Bone plate and bone plate assemblies including polyaxial fasteners

Information

  • Patent Grant
  • 8105367
  • Patent Number
    8,105,367
  • Date Filed
    Monday, June 15, 2009
    15 years ago
  • Date Issued
    Tuesday, January 31, 2012
    12 years ago
Abstract
A system for fixation of bone, including a bone plate with an opening comprising threads made of a first material and a fastener with a head at least partially comprising a polymeric material that is softer than the first material. In some embodiments, when the fastener is inserted into the first opening, the threads of the first opening form threads in the polymeric material on the head of the fastener and secure the fastener in place at one of a plurality of possible angles within the first opening. The first opening additionally accepts a fastener with a substantially spherical head for compression of a fracture, or a fastener with a threaded head that engages with the threads of the threaded opening. In some embodiments the first opening includes a substantially frustoconical-shaped top portion. In other embodiments there may be a second opening that is either non-threaded or comprises a plurality of protruding fins.
Description
FIELD OF THE INVENTION

The present invention relates generally to orthopedic fixation devices and bone plating systems for fracture fixation, and particularly to systems and methods for using polyaxial fasteners within bone plating systems.


BACKGROUND OF THE INVENTION

Bone fractures are often repaired by securing a bone plate across the fracture. Depending upon which bone is to be treated, the bone plate may be straight or curved to match the contour of the bone for which it is designed. Bone plates may also be provided in many shapes and sizes. In cases where a bone is severely comminuted or if bone segments are missing, the use of bone plate and screw systems promotes healing of the fracture by providing a rigid fixation or support structure between the bone and the plate.


Bone plates may be secured to the bone in a number of ways. An existing solution is a plate and screw system where screws, called locking screws, are locked in the plate. First, a locking screw is threaded through an opening in the plate and into the bone. Then the locking screw is secured to the bone plate via threads on the head of the locking screw that cooperate with threaded openings in the bone plate. This secures the plate with respect to the bone and provides rigid fixation because the relationship between the plate and locking screw(s) is fixed. Because the threads on the head of the locking screw interdigitate with the threads in the plate opening, the plate and screws(s) form one stable system, and the stability of the fracture can be dependent upon the stiffness of the construct. Locking a screw into the plate can achieve angular and axial stability and eliminate the possibility for the screw to toggle, slide, or be dislodged, reducing the risk of postoperative loss of reduction.


However, although locking screws may reduce the incidence of loosening, they have limitations. Locking screws provide only one fixed angle relationship between the plate and the screw(s). They have a limited insertion angle because the threads of the head mate with the threads of the hole in one way only. The longitudinal axis of the screw aligns with the central axis of the hole, and no angular variation is allowed. In short, locking screws are unidirectional, limiting their use in some instances. For example, when treating a severe fracture, bone fragments may be shattered and in irregular positions. Although a surgeon may wish to obtain the benefits of a locking screw and bone plate used together, the pre-determined angle at which the locking screw extends from the plate may not be the angle that would allow the surgeon to “grab” (or seize, or otherwise secure) the desired, random bone fragment. Rather, screws with more angular flexibility (such as compression screws) may be required. Moreover, locking screws secured in a plate have a limited capability to compress bone fragments, since once the screw is fully rotated to lock with the plate, it can rotate no further to compress the plate to the bone. Conversely, there may be situations where the screw rotates sufficiently to capture bone, but does not rotate sufficiently to lock to the plate.


In short, while locking screws were useful to provide rigid fixation, they often could not perform other functions typically performed by traditional non-locking or compression screws (also referred to as cortical or cancellous screws). Although non-locking screws are secured into bone in the same way that locking screws are, they are not secured to the plate. Their heads are typically rounded where they contact the bone plate and they do not have threads that lock into the plate. Thus, while not optimal in providing a rigid construct between the screw and plate, they can be inserted at various angles because they are not limited by the thread-to-thread contact of locking screws with the bone plate.


