Bone grafts and methods of making and using bone grafts

Information

  • Patent Grant
  • 9463264
  • Patent Number
    9,463,264
  • Date Filed
    Tuesday, February 11, 2014
    10 years ago
  • Date Issued
    Tuesday, October 11, 2016
    8 years ago
Abstract
Provided herein are bone grafts and methods of making and using the same, as well as products and kits that include such bone grafts. In particular, bone grafts are provided that include collagen Type I and one or more different types of mineral compositions having different dissolution properties and/or sizes, to enhance bone regeneration throughout the bone healing phase.
Description
FIELD OF THE INVENTION

The present invention generally relates to bone grafts, and methods of making and using the same. The invention also relates to bone grafts that include collagen Type I and one or more different types of minerals having different dissolution properties, and/or one or more sizes. Further included are kits and implants having the present bone grafts; and methods of making and using the present bone grafts.


BACKGROUND

Bone generally has the ability to regenerate completely, e.g., after a fracture but requires a very small fracture space or some sort of scaffold to do so. Bone grafting is a surgical procedure that replaces missing bone to repair bone fractures that are very complex, fail to heal properly, or pose a significant health risk to the patient.


Bone grafts may be autologous (bone harvested from the patient's own body, often from the iliac crest), allograft (cadaveric bone usually obtained from a bone bank), or synthetic (often made of hydroxyapatite or other naturally occurring and biocompatible substances) with similar mechanical properties to bone. Most bone grafts are expected to be reabsorbed and replaced as the natural bone heals over a few months' time.


Bone grafts are osteogenic if they contain viable cells that are capable of bone regeneration. The current gold standard in bone graft substitutes for spine and long bone applications is autograft (i.e., using the patient's own tissue), followed by allografts. Autografts are considered osteogenic, as they contain a high number of bone forming cells. However, autographs may have limited availability and they are limited by donor site morbidity. Also, autografts may require multiple surgeries. Allografts are limited by the large variability in performance due to source and processing steps.


There is a need to produce superior bone grafts that are osteogenic and/or are able to enhance bone regeneration throughout the bone healing phase.


SUMMARY

According to non-limiting example embodiments, the present invention provides bone grafts that include collagen and one or more minerals having different dissolution properties or rates and/or sizes, to enhance bone regeneration throughout the bone healing phase. These minerals can be, for example, in the form of a calcium phosphate, carbonate apatite, and/or calcium carbonate.


Other example embodiments are directed to methods for preparing the bone grafts provided herein. Further example embodiments are directed to methods that include administering a bone graft substitute to a mammal by surgically inserting one or more of the present bone grafts into a mammal. The bone grafts may be administered for example by themselves e.g., in the form of a strip, putty, gel and sponge, or the bone graft may be available in conjunction with an implant, such as being incorporated therein or thereon.


Yet further example embodiments are directed to implants or other devices that include one more of the bone grafts provided herein therein or thereon. Other example embodiments are directed to kits that include one or more of the present bone grafts and/or components or ingredients that may be combined mixed or treated to prepare the present bone grafts, as well as instructions, devices, implants, tools or other components that may assist with making or using the present bone grafts.





BRIEF DESCRIPTION OF DRAWINGS

Non-limiting example embodiments are described herein, with reference to the following accompanying FIGURE:



FIG. 1 is a flow chart of an example method of preparing a bone graft according to non-limiting examples of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is drawn to bone grafts and methods for making and using such bone grafts, as well as kits and implants or other devices including the same.


While the example embodiments are described to be used in conjunction with healing bone fractures, it should be understood that these bone grafts may be used for other purposes and therefore the present invention is not limited to such applications. In view of the teachings provided herein, one having ordinary skill in the art would recognize other applications for which the bone grafts of the present invention could be used, and would be able to use the bone grafts and methods of the present invention in other applications. Accordingly, these alternative uses are intended to be part of the present invention.


Additional aspects, advantages and/or other features of example embodiments of the invention will become apparent in view of the following detailed description, taken in conjunction with the accompanying drawings. It should be apparent to those skilled in the art that the described embodiments provided herein are merely exemplary and illustrative and not limiting. Numerous embodiments of modifications thereof are contemplated as falling within the scope of this disclosure and equivalents thereto.


In describing example embodiments, specific terminology is employed for the sake of clarity. However, the embodiments are not intended to be limited to this specific terminology. Unless otherwise noted, technical terms are used according to conventional usage.


