The present invention generally relates to bone grafts, and methods of making and using the same. More specifically, the present invention relates to osteogenic bone grafts that include osteogenic stem cells in a mix of osteoinductive demineralized bone and osteoconductive cortico-cancellous chips. Further included are kits and implants having the present bone grafts; and methods of making and using the present bone grafts.
Bone generally has the ability to regenerate completely, e.g., after a fracture but requires a very small fracture space or some sort of scaffold to do so. Bone grafting is a surgical procedure that replaces missing bone to repair bone fractures that are very complex, fail to heal properly, or pose a significant health risk to the patient.
Bone grafts may be autologous (bone harvested from the patient's own body, often from the iliac crest), allograft (cadaveric bone usually obtained from a bone bank), or synthetic (often made of hydroxyapatite or other naturally occurring and biocompatible substances) with similar mechanical properties to bone. Most bone grafts are expected to be reabsorbed and replaced as the natural bone heals over a few months' time.
Bone grafts are osteogenic if they contain viable cells that are capable of bone regeneration. The current gold standard in bone graft substitutes for spine and long bone applications is autograft (i.e., using the patient's own tissue), followed by allografts. Autografts are considered osteogenic, as they contain a high number of bone forming cells. However, autographs may have limited availability and they are limited by donor site morbidity. Also, autografts may require multiple surgeries. Allografts are limited by the large variability in performance due to source and processing steps.
There is a need to produce superior bone grafts that are osteogenic and/or are able to enhance bone regeneration throughout the bone healing phase.
According to non-limiting example embodiments, the present invention provides bone grafts that include osteogenic stem cells in a mix of osteoinductive demineralized bone and osteoconductive cortico-cancellous chips, to promote bone healing.
Other example embodiments are directed to methods for preparing the bone grafts provided herein. Further example embodiments are directed to methods that include administering a bone graft substitute to a mammal by surgically inserting one or more of the present bone grafts into a mammal. The bone grafts may be administered for example by themselves e.g., in the form of a strip, putty, gel and sponge, or the bone graft may be available in conjunction with an implant, such as being incorporated therein or thereon.
Yet further example embodiments are directed to implants or other devices that include one more of the bone grafts provided herein therein or thereon. Other example embodiments are directed to kits that include one or more of the present bone grafts and/or components or ingredients that may be combined mixed or treated to prepare the present bone grafts, as well as instructions, devices, implants, tools or other components that may assist with making or using the present bone grafts.
Non-limiting example embodiments are described herein, with reference to the following accompanying Figures:
The present invention is drawn to bone grafts and methods for making and using such bone grafts, as well as kits and implants or other devices including the same.
While the example embodiments are described to be used in conjunction with healing bone fractures, it should be understood that these bone grafts may be used for other purposes and therefore the present invention is not limited to such applications. In view of the teachings provided herein, one having ordinary skill in the art would recognize other applications for which the bone grafts of the present invention could be used, and would be able to use the bone grafts and methods of the present invention in other applications. Accordingly, these alternative uses are intended to be part of the present invention.
Additional aspects, advantages and/or other features of example embodiments of the invention will become apparent in view of the following detailed description, taken in conjunction with the accompanying drawings. It should be apparent to those skilled in the art that the described embodiments provided herein are merely exemplary and illustrative and not limiting. Numerous embodiments of modifications thereof are contemplated as falling within the scope of this disclosure and equivalents thereto.
In describing example embodiments, specific terminology is employed for the sake of clarity. However, the embodiments are not intended to be limited to this specific terminology. Unless otherwise noted, technical terms are used according to conventional usage.
As used herein, “a” or “an” may mean one or more. As used herein “another” may mean at least a second or more. Furthermore, unless otherwise required by context, singular terms include pluralities and plural terms include the singular.
As used herein, the term “mammal” is intended to include any “subject” or “patient” animal, (including, but not limited to humans) to whom the present bone grafts may be administered. A subject or patient or mammal may or may not be under current medical care, and may or may not have had one or more prior treatments. As would be apparent to those skilled in the art, the formulations may be different for non-humans than for humans.
As used herein, “an effective amount” refers to an amount of the specified constituent in a composition or formulation, or an amount of the overall formulation that is effective in attaining results, the purpose for which the constituent or composition is provided. Therefore, an effective amount of a bone graft formulation would be an amount suitable for achieving the desired bone graft effect in a subject, such as a mammal (e.g., human) to which the present bone graft is administered.
Numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
According to non-limiting example embodiments, the present invention provides bone grafts that include osteogenic stem cells in a mix of osteoinductive demineralized bone and osteoconductive cortico-cancellous chips, for example to promote bone healing in a mammal. Example embodiments provide a bone graft material that is osteogenic (in which living bone cells in the graft material contribute to bone remodeling), osteoinductive (which encourages undifferentiated cells to become active osteoblasts), and osteoconductive (which guides the reparative growth of the natural bone). Thus, example embodiments herein include bone grafts that include (1) osteogenic stem cells and (2) a mix of osteoinductive demineralized bone matrix and osteoconductive cortico-cancellous chips.
Non-limiting example embodiments also include methods of making the present bone grafts, which include (1) obtaining and/or preparing cortical chips by separating cortical bone from bone marrow, and rinsing and milling the cortical bone to chips with high length to width ratio; demineralizing the cortical chips e.g., in 0.5-0.7 N HCl for 15 min to 3 hours; removing the HCl or other treatment; and rinsing with water until the pH of the water the chips are in is between 6.5 and 7; and (2) obtaining cancellous bone chips from fresh frozen condyles which may be rinsed e.g., with saline; and further treating by one of the following methods:
Non-limiting example methods according to the present invention are depicted for example, in the flow chart of
The right side of the flow chart of
After the cortical chips and cancellous chips are obtained, the demineralized cortical chips and cell enriched cancellous chips are mixed at a ratio of about 1:1 to 2:1. This last step is not depicted in
According to example embodiments, the cortical bone chips may be milled to have a relatively high length to width ratio, for example having a size of e.g., 250 microns-3 mm]. According to example embodiments, the cortical bone chips may be freeze-dried and stored at room temperature.
The cancellous chips in these embodiments may be frozen and stored at a temperature between −80° C. and −180° C., inclusive of the end temperatures and ranges therebetween.
Methods of Use
Also provided herein are methods that include inserting any of the present bone grafts into a mammal in need of the bone graft. By way of example, the present bone grafts may be inserted into or administered to a mammal by surgically inserting one or more of the present bone grafts into a mammal, such as a mammal in need thereof. The bone grafts may be inserted or administered for example by themselves e.g., in the form of a strip, putty, gel and/or sponge, or the bone graft may be available in conjunction with an implant, such as being incorporated therein or thereon (e.g., as a coating). The bone grafts may be inserted in an effective amount, as can be determined by a physician taking into account the need for the bone graft, the type of bone graft, and the patient.
As previously indicated, the subject/patient may be a mammal (as well as other animals), and the mammal may be (but does not have to be) human.
Embodiments of the present invention may include moldable and shapeable putty compositions that may be used for example to fill bone defects. Thus, according to example embodiments the present bone grafts may be for example in the form of a putty or other semi-solid or solid form, including, but not limited to, strip, putty, gel or sponge.
Implants
Yet further example embodiments are directed to implants or other devices or products that include one more of the bone grafts provided herein, incorporated into, or on the implant, or otherwise used with the product or implant. For example, the present bone graft substitutes may be used as a graft within or inside an implant. By way of non-limiting example, bone grafts may be used in conjunction with interbody spacers for treatment of compression fractures.
Surgical implants and compositions should be biocompatible to successfully perform their intended function. Biocompatibility may be defined as the characteristic of an implant or composition acting in such a way as to allow its therapeutic function to be manifested without secondary adverse effects such as toxicity, foreign body reaction or cellular disruption. To help avoid adverse reaction, example bone grafts may be prepared in sterile environments and formulations for implantation into a mammal.
Kits
Yet further embodiments are directed to kits that include one or more of the present bone grafts or one or more components or ingredients thereof.
Example kits may include for example, any of the present bone grafts, along with instructions and/or at least one additional component (such as devices, implants, tools) that may be used for example in the storage, preparation or use of the bone graft substitutes. By way of example, the kit components may be used to assist in adding the bone graft to a device or implant, or to assist in inserting the bone graft into a mammal. Further non-limiting examples may include one or more of the present bone grafts and instructions for the preparation of the bone graft, instructions for the use of the bone graft, a tool for insertion of the bone graft into a mammal, a tool or vehicle for hydration of a dry form of the bone graft, and/or an implant to be inserted into the mammal with the bone graft. For example, the bone graft may be provided in a syringe for reconstitution and/or administration to a mammal/patient. According to example embodiments, products may be provided in a syringe with an attachment to deliver product in a minimally invasive manner. Other possible ingredients in kits may include disposal implements or treatment literature.
