 | B2 |
9402739 | Weiman | Aug 2016 | B2 |
9408707 | Oglaza et al. | Aug 2016 | B2 |
9408708 | Greenhalgh | Aug 2016 | B2 |
9414936 | Miller et al. | Aug 2016 | B2 |
9427264 | Kleiner | Aug 2016 | B2 |
9439692 | Schlesinger et al. | Sep 2016 | B1 |
9439782 | Kleiner | Sep 2016 | B2 |
9439783 | McLean et al. | Sep 2016 | B2 |
9445856 | Seifert et al. | Sep 2016 | B2 |
9445919 | Palmatier | Sep 2016 | B2 |
9445921 | McLean | Sep 2016 | B2 |
9452063 | Glerum et al. | Sep 2016 | B2 |
9456830 | Greenhalgh | Oct 2016 | B2 |
9480578 | Pinto | Nov 2016 | B2 |
9486324 | Hochschuler et al. | Nov 2016 | B2 |
9486328 | Jimenez | Nov 2016 | B2 |
9492287 | Glerum et al. | Nov 2016 | B2 |
9498200 | Pfabe et al. | Nov 2016 | B2 |
9498347 | McLean | Nov 2016 | B2 |
9498351 | Vigliotti et al. | Nov 2016 | B2 |
9510954 | Glerum et al. | Dec 2016 | B2 |
9510955 | Marino et al. | Dec 2016 | B2 |
9517140 | McLean et al. | Dec 2016 | B2 |
9517141 | McLean et al. | Dec 2016 | B2 |
9517142 | Pinto et al. | Dec 2016 | B2 |
9526627 | Tabor et al. | Dec 2016 | B2 |
9526628 | Krueger | Dec 2016 | B2 |
9532821 | Moskowitz et al. | Jan 2017 | B2 |
9539108 | Glerum et al. | Jan 2017 | B2 |
9545250 | Pfabe et al. | Jan 2017 | B2 |
9545279 | James et al. | Jan 2017 | B2 |
9545313 | Raymond et al. | Jan 2017 | B2 |
9545318 | Johnson et al. | Jan 2017 | B2 |
9545319 | Farin | Jan 2017 | B2 |
9549824 | McAfee | Jan 2017 | B2 |
9566168 | Glerum et al. | Feb 2017 | B2 |
9579124 | Gordon et al. | Feb 2017 | B2 |
9579215 | Suedkamp et al. | Feb 2017 | B2 |
9585767 | Robinson | Mar 2017 | B2 |
9592131 | Sandstrom et al. | Mar 2017 | B2 |
9597200 | Glerum et al. | Mar 2017 | B2 |
9603713 | Moskowitz et al. | Mar 2017 | B2 |
9610175 | Barreiro et al. | Apr 2017 | B2 |
9622791 | McCormack et al. | Apr 2017 | B2 |
9622875 | Moskowitz et al. | Apr 2017 | B2 |
9629665 | McCormack et al. | Apr 2017 | B2 |
9629668 | McLean et al. | Apr 2017 | B2 |
9629729 | Grimberg et al. | Apr 2017 | B2 |
9642712 | Schaller et al. | May 2017 | B2 |
9655660 | McLean et al. | May 2017 | B2 |
9655743 | Johnson et al. | May 2017 | B2 |
9655747 | Glerum et al. | May 2017 | B2 |
9662223 | Matthis et al. | May 2017 | B2 |
9668881 | Greenhalgh et al. | Jun 2017 | B1 |
9675385 | Moskowitz et al. | Jun 2017 | B2 |
9675469 | Landry et al. | Jun 2017 | B2 |
9681889 | Greenhalgh et al. | Jun 2017 | B1 |
9687360 | Baynham et al. | Jun 2017 | B2 |
9707094 | Protopsaltis et al. | Jul 2017 | B2 |
9730802 | Harvey | Aug 2017 | B1 |
D797290 | Kleiner et al. | Sep 2017 | S |
9763700 | Gregory | Sep 2017 | B1 |
9801734 | Stein | Oct 2017 | B1 |
9826988 | Kleiner | Nov 2017 | B2 |
9861395 | Potash et al. | Jan 2018 | B2 |
9861496 | Kleiner | Jan 2018 | B2 |
9937053 | Melkent | Apr 2018 | B2 |
9962272 | Daffinson | May 2018 | B1 |
9980737 | Thommen et al. | May 2018 | B2 |
9993353 | Sandhu | Jun 2018 | B2 |
10179054 | Kleiner | Jan 2019 | B2 |
20020010472 | Kuslich et al. | Jan 2002 | A1 |
20020040243 | Attali et al. | Apr 2002 | A1 |
20020045945 | Liu et al. | Apr 2002 | A1 |
20020049448 | Sand et al. | Apr 2002 | A1 |
20020058947 | Hochschuler et al. | May 2002 | A1 |
20020099377 | Zucherman et al. | Jul 2002 | A1 |
20020116006 | Cohen | Aug 2002 | A1 |
20020161444 | Choi | Oct 2002 | A1 |
20020165613 | Lin et al. | Nov 2002 | A1 |
20030009169 | Young et al. | Jan 2003 | A1 |
20030023306 | Liu et al. | Jan 2003 | A1 |
20030083748 | Lee et al. | May 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030135279 | Michelson | Jul 2003 | A1 |
20030149482 | Michelson | Aug 2003 | A1 |
20030171812 | Grunberg et al. | Sep 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20040002713 | Olson et al. | Jan 2004 | A1 |
20040024466 | Heerklotz | Feb 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040087956 | Weikel et al. | May 2004 | A1 |
20040133211 | Raskin et al. | Jul 2004 | A1 |