As used herein, “a” or “an” may mean one or more. As used herein “another” may mean at least a second or more. Furthermore, unless otherwise required by context, singular terms include pluralities and plural terms include the singular.


As used herein, the term “mammal” is intended to include any “subject” or “patient” animal, (including, but not limited to humans) to whom the present bone grafts may be administered. A subject or patient or mammal may or may not be under current medical care, and may or may not have had one or more prior treatments. As would be apparent to those skilled in the art, the formulations may be different for non-humans than for humans.


As used herein, “an effective amount” refers to an amount of the specified constituent in a composition or formulation, or an amount of the overall formulation that is effective in attaining results, the purpose for which the constituent or composition is provided. Therefore, an effective amount of a bone graft formulation would be an amount suitable for achieving the desired bone graft effect in a subject, such as a mammal (e.g., human) to which the present bone graft is administered.


Numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.


According to non-limiting example embodiments, bone grafts may be prepared that include collagen and one or more minerals, including but not limited to calcium phosphates, carbonate apatite, and/or calcium carbonate having both “fast” and “slow” dissolution rates. The “fast” or “faster” dissolution rates help bone healing in the early phases (from e.g., weeks up to a couple of months after the bone graft has been implanted into a patient), while the minerals having slower dissolution rates can be present for e.g., up to two years in the patient after implantation. The terms fast and slow are relative terms, but are meant to be relative with respect to each other, and the relative rates would be apparent to those skilled in the art in the context of the present disclosure in the bone grafting context. That is, a skilled practitioner would be able to determine which minerals may have faster or slower dissolution rates that may be appropriate in the bone grafting context for dissolution at a desired rate.


Therefore, a goal of the present invention is to produce a bone graft that circumvents limitations of prior bone grafts by: (1) regenerating bone without the need to harvest bone from the patient; (2) having a bone regenerating material with lower variability in osteogenic properties relative to allograft; and (3) including mineral (e.g., calcium phosphate, carbonate apatite, and/or calcium carbonate), with or without the optional ingredients of demineralized bone matrix (DBM), and with or without hyaluronic acid. The incorporation of more than one mineral will provide a range of dissolution rates, which will allow for the bone graft to enhance bone healing in both early and late phases of bone healing.


These embodiments of the present bone grafts will thus, be an alternative to the use of autografts and allografts. These embodiments will also be an alternative to currently available collagen-based bone grafts because they will have minerals incorporated, which will have one or more dissolution rates to enhance bone healing in both early and late stages.


Minerals differing in dissolution rate and/or size can be used in the present bone grafts. The possible combinations of minerals in these embodiments will interact with new bone formation throughout the bone healing process. For instance, if two or more minerals are chosen, then one mineral will be active in the early bone healing, and the second mineral will be active in the later stage of bone healing. According to alternative embodiments, a third or more mineral having yet a different dissolution rate and/or size can be incorporated.


An additional benefit of the present bone grafts in relation to the different sizes and/or dissolution rates of the minerals, is that the mineral with the “slow” dissolution rate may also have a porous structure. This porous structure will help in the entrapment of growth factors and/or osteoprogenitor cells, which literature has suggested as being the mechanism for osteoinduction in calcium phosphate-based materials.


Thus, according to non-limiting example embodiments, the present invention provides bone grafts that include collagen type I and at least one, two, or more different types of minerals, such as calcium phosphates, carbonate apatites, and/or calcium carbonates, having different dissolution properties/rates and/or different sizes than one another, to enhance bone regeneration throughout the bone healing phase.


According to non-limiting example embodiments, bone grafts are provided which include: 20% to 95% by weight (with respect to the final product) of Collagen Type I and 20% to 95% by weight (with respect to the final product) of minerals having different dissolution properties and/or sizes than one another. According to example embodiments, the minerals may include one or more minerals selected from calcium phosphates, carbonate apatites, and/or calcium carbonates,


According to example embodiments, the collagen Type I may be from bovine or porcine source and may be obtained from either skin (dermal) or tendon.


Bone grafts according to these embodiments may further include at least one further ingredient selected from: 0.2 to 20% by weight hyaluronic acid with respect to the total weight of the bone graft, acid (such as hydrochloric acid) or base (such as sodium hydroxide) in an amount necessary to adjust the pH, which amount may be for example 0.1 to 20% by weight with respect to the total weight of the bone graft, and 20% to 95% by weight DBM.


