Bone matter collection apparatuses

Information

  • Patent Grant
  • 11510688
  • Patent Number
    11,510,688
  • Date Filed
    Thursday, April 18, 2019
    5 years ago
  • Date Issued
    Tuesday, November 29, 2022
    a year ago
Abstract
This document describes bone matter collection devices and methods for their use. For example, longitudinally extendable/retractable spirally wound, conically-shaped bone matter collection/harvesting devices are described. In some implementations, such bone matter collection devices can be attachable with and detachable from bone drill bits. In some implementations, bone chips generated by bone drilling are collected in such a bone matter collection device while the bone matter collection device is detachably coupled to the bone drill bit, and the collected bone chips can be used for bone grafting and other purposes.
Description
BACKGROUND
1. Technical Field

This document relates to bone matter collection devices and methods for their use.


2. Background Information

Osteotomies are routinely performed for surgical access or to divide or reposition a bone for surgical correction. Holes may be drilled in bones for various reasons, such as to accommodate screws, pins, dental implants and various other implantable devices and materials, or to collect a bone sample for biopsy.


SUMMARY

This document describes bone matter collection devices and methods for their use. For example, longitudinally extendable/retractable spirally wound, conically-shaped bone matter collection/harvesting devices are described herein. In some implementations, such bone matter collection devices can be attachable with and detachable from bone drills (e.g., the shank of a bone drill). In some implementations, bone chips generated by bone drilling are collected in such a bone matter collection device, while the bone matter collection device is detachably coupled to the bone drill, and the collected bone chips can be used for purposes such as, but not limited to, bone grafting.


In one aspect, this disclosure is directed to an apparatus for harvesting bone matter. The apparatus for harvesting bone matter includes a proximal end portion defining a proximal end opening that receives a shank of a drill, a distal end portion defining a distal end opening through which the drill can extend, and an intermediate section between the proximal and distal end portions. At least a portion of the intermediate section includes a spirally-wrapped ribbon member defining a frustoconical shape.


Such an apparatus for harvesting bone matter can optionally include one or more of the following features. The apparatus can be telescopic. The apparatus can be extendable and retractable between a longitudinally extended configuration and a longitudinally retracted configuration. The proximal and distal end portions are closer to each other while the apparatus is configured in the longitudinally retracted configuration as compared to while the apparatus is configured in the longitudinally extended configuration. The apparatus can be naturally-biased to be configured in the longitudinally extended configuration. The spirally-wrapped ribbon member can be longitudinally extended while the apparatus is configured in the longitudinally extended configuration and longitudinally retracted while the apparatus is configured in the longitudinally retracted configuration. The spirally-wrapped ribbon member can be naturally-biased to longitudinally extend such that the apparatus is configured in the longitudinally extended configuration. At least one wrap of the spirally-wrapped ribbon member can overlap a portion of a distally-adjacent wrap of the spirally-wrapped ribbon member and can be partially overlapped by a proximally-adjacent wrap of the spirally-wrapped ribbon member. The overlaps of adjacent wraps of the spirally-wrapped ribbon member can slidably increase when the apparatus reconfigures from a longitudinally extended configuration toward a longitudinally retracted configuration. The proximal end portion comprises a bearing or a bushing. The bearing can configure the apparatus to be rotatably coupleable with the drill. The proximal end portion can have a larger outer diameter than the distal end portion. The spirally-wrapped ribbon member can be made of an elastomer or can be metallic.


In another aspect, this disclosure is directed to a method of collecting bone matter. The method can include: releasably coupling a bone matter collection apparatus to a bone drill; drilling into bone matter using the bone drill while the bone matter collection apparatus is coupled to the bone drill (wherein bone chips generated by the drilling collect within an interior region defined by the spirally-wrapped ribbon member); after the drilling, decoupling the bone matter collection apparatus from the bone drill; and after the decoupling, obtaining at least some of the bone chips from the interior region. The bone matter collection apparatus can include a proximal end portion defining a proximal end opening that receives a shank of the bone drill, a distal end portion defining a distal end opening through which the bone drill can extend, and an intermediate section between the proximal and distal end portions. At least a portion of the intermediate section can include a spirally-wrapped ribbon member defining a frustoconical shape.


Such a method of collecting bone matter may optionally include one or more of the following features. The bone matter collection apparatus may be rotatably coupled to the bone drill such that during the drilling the bone drill rotates faster than the bone matter collection apparatus. During the drilling, the bone drill can be advanced into the bone matter and the bone matter collection apparatus can reconfigure to a shorter longitudinal length.