20040133217 | Watschke | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040143330 | Sazy | Jul 2004 | A1 |
20040148027 | Errico et al. | Jul 2004 | A1 |
20040153158 | Errico et al. | Aug 2004 | A1 |
20040162616 | Simonton et al. | Aug 2004 | A1 |
20040167532 | Olson, Jr. et al. | Aug 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040215201 | Lieberman | Oct 2004 | A1 |
20040230211 | Moutafis et al. | Nov 2004 | A1 |
20040254643 | Jackson | Dec 2004 | A1 |
20050070900 | Serhan et al. | Mar 2005 | A1 |
20050070912 | Voellmicke | Mar 2005 | A1 |
20050080443 | Fallin et al. | Apr 2005 | A1 |
20050096601 | Doyle | May 2005 | A1 |
20050107878 | Conchy | May 2005 | A1 |
20050112091 | DiMauro et al. | May 2005 | A1 |
20050118550 | Turri | Jun 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050124994 | Berger et al. | Jun 2005 | A1 |
20050149035 | Pimenta et al. | Jul 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159765 | Moutafis et al. | Jul 2005 | A1 |
20050165405 | Tsou | Jul 2005 | A1 |
20050171541 | Boehm, Jr. et al. | Aug 2005 | A1 |
20050192669 | Zdeblick et al. | Sep 2005 | A1 |
20050203625 | Boehm, Jr. et al. | Sep 2005 | A1 |
20050216002 | Simonson | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050251257 | Mitchell et al. | Nov 2005 | A1 |
20050261781 | Sennett et al. | Nov 2005 | A1 |
20050278026 | Gordon et al. | Dec 2005 | A1 |
20050278036 | Leonard et al. | Dec 2005 | A1 |
20050283150 | Moutafis et al. | Dec 2005 | A1 |
20050283245 | Gordon et al. | Dec 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20060058585 | Oberlaender et al. | Mar 2006 | A1 |
20060058807 | Landry et al. | Mar 2006 | A1 |
20060069436 | Sutton et al. | Mar 2006 | A1 |
20060095136 | McLuen | May 2006 | A1 |
20060100304 | Vresilovic et al. | May 2006 | A1 |
20060100705 | Puno et al. | May 2006 | A1 |
20060111779 | Petersen | May 2006 | A1 |
20060111780 | Petersen | May 2006 | A1 |
20060116770 | White et al. | Jun 2006 | A1 |
20060122597 | Jones et al. | Jun 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060142858 | Colleran et al. | Jun 2006 | A1 |
20060154366 | Brown et al. | Jul 2006 | A1 |
20060155170 | Hanson et al. | Jul 2006 | A1 |
20060167461 | Hawkins et al. | Jul 2006 | A1 |
20060190081 | Kraus | Aug 2006 | A1 |
20060195192 | Gordon et al. | Aug 2006 | A1 |
20060229550 | Staid et al. | Oct 2006 | A1 |
20060229729 | Gordon | Oct 2006 | A1 |
20060241764 | Michelson | Oct 2006 | A1 |
20060241774 | Attali et al. | Oct 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060247791 | McKay et al. | Nov 2006 | A1 |
20060264808 | Staid et al. | Nov 2006 | A1 |
20060264964 | Scifert et al. | Nov 2006 | A1 |
20070003598 | Trieu | Jan 2007 | A1 |
20070010824 | Malandain et al. | Jan 2007 | A1 |
20070016195 | Winslow et al. | Jan 2007 | A1 |
20070043376 | Leatherbury et al. | Feb 2007 | A1 |
20070043442 | Abernathie | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070067034 | Chirico et al. | Mar 2007 | A1 |
20070073110 | Larson et al. | Mar 2007 | A1 |
20070073294 | Chin et al. | Mar 2007 | A1 |
20070073406 | Gordon et al. | Mar 2007 | A1 |
20070088007 | Ng | Apr 2007 | A1 |
20070093850 | Harris et al. | Apr 2007 | A1 |
20070123985 | Errico et al. | May 2007 | A1 |
20070172790 | Doucette, Jr. et al. | Jul 2007 | A1 |
20070185496 | Beckman et al. | Aug 2007 | A1 |
20070208423 | Messerli et al. | Sep 2007 | A1 |
20070213596 | Hamada | Sep 2007 | A1 |
20070213717 | Trieu | Sep 2007 | A1 |
20070213718 | Trieu | Sep 2007 | A1 |
20070213822 | Trieu | Sep 2007 | A1 |
20070213826 | Smith et al. | Sep 2007 | A1 |
20070225219 | Boden et al. | Sep 2007 | A1 |
20070225811 | Scifert et al. | Sep 2007 | A1 |
20070242869 | Rochester | Oct 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070264300 | Scifert et al. | Nov 2007 | A1 |
20070265632 | Scifert et al. | Nov 2007 | A1 |