Further provided herein are methods of making the present bone grafts that include mixing 20% to 95% by weight Collagen Type I with one or more minerals having at least two different dissolution rates or sizes; refrigerating the mixture for 30 minutes to 5 hours; neutralizing the mixture until the pH is between 6.5 and 8.5; refrigerating the mixture for 1 hour to 24 hours; blast chilling the mixture in a freezer at e.g., −40° C., or at least a temperature of less than −20° C., for 1 hour up to 24 hours; freeze drying the mixture for 24 to 72 hours to form a mixture; physically or chemically cross-linking the mixture; and freeze drying the mixture. The method may further include stamping or cutting out the mixture to desired dimensions.


According to non-limiting example embodiments, provided herein are methods of making the present bone grafts that include mixing 20% to 95% by weight Collagen Type I with 0.2 to 20% by weight hyaluronic acid until a desired consistency is reached and obtaining a desired pH of the mixture; refrigerating the mixture for 20 to 72 hours; further mixing to form a homogenous collagen mixture; weighing out at least one of mineral and demineralized bone matrix (an optional extra ingredient); mixing the mineral and optionally DBM with the collagen mixture; refrigerating the mixture for 30 minutes to 5 hours; neutralizing the mixture (e.g., with HCl or NaOH) until the pH is between 6.5 and 8.5; pouring the mixture into a tray; refrigerating the mixture for 1 hour to 24 hours; blast chilling the mixture in a freezer at a temperature of less than or equal to −20° C. for 1 hour up to 24 hours; freeze drying the mixture for 24 to 72 hours to form a mixture; physically or chemically cross-linking the mixture; freeze drying the mixture; and stamping or cutting out the mixture to desired dimensions.


The mineral of these embodiments may include for example, one or more of the following: beta-tricalcium phosphate (size ranging from 75 nm to 500 μm), carbonate apatite (size ranging from 75 nm to 500 μm), and calcium carbonate (size ranging from 75 nm to 500 μm). Thus, example embodiments include collagen Type I and one or more different types of minerals, and/or one or more sizes.


According to example embodiments, the total weight percent of mineral in the bone graft is from 20% to 95% by weight with respect to the total weight of the bone graft.


According to non-limiting example embodiments, the total weight percent of DBM in the bone graft may be from 20% to 95% by weight with respect to the total weight of the bone graft.


Non-limiting example methods according to the present invention are depicted for example, in the flow chart of FIG. 1. As shown in FIG. 1, in example embodiments, collagen is first mixed with HCl. As indicated above, these ingredients may be mixed until a desired consistency is reached. Although not specifically set forth in the flow chart of FIG. 1, a desired pH of the mixture may then be reached. The mixture may then be refrigerated and allowed to swell for up to 20 hours. According to these embodiments, an optional ingredient of DBM is added and the mixture is mixed/homogenized e.g., by mixing in a shear mixer at a speed of 1000 rpm for about 5 minutes. The mineral component is then added to the mixture and again mixed. The mixing may be again be achieved, e.g., by mixing in a shear mixer, e.g., at 500 rpm for 2 minutes. The mixture in these embodiments may then be frozen at a temperature of −40° C. for 12 hours; and the mixture may be freeze dried e.g., for 48 hours.


Methods of Use


Also provided herein are methods that include inserting any of the present bone grafts into a mammal in need of the bone graft. By way of example, the present bone grafts may be inserted into or administered to a mammal by surgically inserting one or more of the present bone grafts into a mammal, such as a mammal, in need thereof. The bone grafts may be inserted or administered for example by themselves e.g., in the form of a strip, putty, gel and/or sponge, or the bone graft may be available in conjunction with an implant, such as being incorporated therein or thereon (e.g., as a coating). The bone grafts may be inserted in an effective amount, as can be determined by a physician taking into account the need for the bone graft, the type of bone graft, and the patient.


As previously indicated, the subject/patient may be a mammal (as well as other animals), and the mammal may be (but does not have to be) human.


Embodiments of the present invention may include moldable and shapeable putty compositions that may be used for example to fill bone defects. Thus, according to example embodiments the present bone grafts may be for example in the form of a putty or other semi-solid or solid form, including, but not limited to, strip, putty, gel or sponge.