Given the unique contributions of each of locking and non-locking screws, bone plating systems were developed that provided surgeons the option of using both types of screws in an installation. In this way, surgeons could choose intra-operatively whether to use the bone plate with compression screws, locking screws, or a combination of both and thus more effectively tailor the installation to the particular situation.


In some embodiments, these systems provide plates with some threaded holes (that may receive either locking screws or non-locking screws) and some non-threaded holes (for non-locking screws). Some systems provide partially threaded slots to allow either non-locking or locking screws to be used together. Such combination slots provide surgeons with the intra-operative choice about whether to use the plate with locking screws, non-locking screws, or a combination of both. These combination slots typically have a partially threaded opening that can receive either a compression screw or a locking screw. However, because these combination slots are only partially threaded, the locking screw(s) may not be able to maintain the fixed angular relationship between the screw(s) and plate under physiological loads. Specifically, the locking screws within the plate are only partially captured and thus only partially surrounded by threads. Under high stress and loading conditions, the slot may distort and allow the fixed angular relationship between the locking screw and plate to change. This can result in loss of fixation or loss of established intra-operative plate orientation. Moreover, the locking screw can still only be inserted at a single angle—the predetermined angle defined by the manufacturer.


Additionally, current bone plate and screw systems still limit a surgeon's ability to both (a) lock a fastener with respect to the bone plate, but still (b) allow the fastener to extend from the bone plate at various angles. Locking screws lock into the plate, but only in a single angular configuration, and non-locking screws allow various angle configurations, but they do not provide a stable construct with the plate. Accordingly, none of these options allow a surgeon to capture bone fragments that do not fall in line with the axis of the opening provided on the plate in a rigid fashion. Thus, currently available options can still lead to mal-alignment and poor clinical results.


There have been some attempts to provide polyaxial locking systems. For example, one effort includes providing holes that accept fixed angle locking pegs and multidirectional locking pegs, with a threaded cap inserted over the multidirectional peg to hold it in place. Such a system can be cumbersome to use because, although the multidirectional peg can be inserted at any angle, the surgeon then needs to thread a small cap onto the top of the peg head and into the plate, requiring an extra step, extra time, and extra instrumentation. Such systems also fail to allow the use of non-locking members in conjunction with the locking and multidirectional pegs.


Other systems that have attempted to offer polyaxial fixation include providing a bone plate with deformable inserts at the hole peripheries made out of a deformable material, with the remaining part of the plate made of titanium. The plate is manufactured and the deformable inserts are then pushed into the hole peripheries and engaged in place by deformation and pressure. When screws are inserted, the deformable inserts deform and are compressed between the screws and the edges of the holes of the plate, which holds the screws and inserts in place. There are challenges with such systems, however. First, the deformable inserts cannot be used with non-locking screws. Second, the deformable inserts do not have the strength to receive and hold a regular locking screw. Thus, the unavailability of non-locking screws and regular locking screws do not provide the surgeon with options. Finally, plates with deformable inserts are more expensive to manufacture than regular bone plates.


Accordingly, there exists a need for an improved bone plating system that overcomes the deficiencies of the prior art. There is a need for a system that provides a stable connection between a bone and a bone plate using a fastener that permits different angles to be obtained between the bone plate and the fastener, while the fastener also locks into the bone plate. This would allow surgeons to capture random bone fragments that are in irregular positions, for example, in cases of severe fractures with highly fragmented bone fragments. In these and other cases, it would be advantageous to provide a fastener and plate system that allows the surgeon to choose the angle at which the screw is inserted through, and rigidly affixed in, an opening of the plate.


Such an improvement would allow a surgeon to direct the fastener toward bone fragments that are not necessarily located directly beneath the opening in the plate. It would also provide flexibility in the placement of the plate in relation to the bone fracture. Allowing surgeons to choose the angle at which the fastener is inserted into the plate would lead to better tailoring of the system to the specific nature of the bone fracture to be treated. It would also allow surgeons to adjust their strategy as necessary after the surgical site has been accessed, but prior to insertion of the fastener into bone material. Additionally, embodiments described herein provide for a more secure polyaxial insertion than what is available in known systems which contain a plate with a deformable insert.