Particular implementations of the subject matter described in this document can be implemented to realize one or more of the following advantages. In some implementations, efficient removal of bone fragments improves cutting, visibility and offers an opportunity to capture bony fragments for reuse in an autograft. In some implementations, the bone matter harvesting devices disclosed herein are readily detachable from bone drills to facilitate convenient collection of bone chips contained within the bone matter harvesting device. The bone matter harvesting devices disclosed herein are convenient to manufacture and adaptable to work with most all implementations of drills and drill-like instruments. The bone harvesting devices can be reusable in some implementations, and the bone harvesting devices can be disposable in some implementations. The bone harvesting devices disclosed herein are also designed to collect bone matter efficiently while causing little or no interference to the drilling operation.


Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


The details of one or more implementations of the invention are set forth in the accompanying drawings and the description herein. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a perspective view of a drilling device and a bone drill that is encompassed by an example bone matter collection device in accordance with some implementations.



FIG. 2 is a cross-sectional view of the arrangement of FIG. 1.



FIG. 3 illustrates another perspective view of the arrangement of FIG. 1 with the bone matter collection device in a longitudinally retracted configuration.



FIG. 4 is a cross-sectional perspective view showing an example of how the bone matter collection device can be rotatably and detachably coupled to the shank of the bone drill.



FIG. 5 shows a longitudinal cross-sectional view of the bone drill while encompassed by the bone matter collection device in a longitudinally extended configuration.



FIG. 6 shows a longitudinal cross-sectional view of the bone drill while encompassed by the bone matter collection device in a longitudinally retracted configuration.





Like reference numbers represent corresponding parts throughout.


DETAILED DESCRIPTION

During an osteotomy, fragments of bone matter can be detached or come loose. It would be desirable to collect such bone matter, either to simply ensure that it does not remain in the surgery site, or for use in grafting and other purposes. Accordingly, this document describes bone matter collection devices and methods for their use. For example, longitudinally extendable/retractable spirally wound, conically-shaped bone matter collection/harvesting devices are described herein. In some implementations, such bone matter collection devices can be attachable with and detachable from bone drill bits (e.g., the shank of a bone drill bit). In some implementations, bone chips generated by bone drilling are collected in such a bone matter collection device while the bone matter collection device is detachably coupled to the bone drill bit, and the collected bone chips can be used for bone grafting.


The bone matter collection devices described herein provide the opportunity to collect bone for an autograft, which is often necessary. In some cases, the surgeon may use an autograft from another site, or may elect to use allografts or artificial material. Autologous grafts, however, are preferable because they are inherently biocompatible, osteo-conductive, osteo-inductive, and osteogenic. Harvesting autologous bone from a donor site results in additional time and the attendant risk of complications such as donor site pain and morbidity. Allografts, derived from donor (cadaver) tissues, are only osteo-conductive, and may pose the risk of contamination. Artificial materials such as alloplastic bone cement are a poor choice for grafting since they are potentially antigenic and rarely osteo-conductive. Thus, bone collection from the original operating area is desirable.


Referring to FIGS. 1 and 2, an example apparatus 100 for bone matter harvesting (also referred to herein as bone matter collection) is shown, in conjunction with a drilling device 10 and a bone drill bit 20. The bone drill bit 20 is removably coupled to the drilling device 10. The drilling device 10 rotates the bone drill bit 20 about the longitudinal axis of the bone drill bit 20 in order to drill a hole in a bone matter. The bone matter collection device 100 is removably coupled to the bone drill bit 20.


The drilling device 10 depicted is only an example and is in no way limiting to the inventive concepts disclosed herein. The bone matter collection device 100 can be used with any and all types of suitable drilling devices. Similarly, the bone drill bit 20 depicted is only an example and is in no way limiting to the inventive concepts disclosed herein. The bone matter collection device 100 can be used with any and all types of suitable drills.


The bone matter harvesting apparatus 100 includes a proximal end portion 110, a distal end portion 120, and an intermediate section 130. The intermediate section 130 is located between the proximal end portion 110 and the distal end portion 120. In some implementations, the bone matter harvesting apparatus 100 is a unitary construct. In some implementations, the bone matter harvesting apparatus 100 comprises two or more components that are attachable and detachable from each other.


The proximal end portion 110 defines a proximal end opening that receives the shank of the bone drill bit 20. In some implementations, the proximal end portion 110 is releasably coupled to the shank of the bone drill bit 20 using a mechanical connection between the proximal end opening and the shank of the bone drill bit 20. The proximal end portion 110 can be a disk-shaped body having an opening in the center thereof.