Implants


Yet further example embodiments are directed to implants or other devices or products that include one more of the bone grafts provided herein, incorporated into, or on the implant, or otherwise used with the product or implant. For example, the present bone graft substitutes may be used as a graft within or inside an implant. By way of non-limiting example, bone grafts may be used in conjunction with interbody spacers for treatment of compression fractures.


Surgical implants and compositions should be biocompatible to successfully perform their intended function. Biocompatibility may be defined as the characteristic of an implant or composition acting in such a way as to allow its therapeutic function to be manifested without secondary adverse affects such as toxicity, foreign body reaction or cellular disruption. To help avoid adverse reaction, example bone grafts may be prepared in sterile environments and formulations for implantation into a mammal.


Kits


Yet further embodiments are directed to kits that include one or more of the present bone grafts or one or more components or ingredients thereof.


Example kits may include for example, any of the present bone grafts, along with instructions and/or at least one additional component (such as devices, implants, tools) that may be used for example in the storage, preparation or use of the bone graft substitutes. By way of example, the kit components may be used to assist in adding the bone graft to a device or implant, or to assist in inserting the bone graft into a mammal. Further non-limiting examples may include one or more of the present bone grafts and instructions for the preparation of the bone graft, instructions for the use of the bone graft, a tool for insertion of the bone graft into a mammal, a tool or vehicle for hydration of a dry form of the bone graft, and/or an implant to be inserted into the mammal with the bone graft. For example, the bone graft may be provided in a syringe for reconstitution and/or administration to a mammal/patient. According to example embodiments, products may be provided in a syringe with an attachment to deliver product in a minimally invasive manner. Other possible ingredients in kits may include disposal implements or treatment literature.


Yet further non-limiting examples may include one or more ingredients of the present bone grafts, which may be combined, mixed or treated to prepare the present bone grafts. By way of example, the present kits may include collagen Type 1, one or more minerals, and/or other required or optional ingredients of the present bone grafts, which may be combined, mixed or treated in order to form the present bone grafts. Further provided may be instructions for preparation of one or more of the present bone grafts and/or one or more tools, devices, implants, and/or other components to assist in making or using the present bone grafts.


The following examples are provided to further illustrate various non-limiting embodiments and techniques. It should be understood, however, that these examples are meant to be illustrative and do not limit the scope of the claims. As would be apparent to skilled artisans, many variations and modifications are intended to be encompassed within the spirit and scope of the invention.


EXAMPLES
Example 1

According to non-limiting example embodiments, bone grafts are prepared which include collagen type I and one or more different types of mineral, having one or more different rates of dissolution and/or having one or more sizes. The method includes the following:


(1) collagen type I from bovine or porcine source is obtained from either skin (dermal) or tendon.


(2) 20% to 95% Collagen Type 1 (by weight) is mixed with hyaluronic acid (0.2 to 20% by weight) and mixed in a beaker until the desired consistency is reached. Acid (such as HCl) or a base (such as NaOH) can be added to the mixture until a homogenous mixture and desired pH is produced. The pH of the mixture can be for example, between 2.0 and 6.0. (3) Cover mixture and place into refrigerator for 20 to 72 hours.


(4) After refrigerating the mixture (step 3) use a shear mixture to further mix to fully combine into a homogenous mixture


(5) Weigh out mineral(s) (such as calcium phosphate, carbonate apatite, and/or calcium carbonate) and/or demineralized bone matrix

    • a) Mineral can include for example, any of the following: in combination or alone:
      • Beta-tricalcium phosphate (size ranging from 75 nm to 500 μm),
      • carbonate apatite (size ranging from 75 nm to 500 μm), and
      • calcium carbonate (size ranging from 75 nm to 500 μm).
    • b) The total weight percent of minerals in the bone graft can range from 20% to 95%
    • c) The total weight percent of DBM in the bone graft can range from 20% to 95%.


(6) Add mineral(s) to the collagen mixture or vice versa. The mixture can be with or without hyaluronic acid.


(7) Mix using a shear mixer.


(8) Place mixture in a refrigerator for 30 minutes to 5 hours.


(9) Remove the mixture from refrigerator.


(10) Neutralize mixture with an acid such as HCl or with a base such as NaOH until the pH is between 6.5 and 8.5.


(11) Pour the mixture into a tray; the tray material can be metal or polymer-based.