20070270951 | Davis et al. | Nov 2007 | A1 |
20070270954 | Wu | Nov 2007 | A1 |
20070270963 | Melkent | Nov 2007 | A1 |
20070276406 | Mahoney et al. | Nov 2007 | A1 |
20070288007 | Burkus et al. | Dec 2007 | A1 |
20070293948 | Bagga et al. | Dec 2007 | A1 |
20080003255 | Kerr et al. | Jan 2008 | A1 |
20080009929 | Harris et al. | Jan 2008 | A1 |
20080021559 | Thramann | Jan 2008 | A1 |
20080033440 | Moskowitz et al. | Feb 2008 | A1 |
20080051902 | Dwyer | Feb 2008 | A1 |
20080058606 | Miles et al. | Mar 2008 | A1 |
20080065219 | Dye | Mar 2008 | A1 |
20080071284 | Lechmann et al. | Mar 2008 | A1 |
20080086142 | Kohm et al. | Apr 2008 | A1 |
20080125856 | Perez-Cruet et al. | May 2008 | A1 |
20080147191 | Lopez et al. | Jun 2008 | A1 |
20080154375 | Serhan et al. | Jun 2008 | A1 |
20080154377 | Voellmicke | Jun 2008 | A1 |
20080154381 | Parrish | Jun 2008 | A1 |
20080161924 | Viker | Jul 2008 | A1 |
20080172127 | Perez-Cruet et al. | Jul 2008 | A1 |
20080177294 | O'Neil et al. | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080195058 | Moutafis et al. | Aug 2008 | A1 |
20080195101 | Lechot et al. | Aug 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20080243126 | Gutierrez et al. | Oct 2008 | A1 |
20080249569 | Waugh et al. | Oct 2008 | A1 |
20080255564 | Michelson | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080260598 | Gross et al. | Oct 2008 | A1 |
20080269904 | Voorhies | Oct 2008 | A1 |
20080288071 | Biyani et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20090043312 | Koulisis | Feb 2009 | A1 |
20090043394 | Zdeblick et al. | Feb 2009 | A1 |
20090076440 | Moutafis et al. | Mar 2009 | A1 |
20090076556 | McGarity et al. | Mar 2009 | A1 |
20090088765 | Butler et al. | Apr 2009 | A1 |
20090098184 | Govil et al. | Apr 2009 | A1 |
20090099660 | Scifert et al. | Apr 2009 | A1 |
20090105718 | Zhang et al. | Apr 2009 | A1 |
20090124860 | Miles et al. | May 2009 | A1 |
20090124980 | Chen | May 2009 | A1 |
20090125066 | Krau et al. | May 2009 | A1 |
20090142385 | Gross et al. | Jun 2009 | A1 |
20090182429 | Humphreys et al. | Jul 2009 | A1 |
20090187194 | Hamada | Jul 2009 | A1 |
20090192350 | Meja | Jul 2009 | A1 |
20090192403 | Gharib et al. | Jul 2009 | A1 |
20090198241 | Phan | Aug 2009 | A1 |
20090198243 | Melsheimer | Aug 2009 | A1 |
20090198245 | Phan | Aug 2009 | A1 |
20090198337 | Phan | Aug 2009 | A1 |
20090198338 | Phan | Aug 2009 | A1 |
20090198339 | Kleiner et al. | Aug 2009 | A1 |
20090203967 | Branch et al. | Aug 2009 | A1 |
20090204148 | Lenke | Aug 2009 | A1 |
20090204159 | Justis et al. | Aug 2009 | A1 |
20090204220 | Trieu | Aug 2009 | A1 |
20090222011 | Lehuec et al. | Sep 2009 | A1 |
20090228107 | Michelson | Sep 2009 | A1 |
20090234455 | Moskowitz et al. | Sep 2009 | A1 |
20090246244 | McKay et al. | Oct 2009 | A1 |
20090248163 | King et al. | Oct 2009 | A1 |
20090259108 | Miles et al. | Oct 2009 | A1 |
20090264892 | Beyar et al. | Oct 2009 | A1 |
20090275995 | Truckai et al. | Nov 2009 | A1 |
20090281551 | Frey | Nov 2009 | A1 |
20090292361 | Lopez | Nov 2009 | A1 |
20090299477 | Clayton et al. | Dec 2009 | A1 |
20090299478 | Carls et al. | Dec 2009 | A1 |
20090306671 | McCormack et al. | Dec 2009 | A1 |
20090306692 | Barrington et al. | Dec 2009 | A1 |
20100004752 | White et al. | Jan 2010 | A1 |
20100010367 | Foley et al. | Jan 2010 | A1 |
20100010524 | Barrington et al. | Jan 2010 | A1 |
20100016903 | Matityahu et al. | Jan 2010 | A1 |
20100016972 | Jansen et al. | Jan 2010 | A1 |
20100016973 | de Villiers et al. | Jan 2010 | A1 |
20100021518 | Scifert | Jan 2010 | A1 |
20100023057 | Aeschlimann et al. | Jan 2010 | A1 |
20100030065 | Farr et al. | Feb 2010 | A1 |
20100036226 | Marino et al. | Feb 2010 | A9 |
20100036442 | Lauryssen et al. | Feb 2010 | A1 |
20100042221 | Boyd | Feb 2010 | A1 |
20100049325 | Biedermann et al. | Feb 2010 | A1 |
20100057208 | Dryer | Mar 2010 | A1 |