The distal end portion 120 defines a distal end opening through which the bone drill bit 20 can extend. The proximal end portion 110 has a larger outer diameter than the distal end portion 120. The drilling device 10 is releasably coupled to the shank of the bone drill bit 20 and drives rotation of the bone drill bit 20.hq


At least a portion of the intermediate section 130 comprises a spirally-wrapped ribbon member 132. The spirally-wrapped ribbon member 132 is an elongated element that is wound multiple times around the central longitudinal axis of the bone matter harvesting apparatus 100. The ribbon member 132 is sufficiently thin that the ribbon can flex along the longitudinal direction of the drill 20. In some implementations, the spirally-wrapped ribbon member 132 is made of an elastomer. In some implementations, the spirally-wrapped ribbon member 132 is metallic.


Adjacent wraps or windings of the spirally-wrapped ribbon member 132 overlap each other. For example, at least one wrap of the spirally-wrapped ribbon member 132 overlaps a portion of a distally-adjacent wrap of the spirally-wrapped ribbon member 132, and is partially overlapped by a proximally-adjacent wrap of the spirally-wrapped ribbon member 132. As described further below, the overlaps of adjacent wraps of the spirally-wrapped ribbon member 132 slidably increase when the bone matter harvesting apparatus 100 reconfigures from a longitudinally extended configuration as shown, toward a longitudinally retracted configuration (as depicted in FIGS. 3 and 6).


In the depicted implementation, at least a portion of the spirally-wrapped ribbon member 132 defines a frustoconical shape along the intermediate section 130. The spirally-wrapped ribbon member 132 defines an interior space 102 (FIG. 2). The interior space 102 is used to receive and accumulate pieces of bone matter (e.g., chips, fragments, shavings, etc.) that result from the drilling of the bone drill bit 20 into bone matter. The spirally-wrapped ribbon member 132 can prevent bone matter from exiting from the sides of the interior space 102, and the proximal end portion 110 can prevent bone matter from exiting from the top of the interior space 102.


Referring also to FIG. 3, the bone matter harvesting apparatus 100 will reconfigure toward a longitudinally retracted configuration in response to advancement of the bone drill bit 20 into bone matter. That is, while the bone drill bit 20 is rotated by the drill 10 to cause the bone drill bit 20 to penetrate bone matter, the bone matter harvesting apparatus 100 will abut against the bone matter and will be thereby forced to longitudinally contract as the bone drill bit 20 advances.


As shown by a comparison of FIGS. 1 and 3, in FIG. 1 the bone matter harvesting apparatus 100 is in a longitudinally extended configuration and in FIG. 3 the bone matter harvesting apparatus 100 has reconfigured toward a longitudinally retracted configuration. Hence, the bone matter harvesting apparatus 100 is telescopic. The proximal end portion 110 and distal end portion 120 are closer to each other while the bone matter harvesting apparatus 100 is configured in the longitudinally retracted configuration as compared to while the bone matter harvesting apparatus 100 is configured in the longitudinally extended configuration.


In some implementations, the bone matter harvesting apparatus 100 is naturally-biased to be configured in the longitudinally extended configuration. For example, in some implementations the spirally-wrapped ribbon member 132 can have a shape memory such that the spirally-wrapped ribbon member 132 is naturally-biased to be configured in the longitudinally extended configuration. When the spirally-wrapped ribbon member 132 is forced to longitudinally compress/retract, the spirally-wrapped ribbon member 132 can naturally tend to rebound like a spring toward the longitudinally extended configuration.


Referring also to FIG. 4, in some implementations, the proximal end portion 110 of the harvesting apparatus 100 comprises a bearing 112. An inner race 114i of the bearing 112 can engage the shank of the bone drill bit 20, whereas an outer race 114o of the bearing 112 can be fixed to outermost winding of the ribbon member 132. In some embodiments, the shank of the bone drill bit 20 can function as the inner race of the bearing. In some implementations, the bearing 112 configures the bone matter harvesting apparatus 100 to be rotatably coupleable with the bone drill bit 20 (e.g., by mechanically coupling with the shank of the bone drill bit 20). That is, the bearing 112 allows for the bone drill bit 20 to rotate relative to the bone matter collection apparatus 100 (other than the inner race 114i which rotates along with the bone drill bit 20). The bearing 112 allows the bone matter collection apparatus 100 to be rotatably coupled to the bone drill bit 20 such that during the drilling the bone drill bit 20 rotates faster than the bone matter collection apparatus 100. In some cases, the bone matter collection apparatus 100 will be rotationally stationary while the bone drill bit 20 rotates.