(12) The mixture, once in the tray, can be spread using a metal sheet press.


(13) Cover mixture and place into refrigerator for 1 hour to 24 hours.


(14) Blast chill mixture in the freezer at −40° C. (or at least a temperature of less than −20° C.) for 1 hour up to 24 hours.


(15) Freeze dry mixture for 24 to 72 hours to form a “dried pad” mixture.


(16) Take dried pad mixture and cross link; either chemical or physical methods of cross linking may be used.


(17) Rinse the pad if used a chemical cross linking method.


(18) Freeze dry.


(19) Stamp/cut out to desired dimensions.


In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. Accordingly, it is intended that such changes and modifications fall within the scope of the present invention as defined by the claims appended hereto. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.

Claims
  • 1. A method of making a bone graft, the method comprising: mixing 20% to 95% by weight collagen type I with at least one mineral to form a mixture;refrigerating the mixture for 30 minutes to 5 hours to form a cooled mixture;neutralizing the cooled mixture to a pH between 6.5 and 8.5 to form a neutralized mixture;refrigerating the neutralized mixture for 1 hour to 24 hours to form a cooled, neutralized mixture;blast chilling the cooled, neutralized mixture at a temperature below −20° C. for 1 hour up to 24 hours to form a blast chilled mixture;freeze drying the blast chilled mixture for 24 to 72 hours to form a dried pad mixture;physically or chemically cross-linking the dried pad mixture to form a cross-linked mixture; andfreeze drying the cross-linked mixture to obtain the bone graft,the bone graft comprising 20% to 95% by weight with respect to total weight of the bone graft, of the collagen type I, and 20% to 95% by weight with respect to the total weight of the bone graft, of the at least one mineral, wherein the at least one mineral has two or more different dissolution rates, thereby allowing the bone graft to enhance bone healing in both early and late phases of the bone healing.
  • 2. The method of claim 1, wherein the neutralizing is achieved by adding HCl or NaOH to the cooled mixture.
  • 3. The method of claim 1, wherein the at least one mineral comprises at least one mineral selected from the group consisting of beta-tricalcium phosphate having a size ranging from 75 nm to 500 μm, carbonate apatite having a size ranging from 75 nm to 500 μm, and calcium carbonate having a size ranging from 75 nm to 500 μm.
  • 4. The method of claim 1, wherein the step of mixing the collagen type I with the at least one mineral comprises mixing the collagen type I and the at least one mineral with 20% to 95% by weight of demineralized bone matrix (DBM) with respect to the total weight of the bone graft.
  • 5. The method of claim 1, wherein that at least one mineral mixed with the collagen type I includes a first mineral having a first dissolution profile and a second mineral having a second dissolution profile, wherein the first dissolution profile is different from the second dissolution profile in order to provide for two or more different dissolution rates.
  • 6. The method of claim 5, wherein the first dissolution profile is slower than the second dissolution profile.
  • 7. The method of claim 5, wherein one of the first mineral or the second mineral has a porous structure.
  • 8. The method of claim 1, wherein before mixing the collagen type I with the at least one mineral, the collagen is mixed with 0.2 to 20% by weight of hyaluronic acid with respect to the total weight of the bone graft, and optionally, an additional acid or base in an amount of 0.1 to 20% by weight.