20100063516 | Parmer et al. | Mar 2010 | A1 |
20100063554 | Branch et al. | Mar 2010 | A1 |
20100070041 | Peterman et al. | Mar 2010 | A1 |
20100076335 | Gharib et al. | Mar 2010 | A1 |
20100076445 | Pagano | Mar 2010 | A1 |
20100076446 | Gorek | Mar 2010 | A1 |
20100082036 | Reiley et al. | Apr 2010 | A1 |
20100087828 | Krueger et al. | Apr 2010 | A1 |
20100087875 | McGahan et al. | Apr 2010 | A1 |
20100100141 | de Villiers et al. | Apr 2010 | A1 |
20100105986 | Miles et al. | Apr 2010 | A1 |
20100105987 | Miles et al. | Apr 2010 | A1 |
20100112029 | Scifert | May 2010 | A1 |
20100114147 | Biyani | May 2010 | A1 |
20100121365 | O'Sullivan et al. | May 2010 | A1 |
20100121453 | Peterman | May 2010 | A1 |
20100125333 | Zdeblick et al. | May 2010 | A1 |
20100125338 | Fitz | May 2010 | A1 |
20100131020 | Heinz et al. | May 2010 | A1 |
20100137690 | Miles et al. | Jun 2010 | A1 |
20100137923 | Greenhalgh et al. | Jun 2010 | A1 |
20100145390 | McCarthy et al. | Jun 2010 | A1 |
20100145452 | Blaylock et al. | Jun 2010 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20100152853 | Kirschman | Jun 2010 | A1 |
20100160923 | Sand et al. | Jun 2010 | A1 |
20100160982 | Justis et al. | Jun 2010 | A1 |
20100161062 | Foley et al. | Jun 2010 | A1 |
20100161074 | McKay | Jun 2010 | A1 |
20100168755 | Reiley et al. | Jul 2010 | A1 |
20100168862 | Edie et al. | Jul 2010 | A1 |
20100174326 | Selover et al. | Jul 2010 | A1 |
20100185286 | Allard | Jul 2010 | A1 |
20100185287 | Allard | Jul 2010 | A1 |
20100185288 | Carls | Jul 2010 | A1 |
20100191241 | McCormack et al. | Jul 2010 | A1 |
20100191334 | Keller | Jul 2010 | A1 |
20100191336 | Greenhalgh | Jul 2010 | A1 |
20100191337 | Zamani et al. | Jul 2010 | A1 |
20100198140 | Lawson | Aug 2010 | A1 |
20100199483 | Justis et al. | Aug 2010 | A1 |
20100204795 | Greenhalgh | Aug 2010 | A1 |
20100204798 | Gerbec et al. | Aug 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100217398 | Keller | Aug 2010 | A1 |
20100222784 | Schwab et al. | Sep 2010 | A1 |
20100222824 | Simonson | Sep 2010 | A1 |
20100228294 | LeHuec et al. | Sep 2010 | A1 |
20100228351 | Ankney et al. | Sep 2010 | A1 |
20100234848 | Sutterlin et al. | Sep 2010 | A1 |
20100234952 | Peterman | Sep 2010 | A1 |
20100234957 | Zdeblick et al. | Sep 2010 | A1 |
20100241231 | Marino et al. | Sep 2010 | A1 |
20100249933 | Trieu | Sep 2010 | A1 |
20100249934 | Melkent | Sep 2010 | A1 |
20100256767 | Melkent | Oct 2010 | A1 |
20100256768 | Lim et al. | Oct 2010 | A1 |
20100262241 | Eisermann et al. | Oct 2010 | A1 |
20100262245 | Alfaro et al. | Oct 2010 | A1 |
20100266689 | Simonton et al. | Oct 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100286778 | Eisermann et al. | Nov 2010 | A1 |
20100286779 | Thibodeau | Nov 2010 | A1 |
20100286780 | Dryer et al. | Nov 2010 | A1 |
20100286784 | Curran et al. | Nov 2010 | A1 |
20100298938 | Humphreys et al. | Nov 2010 | A1 |
20100305575 | Wilkinson et al. | Dec 2010 | A1 |
20100312103 | Gorek et al. | Dec 2010 | A1 |
20100312290 | McKinley et al. | Dec 2010 | A1 |
20100312347 | Arramon et al. | Dec 2010 | A1 |
20100331847 | Wilkinson et al. | Dec 2010 | A1 |
20100331891 | Culbert et al. | Dec 2010 | A1 |
20110014587 | Spagnoli et al. | Jan 2011 | A1 |
20110015638 | Pischl et al. | Jan 2011 | A1 |
20110015742 | Hong | Jan 2011 | A1 |
20110015748 | Molz, IV et al. | Jan 2011 | A1 |
20110020768 | Spagnoli et al. | Jan 2011 | A1 |
20110021427 | Amsden et al. | Jan 2011 | A1 |
20110028393 | Vickers et al. | Feb 2011 | A1 |
20110029086 | Glazer et al. | Feb 2011 | A1 |
20110054538 | Zehavi et al. | Mar 2011 | A1 |
20110071527 | Nelson et al. | Mar 2011 | A1 |
20110093005 | Strokosz et al. | Apr 2011 | A1 |
20110093074 | Glerum et al. | Apr 2011 | A1 |
20110106162 | Ballard et al. | May 2011 | A1 |
20110137349 | Moskowitz et al. | Jun 2011 | A1 |