BRIEF SUMMARY OF THE INVENTION

In certain embodiments there is a bone plate comprising a first opening. The first opening may be threaded, and the threads may be made of a first material. A first fastener may be inserted into the first opening in order to secure the bone plate to the bone. In certain embodiments the first fastener has a head at least partially made of a polymeric material that is softer than the first material of the threads of the first opening. In use, the first fastener is positioned and rotated in the first opening, and the threads of the first opening form “threads” into the polymeric material of the first fastener to thereby fix the orientation of the first fastener relative to the first opening. Thus, the first fastener may be secured at one of a plurality of possible angles within the first opening. This may help in capturing “renegade” or random bone fragments that have split from the bone during fracture, and may help in securing the bone fragments to the bone plate.


The first opening is configured to interchangeably accept other types of fasteners in addition to the first fastener. For example, there is provided a second fastener with a threaded head, wherein the threads on the head are configured and dimensioned to mate with the threads of the first opening (also called a locking fastener). In use, when the second fastener is inserted into the first opening, the threads of the first opening and the threads on the head of the second fastener engage, which “locks” the second fastener in place within the first opening.


The first opening may additionally accept a third fastener comprising a head with a substantially spherical and non-threaded portion (also called a non-locking fastener). In use, when the third fastener is inserted into the first opening, the spherical portion of the head contacts, but does not otherwise engage with, the threads of the first opening. Thus the third fastener can be inserted at various angles because it is not limited by the thread-to-thread contact with the first opening.


In certain embodiments the first opening may have a frustoconical-shaped top portion that helps push or pull the bone plate in a particular direction as a fastener is inserted into the first opening. In particular, the head of a fastener may come into contact with and ride along the frustoconical-shaped top portion of the first opening, thus moving the bone plate in a particular direction. In certain embodiments, additional openings may be provided on the bone plate, including other types of threaded openings, non-threaded openings, provisional fixation holes, K-wire holes, combination holes, finned openings, and slots. The different types of fasteners described above—including the first, second, and third fasteners described above—may be used as appropriate in the different types of openings.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 shows perspective view of one embodiment of a fastener of this invention.



FIG. 2 shows a cross-sectional view of the fastener of FIG. 1 positioned in a bone plate.



FIG. 3 shows a fragmentary top perspective view of a bone plate having fins according to one embodiment of the invention with a fastener inserted therein.



FIG. 4 shows a fragmentary top perspective view of the bone plate of FIG. 3.



FIG. 5 shows a top perspective view of a bone plate having multiple openings, with fasteners inserted in two of the plate openings.



FIG. 6 shows a bottom perspective view of the bone plate of FIG. 5.



FIG. 7 shows a side elevational view of the bone plate of FIG. 5.



FIG. 8 shows a perspective view of one embodiment of a fastener for use with various bone plates described herein.



FIG. 9 shows a top plan view of an alternate embodiment of an opening for use in a bone plate.



FIG. 10 shows a fragmentary perspective view of a bone plate with the opening of FIG. 9.



FIG. 11 shows a top plan view of a further embodiment of an opening for use in a bone plate.



FIG. 12 shows a fragmentary top perspective view of a bone plate with the opening of FIG. 11.



FIGS. 13-17 show alternative shapes and types of bone plates that may be used with various embodiments of this invention.



FIG. 18 shows a cross-sectional view of an alternative embodiment of a bone plate having a fastener with a finned head secured in the bone plate.



FIG. 19 shows a side elevation view of the fastener shown in FIG. 18.



FIG. 20 shows a top perspective view of the fastener of FIG. 19.



FIG. 21 shows a fragmentary top perspective view of a bone plate that may be used to receive the fastener of FIGS. 19 and 20.



FIG. 22 shows a cross-sectional view of the plate of FIG. 21.



FIG. 23 shows a side elevation view of a fracture being treated with a bone plate and the fastener of FIG. 19.



FIG. 24A shows a side elevation view of an exemplary locking screw according to one embodiment of the present invention.