Yet further non-limiting examples may include one or more ingredients of the present bone grafts, which may be combined, mixed or treated to prepare the present bone grafts. By way of example, the present kits may include cortical and/or cancellous chips in any of the stages provided herein and/or other ingredients of the present bone grafts, which may be combined, mixed or treated in order to form the present bone grafts. Further provided may be instructions for preparation of one or more of the present bone grafts and/or one or more tools, devices, implants, and/or other components to assist in making or using the present bone grafts.
The following example is provided to further illustrate various non-limiting embodiments and techniques. It should be understood, however, that these examples are meant to be illustrative and do not limit the scope of the claims. As would be apparent to skilled artisans, many variations and modifications are intended to be encompassed within the spirit and scope of the invention.
This example demonstrates how to make example bone grafts that include osteogenic stem cells in a mix of osteoinductive demineralized bone and osteoconductive cortico-cancellous chips, in accordance with non-limiting example embodiments of the present invention.
The cortical and cancellous bones from long bones may be separated. The cortical bone is separated from the bone marrow, rinsed in phosphate buffered saline (PBS) solution and milled to chips (e.g., 250 microns-3 mm size with a relatively high length to width ratio). The cortical chips may then be treated with 0.5-0.7 N HCl, for 15 minutes-3 hours. At the end of the treatment, the HCl may be decanted and the chips may be rinsed in deionized (DI) water until the pH is between 6.5 and 7. The chips may then be freeze-dried and stored at room temperature.
The cancellous bone chips from fresh frozen condyles may be rinsed with 0.9% saline 2-3 times. After the rinse, the chips may be treated in one of the following ways:
In all of the above cases, the concentration of osteogenic cells may be more than 20,000 cells/cc of final product. The final bone graft product will include demineralized cortical chips and cell-enriched cancellous chips that may be mixed at a ratio of about 1:1 to 2:1, inclusive of all points and ranges therebetween, including the end ratios.
The present invention provides a bone graft material that is osteogenic, osteoinductive and osteoconductive.
This example exhibits another embodiment as to how to make example bone grafts that include osteogenic stem cells in a mix of osteoinductive demineralized bone and osteoconductive cortico-cancellous chips, in accordance with non-limiting example embodiments of the present invention.
The cortical and cancellous bones from long bones (such as femur, tibia, radius and ulna) may be separated. The cortical bone is separated from the bone marrow, rinsed in phosphate buffered saline (PBS) solution and processed to produce chips (e.g., 250 microns-3 mm size) with a relatively high length to width ratio. The cortical chips/fibers may then be treated with 0.5-0.7 N HCl, for 15-40 minutes. At the end of the treatment, the HCl may be decanted and the chips may be rinsed in deionized (DI) water until the pH is between 6.5 and 7. The chips may then be freeze-dried and stored at room temperature.
Condyles may be milled using a bone mill to produce cancellous chips in the range of 0.05-1.5 mm. The cancellous bone chips from fresh frozen condyles are separated, for example by being rinsed with 0.9% saline 2-3 times or more. After the rinse, the chips may be treated with 0.3-0.5% saline. The cancellous chips and the cortical fibers may be mixed in the ratio of 1:1 and mixed with freezing media (Minimum essential medium) and 10% Dimethyl sulfoxide.