20110144687 | Kleiner | Jun 2011 | A1 |
20110160777 | Spagnoli et al. | Jun 2011 | A1 |
20110184412 | Scifert et al. | Jul 2011 | A1 |
20110208226 | Fatone et al. | Aug 2011 | A1 |
20110208312 | Moskowitz et al. | Aug 2011 | A1 |
20110213372 | Keefer et al. | Sep 2011 | A1 |
20110218627 | Rampersaud et al. | Sep 2011 | A1 |
20110230970 | Lynn et al. | Sep 2011 | A1 |
20110238184 | Zdeblick et al. | Sep 2011 | A1 |
20110257478 | Kleiner et al. | Oct 2011 | A1 |
20120022603 | Kirschman | Jan 2012 | A1 |
20120022651 | Akyuz et al. | Jan 2012 | A1 |
20120029635 | Schoenhoeffer et al. | Feb 2012 | A1 |
20120035668 | Manninen et al. | Feb 2012 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120058451 | Lazarof | Mar 2012 | A1 |
20120059472 | Weiman | Mar 2012 | A1 |
20120059481 | Abernathie et al. | Mar 2012 | A1 |
20120065613 | Pepper et al. | Mar 2012 | A1 |
20120065687 | Ballard et al. | Mar 2012 | A1 |
20120071981 | Farley et al. | Mar 2012 | A1 |
20120078315 | Sweeney | Mar 2012 | A1 |
20120089185 | Gabelberger | Apr 2012 | A1 |
20120109319 | Perisic | May 2012 | A1 |
20120123546 | Medina | May 2012 | A1 |
20120158146 | Glerum et al. | Jun 2012 | A1 |
20120197311 | Kirschman | Aug 2012 | A1 |
20120197405 | Cuevas et al. | Aug 2012 | A1 |
20120215316 | Mohr et al. | Aug 2012 | A1 |
20120245691 | Reimels | Sep 2012 | A1 |
20120259335 | Scifert et al. | Oct 2012 | A1 |
20120277861 | Steele et al. | Nov 2012 | A1 |
20120330419 | Moskowitz et al. | Dec 2012 | A1 |
20120330421 | Weiman | Dec 2012 | A1 |
20130006364 | McCormack et al. | Jan 2013 | A1 |
20130006365 | Pepper et al. | Jan 2013 | A1 |
20130006366 | Farley et al. | Jan 2013 | A1 |
20130013070 | McCormack et al. | Jan 2013 | A1 |
20130018468 | Moskowitz et al. | Jan 2013 | A1 |
20130018469 | Moskowitz et al. | Jan 2013 | A1 |
20130023991 | Moskowitz et al. | Jan 2013 | A1 |
20130023992 | Moskowitz et al. | Jan 2013 | A1 |
20130053962 | Moskowitz et al. | Feb 2013 | A1 |
20130073041 | Scifert et al. | Mar 2013 | A1 |
20130103153 | Blackwell et al. | Apr 2013 | A1 |
20130103154 | Trieu et al. | Apr 2013 | A1 |
20130110168 | McCormack et al. | May 2013 | A1 |
20130110169 | Hynes et al. | May 2013 | A1 |
20130110248 | Zipnick | May 2013 | A1 |
20130116791 | Theofilos | May 2013 | A1 |
20130144388 | Emery et al. | Jun 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130158669 | Sungarian | Jun 2013 | A1 |
20130178940 | Farley | Jul 2013 | A1 |
20130204371 | McLuen et al. | Aug 2013 | A1 |
20130211525 | McLuen | Aug 2013 | A1 |
20130231747 | Olmos et al. | Sep 2013 | A1 |
20130297028 | Zipnick | Nov 2013 | A1 |
20130297029 | Kana et al. | Nov 2013 | A1 |
20130310935 | Swann | Dec 2013 | A1 |
20140012383 | Triplett et al. | Jan 2014 | A1 |
20140088712 | Gage | Mar 2014 | A1 |
20140100657 | McCormack et al. | Apr 2014 | A1 |
20140107790 | Combrowski | Apr 2014 | A1 |
20140156006 | Bannigan et al. | Jun 2014 | A1 |
20140172103 | O'Neil et al. | Jun 2014 | A1 |
20140172106 | To et al. | Jun 2014 | A1 |
20140207239 | Barreiro | Jul 2014 | A1 |
20140228955 | Weiman | Aug 2014 | A1 |
20140236296 | Wagner et al. | Aug 2014 | A1 |
20140236297 | Iott et al. | Aug 2014 | A1 |
20140236298 | Pinto | Aug 2014 | A1 |
20140249629 | Moskowitz et al. | Sep 2014 | A1 |
20140257405 | Zappacosta et al. | Sep 2014 | A1 |
20140257490 | Himmelberger et al. | Sep 2014 | A1 |
20140276581 | Lou et al. | Sep 2014 | A1 |
20140276896 | Harper | Sep 2014 | A1 |
20140277497 | Bennett et al. | Sep 2014 | A1 |
20140287055 | Kunjachan | Sep 2014 | A1 |
20140288652 | Boehm et al. | Sep 2014 | A1 |
20140296916 | McCormack et al. | Oct 2014 | A1 |
20140296985 | Balasubramanian et al. | Oct 2014 | A1 |
20140303675 | Mishra | Oct 2014 | A1 |
20140303731 | Glerum | Oct 2014 | A1 |
20140303732 | Rhoda et al. | Oct 2014 | A1 |
20140309268 | Arnou | Oct 2014 | A1 |
20140309548 | Merz et al. | Oct 2014 | A1 |