FIG. 24B shows a cross-sectional view of the locking screw of FIG. 24A.



FIG. 25A shows a top plan view of a portion of a bone plate, including a hole without the threads of the hole shown, according to one embodiment of the present invention.



FIG. 25B shows a cross-sectional view of the portion of the bone plate shown in FIG. 25A as viewed along line 25B-25B of FIG. 25A.



FIG. 25C shows a top plan view of the portion of the bone plate shown in FIGS. 25A and 25B, with the threads of the hole shown.



FIG. 25D shows a cross-sectional view of the portion of the bone plate shown in FIGS. 25A-25C as viewed along line 25D-25D of FIG. 25C.



FIG. 25E is an enlarged section view taken at inset circle 25E in FIG. 25D.



FIG. 26 shows a cross-sectional view of the locking screw of FIGS. 24A and 24B positioned in the bone plate shown in FIGS. 25A-25E.



FIG. 27 shows a side elevation view of an exemplary compression screw for use according to one embodiment of the present invention.



FIG. 28 shows a cross-sectional view of the compression screw of FIG. 27 positioned in the bone plate shown in FIGS. 25A-25E.



FIG. 29A shows a side elevation view of an exemplary locking screw according to an embodiment of the present invention.



FIG. 29B shows a cross-sectional view of the locking screw of FIG. 29A.



FIG. 30A shows a top plan view of a portion of a bone plate according to an embodiment of the present invention.



FIG. 30B shows a cross-sectional view of the portion of the bone plate shown in FIG. 30A as viewed along line 30B-30B of FIG. 30A.



FIG. 30C is an enlarged section view taken at inset circle 30C in FIG. 30B.



FIG. 31 shows a cross-sectional view of the locking screw of FIGS. 29A and 29B positioned in the bone plate shown in FIGS. 30A-30C.



FIG. 32 shows a cross-sectional view of the compression screw of FIG. 27 positioned in the bone plate shown in FIGS. 30A-30C.



FIGS. 33-50 are views of various exemplary bone plate configurations according to various embodiments of the present invention.



FIG. 51 shows a provisional fixation slot according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide a fastener 10 for polyaxial fixation in a variety of different types of bone plate openings. FIGS. 1 and 2 illustrate an embodiment of one such fastener. This application uses the terms “fastener” and “screw” interchangeably. Fastener 10 includes a head 16 and a shaft 14 that defines a fastener central axis 12. In FIGS. 1 and 2, the shaft 14 is threaded. The shaft 14 may be fully threaded, partially threaded, comprise a helical blade, and/or may comprise one or more tacks, deployable talons, expandable elements, or so forth. Any feature that allows shaft 14 to engage bone is considered within the scope of this invention and may be referred to generally as a “threaded shaft” for the sake of convenience. It is also possible that shaft 14 is not threaded, so that fastener 10 takes the form of a peg or a pin. This alternative embodiment may be preferred in certain procedures where, for instance, the main goal is to prevent tilting of a bone segment or in procedures where there is no concern of fastener 10 pulling out from the bone and hence no need for shaft 14 to be threaded or otherwise configured to engage bone. The end of shaft 14 may be a self-tapping or self-drilling tip.


The head 16 of the fastener 10 also includes a fastener seating surface 20. The fastener seating surface 20 may encompass the entire head 16 of the fastener 10, or it may only partially encompass the head 16. For example, in FIG. 1 the height of the fastener seating surface 20 is less than the height of the head 16, so that a portion of the head 16 protrudes above the fastener seating surface 20. In other embodiments, however, the fastener seating surface 20 encompasses the entire head 16 of the fastener 10. In some embodiments, at least portions of the fastener seating surface 20 are smooth and contoured, as shown in FIG. 1. The smooth portions 22 of the fastener seating surface 20 may be seen in FIGS. 1 and 2.


Fastener 10 will typically have a bore 18 for receiving a driver in order to drive fastener 10 into the bone plate and into bone. The bore 18 may be any size and shape, for example, it may have a hexagonal configuration to receive a corresponding hexagonal driver, a Phillips screw head, a flat-head, a star configuration, Torx, or any other appropriate configuration that can cooperate with a driver to place fastener.