  • 9. The method of claim 1, wherein the collagen type I is from a bovine or porcine source and is obtained from dermal, tendon, or both.
  • 10. A method of making a bone graft, the method comprising: mixing 20% to 95% by weight collagen type I with respect to total weight of the bone graft, with 0.2 to 20% by weight hyaluronic acid to form a mixture until a desired consistency is reached and a desired pH of the mixture is obtained;refrigerating the mixture for 20 to 72 hours to form a swelled mixture;further mixing the swelled mixture to form a homogenous collagen mixture;weighing out at least one mineral and demineralized bone matrix (DBM);mixing the at least one mineral and DBM with the homogenous collagen mixture to form a mineral-containing collagen mixture;refrigerating the mineral-containing collagen mixture for 30 minutes to 5 hours to form a cooled mixture;neutralizing the cooled mixture to a pH between 6.5 and 8.5 to form a neutralized mixture;refrigerating the neutralized mixture for 1 hour to 24 hours to form a cooled, neutralized mixture;blast chilling the cooled, neutralized mixture in a freezer at −20° C. or below for 1 hour up to 24 hours to form a blast chilled mixture;freeze drying the blast chilled mixture for 24 to 72 hours to form a dried pad mixture;physically or chemically cross-linking the dried pad mixture to form a cross-linked mixture; andfreeze drying the cross-linked mixture to obtain the bone graft.
  • 11. The method of claim 10, further comprising stamping or cutting out the bone graft to desired dimensions.
  • 12. The method of claim 10, wherein the total weight percent of DBM in the bone graft is from 20% to 95%.
  • 13. A method of making a bone graft, the method comprising: mixing collagen type I with hyaluronic acid to form a mixture;refrigerating the mixture for 20 to 72 hours to form a swelled mixture;mixing the swelled mixture to form a homogenous collagen mixture;adding a first mineral having a first dissolution profile and a second mineral having a second dissolution profile and mixing with the homogenous collagen mixture to form a mineral-containing collagen mixture, wherein the first dissolution profile is different from the second dissolution profile;refrigerating the mineral-containing collagen mixture for 30 minutes to 5 hours to form a cooled mixture;neutralizing the cooled mixture to a pH between 6.5 and 8.5 to form a neutralized mixture;refrigerating the neutralized mixture for 1 hour to 24 hours to form a cooled, neutralized mixture;blast chilling the cooled, neutralized mixture in a freezer at −20° C. or below for 1 hour up to 24 hours to form a blast chilled mixture;freeze drying the blast chilled mixture for 24 to 72 hours to form a dried pad mixture;physically or chemically cross-linking the dried pad mixture to form a cross-linked mixture; andfreeze drying the cross-linked mixture to obtain the bone graft.
  • 14. The method of claim 13, wherein the first dissolution profile is slower than the second dissolution profile.
  • 15. The method of claim 14, wherein the first mineral with the first dissolution profile has a porous structure.
  • 16. The method of claim 13, further comprising adding demineralized bone matrix (DBM) with the first and second minerals when forming the mineral-containing collagen mixture.
US Referenced Citations (213)
Number Name Date Kind
4437191 van der Zel et al. Mar 1984 A
5231169 Constantz et al. Jul 1993 A
5681872 Erbe Oct 1997 A
5700289 Breitbart et al. Dec 1997 A
5776193 Kwan et al. Jul 1998 A
5854207 Lee et al. Dec 1998 A
5914356 Erbe Jun 1999 A