20140309697 | Iott et al. | Oct 2014 | A1 |
20140309714 | Mercanzini et al. | Oct 2014 | A1 |
20140367846 | Nakagawa et al. | Dec 2014 | A1 |
20140371721 | Anderson et al. | Dec 2014 | A1 |
20150081021 | Ciupik | Mar 2015 | A1 |
20150094814 | Emerick | Apr 2015 | A1 |
20150105824 | Moskowitz et al. | Apr 2015 | A1 |
20150216518 | McCormack et al. | Aug 2015 | A1 |
20150230931 | Greenhalgh | Aug 2015 | A1 |
20150230934 | Chauvin et al. | Aug 2015 | A1 |
20150351925 | Emerick | Dec 2015 | A1 |
20150374507 | Wolters et al. | Dec 2015 | A1 |
20160008040 | McCormack et al. | Jan 2016 | A1 |
20160015527 | McManus et al. | Jan 2016 | A1 |
20160015529 | Reimels | Jan 2016 | A1 |
20160030191 | McLuen et al. | Feb 2016 | A1 |
20160058579 | Aeschlimann et al. | Mar 2016 | A1 |
20160089247 | Nichols | Mar 2016 | A1 |
20160120660 | Melkent | May 2016 | A1 |
20160135961 | Aeschlimann et al. | May 2016 | A1 |
20160143748 | Lim et al. | May 2016 | A1 |
20160166396 | McClintock | Jun 2016 | A1 |
20160193056 | McKay | Jul 2016 | A1 |
20160213482 | Alheidt et al. | Jul 2016 | A1 |
20160228261 | Emery et al. | Aug 2016 | A1 |
20160242932 | McLuen et al. | Aug 2016 | A1 |
20160296340 | Gordon et al. | Oct 2016 | A1 |
20160296344 | Greenhalgh et al. | Oct 2016 | A1 |
20160302943 | Oglaza et al. | Oct 2016 | A1 |
20160310291 | Greenhalgh | Oct 2016 | A1 |
20160317315 | Weiman | Nov 2016 | A1 |
20160324659 | Malandain | Nov 2016 | A1 |
20160324661 | Miller et al. | Nov 2016 | A1 |
20160354131 | Seifert et al. | Dec 2016 | A1 |
20160374826 | Palmatier et al. | Dec 2016 | A1 |
20160374830 | Moskowitz et al. | Dec 2016 | A1 |
20170035468 | McCormack et al. | Feb 2017 | A1 |
20170035576 | Schaller et al. | Feb 2017 | A1 |
20170086986 | McAfee | Mar 2017 | A1 |
20170100255 | Hleihil | Apr 2017 | A1 |
20170119539 | Glerum et al. | May 2017 | A1 |
20170119540 | Greenhalgh | May 2017 | A1 |
20170119541 | Greenhalgh | May 2017 | A1 |
20170119542 | Logan et al. | May 2017 | A1 |
20170119546 | Farin | May 2017 | A1 |
20170128229 | Suedkamp et al. | May 2017 | A1 |
20170165083 | Greenhalgh | Jun 2017 | A1 |
20170224397 | Grimberg | Aug 2017 | A1 |
20170238984 | Kleiner | Aug 2017 | A1 |
20170325969 | McLean | Nov 2017 | A1 |
20170354514 | Greenhalgh et al. | Dec 2017 | A1 |
20180064451 | Kleiner | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
765774 | Oct 2003 | AU |
2004100977 | Dec 2004 | AU |
2011203582 | Aug 2011 | AU |
1337842 | Jan 1996 | CA |
2447257 | Dec 1996 | CA |
2668075 | Jan 2005 | CN |
1621015 | Jun 2005 | CN |
2730336 | Oct 2005 | CN |
101268963 | Sep 2008 | CN |
201861800 | Jun 2011 | CN |
202191381 | Apr 2012 | CN |
202235781 | May 2012 | CN |
203001182 | Jun 2013 | CN |
103356310 | Oct 2013 | CN |
4012622 | Jul 1991 | DE |
4416605 | Jun 1995 | DE |
10241948 | Apr 2004 | DE |
102005033608 | Jan 2007 | DE |
102010004133 | Sep 2011 | DE |
102012203256 | Sep 2013 | DE |
0635246 | Jan 1995 | EP |
0880950 | Dec 1998 | EP |
1290985 | Mar 2003 | EP |
1382315 | Jan 2004 | EP |
1532949 | May 2005 | EP |
1541096 | Jun 2005 | EP |
1889587 | Feb 2008 | EP |
2213263 | Aug 2010 | EP |
2226039 | Sep 2010 | EP |
2510904 | Oct 2012 | EP |
2067421 | Mar 1995 | ES |
2099008 | May 1997 | ES |
2707477 | Jan 1995 | FR |
2708192 | Feb 1995 | FR |
2717068 | Sep 1995 | FR |
2790946 | Sep 2000 | FR |
2803741 | Jul 2001 | FR |
2815845 | May 2002 | FR |
2866228 | Aug 2005 | FR |
2866229 | Aug 2005 | FR |
2874814 | Mar 2006 | FR |
2943529 | Oct 2010 | FR |
2943530 | Oct 2010 | FR |
2981261 | Apr 2013 | FR |
H09-327468 | Dec 1997 | JP |
2002-052331 | Feb 2002 | JP |
2005-137418 | Jun 2005 | JP |
2008-054710 | Mar 2008 | JP |
2008126085 | Jun 2008 | JP |
2009-534140 | Sep 2009 | JP |
2009-535115 | Oct 2009 | JP |
20010112139 | Dec 2001 | KR |
20020025647 | Apr 2002 | KR |
100410823 | Dec 2003 | KR |
20030012142 | Dec 2003 | KR |