FIG. 2 illustrates fastener 10 engaged in a bone plate 40 having an upper surface 44, a bone contacting surface 42, and a threaded opening 30 extending between the upper surface 44 and the bone contacting surface 42. The terms “opening” and “hole” are used interchangeably herein. More specifically, opening 30 of plate 40 is shown having opening threads 32 and an opening central axis 36. Opening threads 32 are typically any standard-type thread. For example, the opening threads 32 may be a continuous ridge or a non-continuous ridge. It may comprise a portion of a revolution, one complete revolution, multiple revolutions, a single lead, or multiple leads, or any other threads known in the art. Additionally or alternatively, opening threads 32 may include any other surface that will engage with and seat with features of the fastener 10. For example, opening threads 32 may have a series of dimples, ridges, bumps, textured areas, or any other surface that can secure with features of the fastener 10 as described herein. In short, any type of thread is intended for use with various embodiments of this invention.


The fastener seating surface 20 may be formed of any material but it is preferable that the fastener seating surface 20 be made of a material with a yield strength that is lower than that of the material defining the opening 30. In some embodiments the fastener seating surface 20 is made from polyethylene, for example.


In use, fastener 10 is positioned and rotated in opening 30. Rotating the fastener 10 with respect to the opening 30 causes deformation of the fastener seating surface 20 because the fastener seating surface 20 is made from a material that is weaker than that defining the opening 30. More specifically, the opening threads 32 tap “threads” into the head 16 of the fastener 10 (and more particularly the fastener seating surface 20) and thereby fixes the orientation of the fastener 10 relative to the opening 30. The resulting threaded portions 24 on the fastener seating surface 20 are shown in FIG. 2. As may be seen from FIG. 2, there may be smooth portions 22 where the opening threads 32 have not tapped into the fastener seating surface 20. Thus in some embodiments the entire head 16 of the fastener 10 may not be tapped. Additionally, the location of the smooth portions 22 and the threaded portions 24 will change depending upon the insertion angle 38 in which the fastener 10 is inserted.


Given that there are no pre-existing threads on the head of fastener 10, the fastener 10 may be inserted and locked into the opening 30 in any angular orientation. Embodiments of the invention provide for an insertion angle 38 between the fastener central axis 12 and the opening central axis 36. The insertion angle 38 may also be described as the direction along which fastener 10 is inserted through opening 30 and driven into bone material. In some embodiments the opening central axis 36 and the fastener central axis 12 are co-linear so that the insertion angle 38 is zero. But in other embodiments the opening central axis 36 and the fastener central axis 12 are not co-linear and the insertion angle 38 has some value. FIG. 2 has an insertion angle 38 that is approximately 20-30°; however, other insertion angles 38 are within the scope of the invention.


The fastener 10 may be positioned in the opening 30 and fixed in the plate 40 at various insertion angles 38. This may help in capturing “renegade” or random bone fragments that have split from the bone during fracture and in securing the bone fragments to the plate 40. For example, if a wrist bone is broken, there will be numerous fragments that may shatter in various directions. Fastener 10 may be inserted into plate 40 at various insertion angles 38 in order to capture the renegade fragments that would otherwise not be secured to a bone plate 40 using only a locking or a non-locking fastener.


Fastener 10 may be used in connection with any type of threaded hole (including, but not limited to, any threaded hole disclosed herein) on any type of bone plate. The bone plate may be adapted to contact one or more of a femur, a distal tibia, a proximal tibia, a proximal humerus, a distal humerus, a clavicle, a fibula, an ulna, a radius, bones of the foot, or bones of the hand. The bone plate may be curved, contoured, straight, or flat. It may be a periarticular plate or a straight plate. The plate may have a head portion that is contoured to conform to a particular bone surface, such as a metaphysis or diaphysis, that flares out from the shaft portion, that forms an L-shape, T-shape, Y-shape, with the shaft portion, or that forms any other appropriate shape to fit the bone to be treated (not shown in figures).