After a use of the bone drill bit 20 with the attached bone matter collection apparatus 100, the bone matter collection apparatus 100 can be detached from the bone drill bit 20 so as to access the bone matter collected inside. In some implementations, the bone matter collection apparatus 100 can be slid off proximal free end the shank of the bone drill bit 20 (after the bone drill bit 20 has been detached from the drilling device 10).


Referring to FIGS. 5 and 6, as described above the bone matter harvesting apparatus 100 is reconfigurable between a longitudinally extended configuration (FIG. 5) and a longitudinally retracted configuration (FIG. 6). The bone matter harvesting apparatus 100 may be retractable even farther than depicted in FIG. 6 in some implementations. In some implementations, the bone matter harvesting apparatus 100 is naturally-biased to be configured in the longitudinally extended configuration.


During drilling, the bone drill bit 20 is advanced into bone matter while the bone matter collection apparatus reconfigures toward the shorter longitudinally retracted configuration because of abutting against a surface of the bone matter. Pieces of bone matter collect inside of the bone matter harvesting apparatus 100 (e.g., within the interior region 110 as shown in FIG. 2). After such a use, the bone matter harvesting apparatus 100 can be detached from the bone drill bit 20, and the pieces of bone matter can be removed from the bone matter harvesting apparatus 100 for use or analysis.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular implementations of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described herein as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a sub combination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system modules and components in the implementations described herein should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single product or packaged into multiple products.


Particular implementations of the subject matter have been described. Other implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous.