5939039 Sapieszko et al. Aug 1999 A
6123731 Boyce et al. Sep 2000 A
6264701 Brekke Jul 2001 B1
6294041 Boyce et al. Sep 2001 B1
6309659 Clokie Oct 2001 B1
6350283 Michelson Feb 2002 B1
6372257 Marchosky Apr 2002 B1
6432436 Gertzman et al. Aug 2002 B1
6437018 Gertzman et al. Aug 2002 B1
6666890 Michelson Dec 2003 B2
6696073 Boyce et al. Feb 2004 B2
6706067 Shimp et al. Mar 2004 B2
6723131 Muschler Apr 2004 B2
6749636 Michelson Jun 2004 B2
6752831 Sybert et al. Jun 2004 B2
6776800 Boyer, II et al. Aug 2004 B2
6808585 Boyce et al. Oct 2004 B2
6843807 Boyce et al. Jan 2005 B1
6919308 Oppermann et al. Jul 2005 B2
6949251 Dalal et al. Sep 2005 B2
7022137 Michelson Apr 2006 B2
7041641 Rueger et al. May 2006 B2
7132110 Kay et al. Nov 2006 B2
7156880 Evans et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7175858 Constantz et al. Feb 2007 B2
7235107 Evans et al. Jun 2007 B2
7262003 Kumar et al. Aug 2007 B2
7275933 Jia et al. Oct 2007 B2
7291345 Winterbottom et al. Nov 2007 B2
7332452 Ogawa et al. Feb 2008 B2
7381224 Li Jun 2008 B1
7390498 Dalal et al. Jun 2008 B2
7393405 Bohner Jul 2008 B2
7473678 Lynch Jan 2009 B2
7494950 Armitage et al. Feb 2009 B2
7498041 Masinaei et al. Mar 2009 B2
7517489 Akash Apr 2009 B2
7582309 Rosenberg et al. Sep 2009 B2
7611536 Michelson Nov 2009 B2
7723395 Ringeisen et al. May 2010 B2
7744597 Gaskins et al. Jun 2010 B2
7776100 Brekke et al. Aug 2010 B2
7785634 Borden Aug 2010 B2
7811608 Kay et al. Oct 2010 B2
7824702 Wironen et al. Nov 2010 B2
7833278 Evans et al. Nov 2010 B2
7887598 Evans et al. Feb 2011 B2
7892291 Evans et al. Feb 2011 B2
7910690 Ringeisen et al. Mar 2011 B2
7931692 Sybert et al. Apr 2011 B2
7939108 Morris et al. May 2011 B2
7942961 Asgarg May 2011 B2
7947759 Lin et al. May 2011 B2
7959941 Knaack et al. Jun 2011 B2
7977094 Masinaei et al. Jul 2011 B2
8002813 Scarborough et al. Aug 2011 B2
8067078 Espinosa et al. Nov 2011 B1
8093313 Miller Jan 2012 B2
8105383 Michelson Jan 2012 B2
8137403 Michelson Mar 2012 B2
8147860 Rosenberg et al. Apr 2012 B2
8147862 McKay Apr 2012 B2
8163032 Evans et al. Apr 2012 B2
8188229 Ringeisen et al. May 2012 B2
8197474 Scarborough et al. Jun 2012 B2
8202539 Behnam et al. Jun 2012 B2
8221781 Rosenberg et al. Jul 2012 B2
8232327 Garigapati et al. Jul 2012 B2
8268008 Betz et al. Sep 2012 B2
8287915 Clineff et al. Oct 2012 B2
8303967 Clineff et al. Nov 2012 B2
8303971 Cieslik et al. Nov 2012 B2
8309106 Masinaei et al. Nov 2012 B2
8323700 Morris et al. Dec 2012 B2
8328876 Behnam et al. Dec 2012 B2
8333985 Knaack et al. Dec 2012 B2
8357384 Behnam et al. Jan 2013 B2
8394141 Mills et al. Mar 2013 B2
8399409 Lynch et al. Mar 2013 B2
8419802 Evans et al. Apr 2013 B2
8425619 Evans et al. Apr 2013 B2
8435306 Evans et al. May 2013 B2
8435343 Yahav et al. May 2013 B2
8435566 Behnam et al. May 2013 B2
8454988 Rosenberg et al. Jun 2013 B2
8460686 Clineff et al. Jun 2013 B2
8475824 McKay Jul 2013 B2
8506981 Borden Aug 2013 B1
8506985 Garcia De Castro Andrews et al. Aug 2013 B2
8524265 McKay Sep 2013 B2
8529962 Morris et al. Sep 2013 B2
8545858 Rosenberg et al. Oct 2013 B2
8545864 Morris et al. Oct 2013 B2
8551519 Bezwada Oct 2013 B2
8551525 Cook et al. Oct 2013 B2
8562648 Kaes et al. Oct 2013 B2
8580865 Peters et al. Nov 2013 B2
8597675 Murphy et al. Dec 2013 B2
8613938 Akella et al. Dec 2013 B2
8623094 Evans et al. Jan 2014 B2
8641774 Rahaman et al. Feb 2014 B2
8642061 Shimp et al. Feb 2014 B2
8652503 Wironen et al. Feb 2014 B2
8663326 Osman Mar 2014 B2
8663672 Manrique et al. Mar 2014 B2
8663677 Fu et al. Mar 2014 B2
8685429 Koblish et al. Apr 2014 B2
8734525 Behnam et al. May 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8747899 Chaput et al. Jun 2014 B2