This final product may be stored at temperatures between −80° C. and −180° C.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. Accordingly, it is intended that such changes and modifications fall within the scope of the present invention as defined by the claims appended hereto. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4437191 | van der Zel et al. | Mar 1984 | A |
5681872 | Erbe | Oct 1997 | A |
5700289 | Breitbart et al. | Dec 1997 | A |
5776193 | Kwan et al. | Jul 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5914356 | Erbe | Jun 1999 | A |
5939039 | Sapieszko et al. | Aug 1999 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6264701 | Brekke | Jul 2001 | B1 |
6294041 | Boyce et al. | Sep 2001 | B1 |
6309659 | Clokie | Oct 2001 | B1 |
6350283 | Michelson | Feb 2002 | B1 |
6372257 | Marchosky | Apr 2002 | B1 |
6432436 | Gertzman et al. | Aug 2002 | B1 |
6437018 | Gertzman et al. | Aug 2002 | B1 |
6666890 | Michelson | Dec 2003 | B2 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6706067 | Shimp et al. | Mar 2004 | B2 |
6723131 | Muschler | Apr 2004 | B2 |
6749636 | Michelson | Jun 2004 | B2 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6776800 | Boyer, II et al. | Aug 2004 | B2 |
6808585 | Boyce et al. | Oct 2004 | B2 |
6843807 | Boyce et al. | Jan 2005 | B1 |
6919308 | Oppermann et al. | Jul 2005 | B2 |
6949251 | Dalal et al. | Sep 2005 | B2 |
7022137 | Michelson | Apr 2006 | B2 |
7041641 | Rueger et al. | May 2006 | B2 |
7132110 | Kay et al. | Nov 2006 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7175858 | Constantz et al. | Feb 2007 | B2 |
7235107 | Evans et al. | Jun 2007 | B2 |
7262003 | Kumar et al. | Aug 2007 | B2 |
7275933 | Jia et al. | Oct 2007 | B2 |
7291345 | Winterbottom et al. | Nov 2007 | B2 |
7332452 | Ogawa et al. | Feb 2008 | B2 |
7390498 | Dalal et al. | Jun 2008 | B2 |
7393405 | Bohner | Jul 2008 | B2 |
7473678 | Lynch | Jan 2009 | B2 |
7494950 | Armitage et al. | Feb 2009 | B2 |
7498041 | Masinaei et al. | Mar 2009 | B2 |
7517489 | Akash | Apr 2009 | B2 |
7582309 | Rosenberg et al. | Sep 2009 | B2 |
7611536 | Michelson | Nov 2009 | B2 |
7723395 | Ringeisen et al. | May 2010 | B2 |
7744597 | Gaskins et al. | Jun 2010 | B2 |
7776100 | Brekke et al. | Aug 2010 | B2 |
7785634 | Borden | Aug 2010 | B2 |
7811608 | Kay et al. | Oct 2010 | B2 |
7824702 | Wironen et al. | Nov 2010 | B2 |
7833278 | Evans et al. | Nov 2010 | B2 |
7887598 | Evans et al. | Feb 2011 | B2 |
7892291 | Evans et al. | Feb 2011 | B2 |
7910690 | Ringeisen et al. | Mar 2011 | B2 |
7931692 | Sybert et al. | Apr 2011 | B2 |
7939108 | Morris et al. | May 2011 | B2 |
7942961 | Asgarg | May 2011 | B2 |
7947759 | Lin et al. | May 2011 | B2 |
7959941 | Knaack et al. | Jun 2011 | B2 |
7977094 | Masinaei et al. | Jul 2011 | B2 |
8002813 | Scarborough et al. | Aug 2011 | B2 |
8067078 | Espinosa et al. | Nov 2011 | B1 |
8093313 | Miller | Jan 2012 | B2 |
8105383 | Michelson | Jan 2012 | B2 |
8137403 | Michelson | Mar 2012 | B2 |
8147860 | Rosenberg et al. | Apr 2012 | B2 |
8147862 | McKay | Apr 2012 | B2 |
8163032 | Evans et al. | Apr 2012 | B2 |
8188229 | Ringeisen et al. | May 2012 | B2 |
8197474 | Scarborough et al. | Jun 2012 | B2 |