Claims
  • 1. An apparatus for harvesting bone matter, the apparatus comprising: a proximal end portion defining a proximal end opening that receives a shank of a drill;a distal end portion defining a distal end opening through which the drill can extend; andan intermediate section between the proximal and distal end portions, at least a portion of the intermediate section comprising a spirally-wrapped continuous ribbon member defining a frustoconical shape,wherein multiple individual wraps of the spirally-wrapped continuous ribbon member overlap a portion of a distally-adjacent wrap of the spirally-wrapped continuous ribbon member and are partially overlapped by a proximally-adjacent wrap of the spirally-wrapped continuous ribbon member, andwherein the proximal end portion comprises a bearing.
  • 2. The apparatus of claim 1, wherein the apparatus is telescopic.
  • 3. The apparatus of claim 1, wherein the apparatus is extendable and retractable between a longitudinally extended configuration and a longitudinally retracted configuration.
  • 4. The apparatus of claim 3, wherein the apparatus is naturally-biased to be configured in the longitudinally extended configuration.
  • 5. The apparatus of claim 3, wherein the spirally-wrapped continuous ribbon member is longitudinally extended while the apparatus is configured in the longitudinally extended configuration and is longitudinally retracted while the apparatus is configured in the longitudinally retracted configuration.
  • 6. The apparatus of claim 5, wherein the spirally-wrapped continuous ribbon member is naturally-biased to longitudinally extend such that the apparatus is configured in the longitudinally extended configuration.
  • 7. The apparatus of claim 1, wherein the overlaps of adjacent wraps of the spirally-wrapped continuous ribbon member slidably increase when the apparatus reconfigures from a longitudinally extended configuration toward a longitudinally retracted configuration.
  • 8. The apparatus of claim 1, wherein the bearing configures the apparatus to be rotatably coupleable with the drill.
  • 9. The apparatus of claim 1, wherein the proximal end portion has a larger outer diameter than the distal end portion.
  • 10. The apparatus of claim 1, wherein the spirally-wrapped continuous ribbon member is an elastomer.
  • 11. The apparatus of claim 1, wherein the spirally-wrapped continuous ribbon member is metal.
  • 12. An apparatus for harvesting bone matter, the apparatus comprising: a proximal end portion defining a proximal end opening that receives a shank of a drill;a distal end portion defining a distal end opening through which the drill can extend; andan intermediate section between the proximal and distal end portions, at least a portion of the intermediate section comprising a spirally-wrapped ribbon member,wherein multiple individual wraps of the spirally-wrapped ribbon member overlap a portion of a distally-adjacent wrap of the spirally-wrapped ribbon member and are partially overlapped by a proximally-adjacent wrap of the spirally-wrapped ribbon member, andwherein the proximal end portion comprises a bearing.
  • 13. The apparatus of claim 12, wherein the spirally-wrapped ribbon member is extendable and retractable between a longitudinally extended configuration and a longitudinally retracted configuration.
  • 14. The apparatus of claim 13, wherein the spirally-wrapped ribbon member is naturally-biased to be configured in the longitudinally extended configuration.
  • 15. The apparatus of claim 12, wherein the overlaps of adjacent wraps of the spirally-wrapped ribbon member slidably increase when the apparatus reconfigures from a longitudinally extended configuration toward a longitudinally retracted configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 62/659,558 filed Apr. 18, 2018.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/028177 4/18/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/204644 10/24/2019 WO A
US Referenced Citations (119)
Number Name Date Kind
2930264 Lovert Mar 1960 A
3384085 Hall May 1968 A
3400617 Sanborn Sep 1968 A
3583821 Shaub Jun 1971 A
3824026 Gaskins Jul 1974 A
3936213 Kappel Feb 1976 A
4044468 Kalin Aug 1977 A
4190386 Brabetz et al. Feb 1980 A
4231692 Brabetz et al. Nov 1980 A
4332561 McSpadden Jun 1982 A
4353698 McSpadden Oct 1982 A
4456411 Clement Jun 1984 A
4457710 McSpadden Jul 1984 A
4536159 Roane Aug 1985 A
4538989 Apairo, Jr. et al. Sep 1985 A
4549538 Schadrack, III Oct 1985 A
4762445 Bunting et al. Aug 1988 A
4842451 Dugger Jun 1989 A
4884980 Bensing Dec 1989 A
4889487 Lovaas Dec 1989 A
4934934 Arpaio, Jr. et al. Jun 1990 A
4992048 Goof Feb 1991 A
5061123 Broussard Oct 1991 A
5106298 Heath et al. Apr 1992 A
5464362 Heath et al. Nov 1995 A
5498158 Wong Mar 1996 A
5503554 Schoeffel Apr 1996 A