8753391 Lu et al. Jun 2014 B2
8753689 Morris et al. Jun 2014 B2
8758792 Behnam et al. Jun 2014 B2
8778378 Clineff et al. Jul 2014 B2
8795382 Lin et al. Aug 2014 B2
8802626 Rueger et al. Aug 2014 B2
8834928 Truncale et al. Sep 2014 B1
8864843 Lu et al. Oct 2014 B2
8871235 Borden Oct 2014 B2
8876532 Atkinson et al. Nov 2014 B2
8877221 McKay Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8926710 McKay Jan 2015 B2
8992964 Shelby et al. Mar 2015 B2
8992965 Behnam Mar 2015 B2
20010038848 Donda et al. Nov 2001 A1
20020076429 Wironen et al. Jun 2002 A1
20020098222 Wironen et al. Jul 2002 A1
20020193883 Wironen Dec 2002 A1
20030009235 Manrique et al. Jan 2003 A1
20030055512 Genin et al. Mar 2003 A1
20030149437 Livne et al. Aug 2003 A1
20040091462 Lin et al. May 2004 A1
20050118230 Hill et al. Jun 2005 A1
20050251267 Winterbottom et al. Nov 2005 A1
20050281856 McGlohorn et al. Dec 2005 A1
20060018942 Rowe et al. Jan 2006 A1
20060036331 Lu et al. Feb 2006 A1
20060147545 Scarborough et al. Jul 2006 A1
20070083270 Masinaei et al. Apr 2007 A1
20070098756 Behnam May 2007 A1
20070105222 Wolfinbarger et al. May 2007 A1
20070113951 Huang May 2007 A1
20080033572 D'Antonio et al. Feb 2008 A1
20080069852 Shimp et al. Mar 2008 A1
20080091270 Miller et al. Apr 2008 A1
20080152687 Thorne Jun 2008 A1
20080187571 Clineff et al. Aug 2008 A1
20090012625 Ying et al. Jan 2009 A1
20090074753 Lynch Mar 2009 A1
20090157087 Wei et al. Jun 2009 A1
20090192474 Wei et al. Jul 2009 A1
20090312842 Bursac et al. Dec 2009 A1
20090317447 Hsiao et al. Dec 2009 A1
20100055078 Hughes-Fulford Mar 2010 A1
20100098673 D'Antonio et al. Apr 2010 A1
20100145469 Barralet et al. Jun 2010 A1
20100196333 Gaskins et al. Aug 2010 A1
20100203155 Wei et al. Aug 2010 A1
20100234966 Lo Sep 2010 A1
20110045044 Masinaei et al. Feb 2011 A1
20110066242 Lu et al. Mar 2011 A1
20110070312 Wei et al. Mar 2011 A1
20110117018 Hart et al. May 2011 A1
20110117165 Melican et al. May 2011 A1
20110117166 Melican May 2011 A1
20110117171 Melican et al. May 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110224675 Tofighi et al. Sep 2011 A1
20110262554 Masinaei et al. Oct 2011 A1
20110276147 Cook et al. Nov 2011 A1
20110280924 Lin et al. Nov 2011 A1
20120053692 Voor et al. Mar 2012 A1
20120064290 Esat et al. Mar 2012 A1
20120093895 Song et al. Apr 2012 A1
20120164187 Ollila et al. Jun 2012 A1
20120207839 Liu et al. Aug 2012 A1
20120237568 Murphy et al. Sep 2012 A1
20130013071 Betz et al. Jan 2013 A1
20130059382 Tsai et al. Mar 2013 A1
20130122057 Garigapati et al. May 2013 A1
20130144376 Dave et al. Jun 2013 A1
20130145963 Cai et al. Jun 2013 A1
20130150227 Wang et al. Jun 2013 A1
20130189338 Drapeau et al. Jul 2013 A1
20130195805 Wei et al. Aug 2013 A1
20130202670 Darmac et al. Aug 2013 A1
20130236513 Guelcher et al. Sep 2013 A1
20130244942 Benedict et al. Sep 2013 A1
20130274890 McKay Oct 2013 A1
20130282138 McKay Oct 2013 A1
20130297038 McKay Nov 2013 A1
20140031950 Cook et al. Jan 2014 A1
20140079753 Darby et al. Mar 2014 A1
20140170202 Peters et al. Jun 2014 A1
20140195005 McKay Jul 2014 A1
20140205674 Wei Jul 2014 A1
20140212471 Drapeau et al. Jul 2014 A1
20140222159 Bursac et al. Aug 2014 A1
20140271779 Bagga et al. Sep 2014 A1
20140271786 Bagga et al. Sep 2014 A1
20140271914 Wagner Sep 2014 A1
20140294913 Hasirci et al. Oct 2014 A1
20140314822 Carter et al. Oct 2014 A1
20150010607 Francis et al. Jan 2015 A1
Foreign Referenced Citations (4)
Number Date Country
1341610 Apr 1989 CA
2027259 Dec 2000 CA
2005084701 Sep 2005 WO
2014128289 Aug 2014 WO
Related Publications (1)
Number Date Country
20150223937 A1 Aug 2015 US