20040064577 | Jul 2004 | KR |
20050064501 | Jun 2005 | KR |
20080001064 | Jan 2008 | KR |
20080042341 | May 2008 | KR |
100953930 | Apr 2010 | KR |
20120119812 | Oct 2012 | KR |
20130082281 | Jul 2013 | KR |
2063730 | Jul 1996 | RU |
2210343 | Aug 2003 | RU |
105157 | Jun 2011 | RU |
2460499 | Sep 2012 | RU |
131611 | Aug 2013 | RU |
988281 | Jan 1983 | SU |
1424826 | Sep 1988 | SU |
WO 1990000037 | Jan 1990 | WO |
WO 9522402 | Aug 1995 | WO |
WO 1995031153 | Nov 1995 | WO |
WO 1997000054 | Jan 1997 | WO |
WO 9908627 | Feb 1999 | WO |
WO 1999026562 | Jun 1999 | WO |
WO 2000074605 | Dec 2000 | WO |
WO 0217301 | Mar 2002 | WO |
WO 2003092507 | Nov 2003 | WO |
WO 2004012634 | Feb 2004 | WO |
WO 2005037149 | Apr 2005 | WO |
WO 2005071190 | Aug 2005 | WO |
WO 2006031843 | Aug 2006 | WO |
WO 2006117463 | Nov 2006 | WO |
WO 2006134262 | Dec 2006 | WO |
WO 2007009107 | Jan 2007 | WO |
WO 2007028706 | Mar 2007 | WO |
WO 2007122006 | Nov 2007 | WO |
WO 2007127666 | Nov 2007 | WO |
WO 2008132322 | Nov 2008 | WO |
WO 2009064787 | May 2009 | WO |
WO 2010148112 | Dec 2010 | WO |
WO 2011142761 | Nov 2011 | WO |
WO 2012031267 | Mar 2012 | WO |
WO 2012145048 | Oct 2012 | WO |
WO 2013152257 | Oct 2013 | WO |
Entry |
---|
“BAK® /Proximity™ (BP®) Cage”, Zimmer Website, as early as Oct. 23, 2007, available at www.zimmer.com/z/ctl/op/global/action/1/id/7930/template/MP/prcat/M6/prod/y, printed on Jun. 8, 2009, 1 page. |
“BAK® Vista® Radiolucent Interbody Fusion System”, Zimmer Website, as early as Oct. 25, 2005, available at www.zimmerindia.com/z/ctl/op/global/action/1/id/7809/template/MP/prcat/M6/prod/y, printed on Jun. 8, 2009, pp. 1-2. |
“Facet Joint Syndrome,” The Cleveland Clinic Foundation, copyright 1995-2008, printed Nov. 19, 2008, available at www.my.clevelandclinic.org/disorders/facet_joint_syndrome/hic_facet_joint_syndrome.aspx, 2 pages. |
“Graft Delivery Devices,” Nordson Medical, Aug. 2015, 8 pages. |
“Rapid Graft Delivery System,” Seaspine, 2017, 2 pages. |
“Screws, Cages or Both”, Spine Universe Website, as early as Aug. 18, 2002, available at www.spineuniverse.com/displayarticle.php/article1363.html, printed on Jun. 8, 2009, pp. 1-13. |
“StaXX XD Expandable Device,” SpineWave, 2014, retrieved at http://www.spinewave.com/products/xd_us.html, 1 page. |
“University of Maryland Spine Program: A Patient's Guide to Anterior Lumbar Interbody Fusion with Intervertebral Cages”, University of Maryland Medical Center website, as early as 2003, available at www.umm.edu/spinecenter/education/anterior_lumbar_interbody_fusion_with_intervertebral_cages.htm, printed on Jun. 8, 2009, pp. 1-4. |
“Vertebral column,” from Wikipedia, the free encyclopedia, printed May 19, 2009, retrieved from www.en.wikipedia.org/wiki/Vertebral_column, 6 pages. |
“Zygapophysial joint,” from Wkipedia, the free encyclopedia, printed May 19, 2009, retrieved from www.en.wikipedia.org/wiki/Zygapophysial_joint, 2 pages. |
Ehrenberg, “The 3-D Printing Revolution,” Science News, Mar. 9, 2013, pp. 20-25. |
Newton, “EOS Teams with Medical Implant Designer to Advance 3D Printing in Medicine,” Graphic Speak, 2012, 2 pages. |
Ray, “Facet Joint Disorders and Back Pain,” published on Spine-Health, Dec. 10, 2002, available at www.spine-health.com/conditions/arthritis/facet-joint-disorders-and-back-pain, 1 page. |
Staehler, “Spine Surgery for a Cervical Herniated Disc,” published on Spine-Health, Jun. 12, 2002, available at www.spine-health.com/conditions/herniated-disc/spine-surgery-a-cervical-herniated-disc, 2 pages. |
Staehler, “Summary of Cervical Herniated Disc Treatment Options,” published on Spine-Health, Jun. 12, 2002, available at www.spine-health.com/conditions/herniated-disc/summary-cervical-herniated-disc-treatment-options, 1 page. |
Ullrich, “Anterior Cervical Spinal Fusion Surgery,” published on Spine-Health, Oct. 7, 2005, available at www.spine-health.com/treatment/back-surgery/anterior-cervical-spinal-fusion-surgery, 2 pages. |