5584617 Houser Dec 1996 A
5605460 Heath et al. Feb 1997 A
5653561 May Aug 1997 A
5658145 Maillefer et al. Aug 1997 A
5676541 Maillefer et al. Oct 1997 A
5713736 Heath Feb 1998 A
5716736 Heath et al. Feb 1998 A
5743916 Greenberg et al. Apr 1998 A
5752825 Buchanan May 1998 A
5772367 Daniel Jun 1998 A
5775904 Riitano Jul 1998 A
5836764 Buchanan Nov 1998 A
5842862 Nissan Dec 1998 A
5882198 Taylor et al. Mar 1999 A
5888036 Arai et al. Mar 1999 A
5897274 Ogura et al. Apr 1999 A
5897316 Buchanan Apr 1999 A
5902106 McSpadden May 1999 A
5921775 Buchanan Jul 1999 A
5938440 McSpadden Aug 1999 A
5980166 Ogura Nov 1999 A
5984679 Farzin-Nia et al. Nov 1999 A
6106296 Johnson Aug 2000 A
6146066 Yelton Nov 2000 A
6250857 Kersten Jun 2001 B1
6299445 Garman Oct 2001 B1
6315558 Farzin-Nia et al. Nov 2001 B1
6419488 McSpadden et al. Jul 2002 B1
6575748 Filhol Jun 2003 B1
6702579 Hoppe et al. Mar 2004 B1
6890134 Wagner et al. May 2005 B1
6929078 Randall Aug 2005 B1
6942484 Scianamblo Sep 2005 B2
7094056 Scianamblo Aug 2006 B2
7125252 Rouiller et al. Oct 2006 B2
7175371 Vidal Feb 2007 B2
7717710 Danger et al. May 2010 B2
7955078 Scianamblo Jun 2011 B2
8206067 Turrini Jun 2012 B2
8454361 Scianamblo Jun 2013 B2
8496476 Scianamblo Jul 2013 B2
8721234 Santamarina May 2014 B2
8727680 Wada et al. May 2014 B2
8740513 Santamarina Jun 2014 B2
8882504 Scianamblo Nov 2014 B2
8915921 Ralph Dec 2014 B2
8932056 Scianamblo Jan 2015 B2
D750246 Scianamblo Feb 2016 S
9271740 Scianamblo Mar 2016 B2
9277925 Scianamblo Mar 2016 B2
11059140 Buenaventura Jul 2021 B2
11191605 Dejardin Dec 2021 B2
20020031745 Kumar et al. Mar 2002 A1
20030159544 Moser et al. Aug 2003 A1
20040023186 McSpadden Feb 2004 A1
20040042865 Oettle Mar 2004 A1
20040131993 Rouiller et al. Jul 2004 A1
20040185414 Badoz Sep 2004 A1
20040210229 Meller Oct 2004 A1
20040219485 Scianamblo Nov 2004 A1
20040253379 Sugita et al. Dec 2004 A1
20040265775 Maillefer et al. Dec 2004 A1
20050026109 Buchanan Feb 2005 A1
20050117984 Eason et al. Jun 2005 A1
20050266375 Brock et al. Dec 2005 A1
20050282117 Aravena et al. Dec 2005 A1
20060068362 Desrosiers et al. Mar 2006 A1
20060111724 Ping May 2006 A1
20060115339 Wakui et al. Jun 2006 A1
20060115650 Hanyu et al. Jun 2006 A1
20060228668 McSpadden Oct 2006 A1
20060228669 Scianamblo Oct 2006 A1
20070015107 Mannschedel et al. Jan 2007 A1
20070059663 Scianamblo Mar 2007 A1
20070082318 Breguet Apr 2007 A1
20070184406 Mason Aug 2007 A1
20080154150 Goldenberg Jun 2008 A1
20090047080 Schweigliofer et al. Feb 2009 A1
20100215450 Santamarina et al. Aug 2010 A1
20100221078 Borschert Sep 2010 A1
20110054483 Howlett et al. Mar 2011 A1
20110144442 Farrell Jun 2011 A1
20110236853 Shimoo Sep 2011 A1
20110276029 Field Nov 2011 A1
20120039680 Koike et al. Feb 2012 A1
20120282571 Ammon et al. Nov 2012 A1
20130170920 Ogawa Jul 2013 A1
20130189644 Johnson Jul 2013 A1
20130190560 Kaneko et al. Jul 2013 A1
20160192945 Scianamblo Jul 2016 A1
20160207121 Scianamblo Jul 2016 A1
20180258979 Omohundro et al. Sep 2018 A1
Foreign Referenced Citations (24)
Number Date Country
203029314 Jul 2013 CN
0120542 Oct 1984 EP
0987076 Mar 2000 EP
1184004 Mar 2002 EP
1213074 Jun 2002 EP
1340573 Sep 2003 EP
2798277 Mar 2001 FR
2854054 Oct 2004 FR
2935260 Mar 2010 FR
52-156494 Dec 1977 JP
57-127608 Aug 1982 JP
62-241606 Oct 1987 JP
H06-320323 Nov 1994 JP
H11-19812 Jan 1999 JP
2002-144122 May 2002 JP
2002-205213 Jul 2002 JP
2007-0283473 Nov 2007 JP
637207 Dec 1978 SU
WO 0119279 Mar 2001 WO
WO 02065938 Aug 2002 WO
WO 2004098438 Nov 2004 WO
WO 2009001681 Dec 2008 WO
WO 2014118587 Aug 2014 WO
WO 2014118591 Aug 2014 WO
Non-Patent Literature Citations (7)
Entry
International Search Report/Written Opinion issued by USPTO dated Jul. 5, 2019, 26 pages.
U.S. Appl. No. 29/448,430, filed Mar. 12, 2013, Scianamblo.
dictionary.com, [online], “Straight, (n.d.). Dictionary.com Unabridged.” Retrieved Feb. 11, 2010, from Dictionary.com website: http://dictionary.reference.com/browse/straight, 7pages.
merriam-webster.com [online], “Linear definition from Merriam-Webster on-line,” Retrieved on Feb. 20, 2009, from http://www.merriam-webster.com/dictionary/linear, 3 pages.
tulsadentalspecialties.com [online] “Protaper Next”. Dentsply Tulsa Dental Specialties. Last updated Dec. 5, 2014. Retrieved on Dec. 5, 2014. Retrieved from the internet: URC:<http://www.tulsadentalspecialties.com/default/endodontics_brands/PROTAPERNEXT.aspx>. 1 page.
YouTube [online], “Ultimate Handyman. Drilling Through Walls,” Published Sep. 23, 2011. Retrieved on Nov. 11, 2014. Retrieved from URL<https://www.youtube.com/watch?v=fpFUxlcH2Lg>, 3 pages.
European Extended Search Report in European Appln. No. 19787670, dated May 14, 2021, 8 pages.
Related Publications (1)
Number Date Country
20210077125 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62659558 Apr 2018 US