8202539 | Behnam et al. | Jun 2012 | B2 |
8221781 | Rosenberg et al. | Jul 2012 | B2 |
8232327 | Garigapati et al. | Jul 2012 | B2 |
8268008 | Betz et al. | Sep 2012 | B2 |
8287915 | Clineff et al. | Oct 2012 | B2 |
8303967 | Clineff et al. | Nov 2012 | B2 |
8303971 | Cieslik et al. | Nov 2012 | B2 |
8309106 | Masinaei et al. | Nov 2012 | B2 |
8323700 | Morris et al. | Dec 2012 | B2 |
8328876 | Behnam et al. | Dec 2012 | B2 |
8333985 | Knaack et al. | Dec 2012 | B2 |
8357384 | Behnam et al. | Jan 2013 | B2 |
8394141 | Mills et al. | Mar 2013 | B2 |
8399409 | Lynch et al. | Mar 2013 | B2 |
8419802 | Evans et al. | Apr 2013 | B2 |
8425619 | Evans et al. | Apr 2013 | B2 |
8435306 | Evans et al. | May 2013 | B2 |
8435343 | Yahav et al. | May 2013 | B2 |
8435566 | Behnam et al. | May 2013 | B2 |
8454988 | Rosenberg et al. | Jun 2013 | B2 |
8460686 | Clineff et al. | Jun 2013 | B2 |
8475824 | McKay | Jul 2013 | B2 |
8506981 | Borden | Aug 2013 | B1 |
8506985 | Garcia De Castro Andrews et al. | Aug 2013 | B2 |
8524265 | McKay | Sep 2013 | B2 |
8529962 | Morris et al. | Sep 2013 | B2 |
8545858 | Rosenberg et al. | Oct 2013 | B2 |
8545864 | Morris et al. | Oct 2013 | B2 |
8551519 | Bezwada | Oct 2013 | B2 |
8551525 | Cook et al. | Oct 2013 | B2 |
8562648 | Kaes et al. | Oct 2013 | B2 |
8580865 | Peters et al. | Nov 2013 | B2 |
8597675 | Murphy et al. | Dec 2013 | B2 |
8613938 | Akella et al. | Dec 2013 | B2 |
8623094 | Evans et al. | Jan 2014 | B2 |
8641774 | Rahaman et al. | Feb 2014 | B2 |
8642061 | Shimp et al. | Feb 2014 | B2 |
8652503 | Wironen et al. | Feb 2014 | B2 |
8663326 | Osman | Mar 2014 | B2 |
8663672 | Manrique et al. | Mar 2014 | B2 |
8663677 | Fu et al. | Mar 2014 | B2 |
8685429 | Koblish et al. | Apr 2014 | B2 |
8734525 | Behnam et al. | May 2014 | B2 |
8740987 | Geremakis et al. | Jun 2014 | B2 |
8747899 | Chaput et al. | Jun 2014 | B2 |
8753391 | Lu et al. | Jun 2014 | B2 |
8753689 | Morris et al. | Jun 2014 | B2 |
8758792 | Behnam et al. | Jun 2014 | B2 |
8778378 | Clineff et al. | Jul 2014 | B2 |
8795382 | Lin et al. | Aug 2014 | B2 |
8802626 | Rueger et al. | Aug 2014 | B2 |
8834928 | Truncale et al. | Sep 2014 | B1 |
8864843 | Lu et al. | Oct 2014 | B2 |
8871235 | Borden | Oct 2014 | B2 |
8876532 | Atkinson et al. | Nov 2014 | B2 |
8877221 | McKay | Nov 2014 | B2 |
8883210 | Truncale et al. | Nov 2014 | B1 |
8926710 | McKay | Jan 2015 | B2 |
8992964 | Shelby et al. | Mar 2015 | B2 |
8992965 | Behnam | Mar 2015 | B2 |
20010038848 | Donda et al. | Nov 2001 | A1 |
20020076429 | Wironen et al. | Jun 2002 | A1 |
20020098222 | Wironen et al. | Jul 2002 | A1 |
20020193883 | Wironen | Dec 2002 | A1 |
20020197242 | Gertzman et al. | Dec 2002 | A1 |
20030009235 | Manrique et al. | Jan 2003 | A1 |
20030055512 | Genin et al. | Mar 2003 | A1 |
20030149437 | Livne et al. | Aug 2003 | A1 |
20040091462 | Lin et al. | May 2004 | A1 |
20050118230 | Hill et al. | Jun 2005 | A1 |
20050251267 | Winterbottom et al. | Nov 2005 | A1 |
20050281856 | McGlohorn et al. | Dec 2005 | A1 |
20060018942 | Rowe et al. | Jan 2006 | A1 |
20060036331 | Lu et al. | Feb 2006 | A1 |
20060147545 | Scarborough et al. | Jul 2006 | A1 |
20070083270 | Masinaei et al. | Apr 2007 | A1 |