Ullrich, “Cervical Spinal Instrumentation,” published on Spine-Health, Oct. 7, 2005, available at www.spine-health.com/treatment/back-surgery/cervical-spinal-instrumentation, 2 pages. |
Wascher, “Anterior cervical decompression and spine fusion procedure,” published on Spine-Health, Aug. 29, 2001, available at www.spine-health.com/treatment/spinal-fusion/anterior-cervical-decompression-and-spine-fusion-procedure, 2 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US11/52278, dated Jan. 18, 2012 2 pages. |
Written Opinion for International (PCT) Patent Application No. PCT/US11/52278, dated Jan. 18, 2012 5 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US11/52278, dated Apr. 4, 2013 7 pages. |
Official Action for Australian Patent Application No. 2011305680, dated Jan. 31, 2014, 2 pages. |
Notice of Acceptance for Australian Patent Application No. 2011305680, dated Aug. 27, 2014, 2 pages. |
Official Action for Canadian Patent Application No. 2,811,018, dated Feb. 6 2014, 2 pages. |
Official Action for Canadian Patent Application No. 2,811,018, dated Dec. 8, 2014, 3 pages. |
Notice of Allowance for Canadian Patent Application No. 2,811,018, dated Sep. 17, 2015, 1 page. |
Official Action for European Patent Application No. 11827323.4, dated Jul. 21, 2014, 3 pages. |
Extended European Search Report for European Patent Application No. 11827323.4, dated Oct. 17, 2014, 9 pages. |
Official Action for European Patent Application No. 11827323.4, dated Jun. 16, 2016, 6 pages. |
Official Action for European Patent Application No. 11827323.4, dated Aug. 14, 2017, 5 pages. |
Official Action (with English translation) for Israeli Patent Application No. 224873, dated Mar. 15, 2016, 3 pages. |
Official Action (English translation) for Japanese Patent Application No. 2013-529407, dated Aug. 4, 2015, 3 pages. |
Official Action (with English translation) for Japanese Patent Application No. 2013-529407, dated Apr. 5, 2016, 7 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2013/023992 dated Apr. 26, 2013, 8 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2013/023992 dated Aug. 14, 2014, 6 pages. |
Notice of Allowance for Japanese Patent Application No. 2013-25835, dated Mar. 28, 2014, 2 pages (includes English translation). |
Official Action for Canadian Patent Application No. 153952, dated Apr. 15, 2014, 1 page. |
Notice of Allowance (with English translation) for Chinese Patent Application No. 201530104963.1, dated Sep. 6, 2015, 5 pages. |
Notice of Allowance (with English translation) for Chinese Patent Application No. 201530389193.X, dated Dec. 8, 2015, 4 pages. |
Extended European Search Report for European Patent Application No. 18153790.3, dated Jun. 14, 2018, 11 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US2009/033488, dated Mar. 25, 2009, 2 pages. |
Written Opinion for International (PCT) Patent Application No. PCT/US2009/033488, dated Mar. 25, 2009, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/887,598, dated Dec. 19, 2016 10 pages. |
Number | Date | Country | |
---|---|---|---|
20190224024 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
61243664 | Sep 2009 | US | |
62696093 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14887598 | Oct 2015 | US |
Child | 15486511 | US | |
Parent | 13947255 | Jul 2013 | US |
Child | 14088148 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16198754 | Nov 2018 | US |
Child | 16373410 | US | |
Parent | 15486511 | Apr 2017 | US |
Child | 16198754 | US | |
Parent | 14263963 | Apr 2014 | US |
Child | 14887598 | US | |
Parent | 14088148 | Nov 2013 | US |
Child | 14263963 | US | |
Parent | 13714971 | Dec 2012 | US |
Child | 13947255 | US | |
Parent | 13367295 | Feb 2012 | US |
Child | 13714971 | US | |
Parent | 12886452 | Sep 2010 | US |
Child | 13367295 | US |