20070098756 | Behnam | May 2007 | A1 |
20070105222 | Wolfinbarger et al. | May 2007 | A1 |
20070110820 | Behnam | May 2007 | A1 |
20070113951 | Huang | May 2007 | A1 |
20080033572 | D'Antonio et al. | Feb 2008 | A1 |
20080069852 | Shimp et al. | Mar 2008 | A1 |
20080091270 | Miller et al. | Apr 2008 | A1 |
20080187571 | Clineff et al. | Aug 2008 | A1 |
20080262633 | Williams et al. | Oct 2008 | A1 |
20090012625 | Ying et al. | Jan 2009 | A1 |
20090074753 | Lynch | Mar 2009 | A1 |
20090157087 | Wei et al. | Jun 2009 | A1 |
20090192474 | Wei et al. | Jul 2009 | A1 |
20090238853 | Liu | Sep 2009 | A1 |
20090312842 | Bursac et al. | Dec 2009 | A1 |
20090317447 | Hsiao et al. | Dec 2009 | A1 |
20100055078 | Hughes-Fulford | Mar 2010 | A1 |
20100098673 | D'Antonio et al. | Apr 2010 | A1 |
20100119577 | Min | May 2010 | A1 |
20100145469 | Barralet et al. | Jun 2010 | A1 |
20100196333 | Gaskins et al. | Aug 2010 | A1 |
20100203155 | Wei et al. | Aug 2010 | A1 |
20100234966 | Lo | Sep 2010 | A1 |
20110045044 | Masinaei et al. | Feb 2011 | A1 |
20110066242 | Lu et al. | Mar 2011 | A1 |
20110070312 | Wei et al. | Mar 2011 | A1 |
20110117018 | Hart et al. | May 2011 | A1 |
20110117165 | Melican et al. | May 2011 | A1 |
20110117166 | Melican | May 2011 | A1 |
20110117171 | Melican et al. | May 2011 | A1 |
20110144764 | Bagga et al. | Jun 2011 | A1 |
20110224675 | Tofighi et al. | Sep 2011 | A1 |
20110262554 | Masinaei et al. | Oct 2011 | A1 |
20110280924 | Lin et al. | Nov 2011 | A1 |
20120053692 | Voor et al. | Mar 2012 | A1 |
20120064290 | Esat et al. | Mar 2012 | A1 |
20120093895 | Song et al. | Apr 2012 | A1 |
20120164187 | Ollila et al. | Jun 2012 | A1 |
20120237568 | Murphy et al. | Sep 2012 | A1 |
20130013071 | Betz et al. | Jan 2013 | A1 |
20130059382 | Tsai et al. | Mar 2013 | A1 |
20130122057 | Garigapati et al. | May 2013 | A1 |
20130144376 | Dave et al. | Jun 2013 | A1 |
20130145963 | Cai et al. | Jun 2013 | A1 |
20130150227 | Wang et al. | Jun 2013 | A1 |
20130189338 | Drapeau et al. | Jul 2013 | A1 |
20130195805 | Wei et al. | Aug 2013 | A1 |
20130202670 | Darmoc et al. | Aug 2013 | A1 |
20130236513 | Guelcher et al. | Sep 2013 | A1 |
20130244942 | Benedict et al. | Sep 2013 | A1 |
20130274890 | McKay | Oct 2013 | A1 |
20130282138 | McKay | Oct 2013 | A1 |
20130297038 | McKay | Nov 2013 | A1 |
20140010890 | Borden | Jan 2014 | A1 |
20140031950 | Cook et al. | Jan 2014 | A1 |
20140079753 | Darby et al. | Mar 2014 | A1 |
20140170202 | Peters et al. | Jun 2014 | A1 |
20140195005 | McKay | Jul 2014 | A1 |
20140205674 | Wei | Jul 2014 | A1 |
20140212471 | Drapeau et al. | Jul 2014 | A1 |
20140222159 | Bursac et al. | Aug 2014 | A1 |
20140271779 | Bagga et al. | Sep 2014 | A1 |
20140271786 | Bagga et al. | Sep 2014 | A1 |
20140271914 | Wagner | Sep 2014 | A1 |
20140294913 | Hasirci et al. | Oct 2014 | A1 |
20140314822 | Carter et al. | Oct 2014 | A1 |
20150010607 | Francis et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1341610 | Apr 1989 | CA |
2027259 | Dec 2000 | CA |
2005084701 | Sep 2005 | WO |
2008019024 | Feb 2008 | WO |
2010139792 | Dec 2010 | WO |
2014128289 | Aug 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20150224227 A1 | Aug 2015 | US |