The bone plate may be formed of titanium, stainless steel, cobalt chrome, plastic—such as polyetheretherketone (PEEK), polyethylene, ultra high molecular weight polyethylene (UHMWPE), or a carbon composite—resorbable polylactic acid (PLA), polyglycolic acid (PGA), combinations or alloys of such materials or any other appropriate material that has sufficient strength to be secured to and hold bone, while also having sufficient biocompatibility to be implanted into a body. Although the above list of materials includes many typical materials out of which bone plates are made, it should be understood that bone plates comprised of any appropriate material are within the scope of this invention.


In some embodiments, openings 30 may be provided on a bone plate 40 in combination with a variety of other types of openings (e.g., other types of threaded openings, non-threaded openings, provisional fixation or K-wire holes, combination holes, etc.), including but not limited to those discussed in reference to FIGS. 3-51. It should be understood that these various types of openings may be used on any type of bone plates, in any combination and in any size.


In one embodiment, such as shown in FIGS. 13 and 14, bone plate 40 includes openings 30 in combination with finned openings 50. Embodiments with finned openings 50 may be combined with a fastener 90. Fastener 90 may have a shaft 92 with a longitudinal axis 96. As shown in FIG. 14, the shaft 92 may be threaded or non-threaded. In certain embodiments as shown in FIGS. 3 and 8, the head 94 of fastener 90 has at least one set of threads 98. Threads 98 are typically any standard-type thread. For example, the threads 98 may be a continuous ridge or a non-continuous ridge. They may comprise a portion of a revolution, one complete revolution, multiple revolutions, a single lead, or multiple leads, or any other threads known in the art. Additionally or alternatively, head 94 of fastener 90 may include any other surface that will engage with and seat within specific features of plate 40 (described further below). For example, head 94 may have a series of dimples, ridges, bumps, textured areas, or any other surface that can secure fastener 90 as described herein. As will be described in more detail below, threads 98 of head 94 are adapted to engage, associate with, or otherwise cooperate with fins 56 of finned opening 50. In short, any type of threaded fastener head is intended for use with various embodiments of this invention.


Plate 40 of FIG. 13 has a finned opening 50 (shown in detail in FIG. 4) with an inner surface 54 from which a series of concavely indented, inwardly protruding fins 56 extend. Fins 56 extend into finned opening 50 toward central axis 52. The bases 58 of fins 56 form a concave portion 60 at or near a substantially round upper circumference 62 of upper surface 44. (The term “round” circumference is intended to refer to any round shape, such an a circle, an oval, an egg-shaped circumference, or any other opening shaped to receive the head 94 of a fastener 90.) The bases 58 of the fins 56 may all meet in substantially the same plane and then angle downwardly and inwardly at a similar angle or slope.


It bears noting that the concave portion 60 is smooth and non-threaded. In fact, there are not any threads on concave portion 60 or anywhere on inner surface 54 of finned opening 50. The lack of threads helps ease the manufacturing of plate 40, and allows plate 40 to be manufactured as thinly as desired.


The dimensions of fins 56 are typically dependent at least in part upon the pitch and threads of fastener 90. For example, a larger plate 40 for use with a larger fastener 90 (e.g., for use on a femur bone) will likely be thicker and will have larger and thicker fins 56 than a smaller plate 40 (e.g., for use on a smaller bone). In specific embodiments, the fins 56 are particularly thin so that they can be moved up or down and deformed upon pressure. In some embodiments, the fins 56 may be pressed toward the edges of the finned opening 50. A non-limiting exemplary range of thicknesses for fins 56 may be from about 0.5 mm to about 5 mm, although larger and smaller sizes are possible. In theory, the fins 56 are intended to fit between threads 98 on the thread form of fastener 90, as shown in FIG. 3.


Providing a non-threaded inner surface 54 also allows the fastener 90 to be inserted into finned opening 50 at any desired insertion angle 38, as illustrated by FIG. 7. Embodiments of the invention provide for an insertion angle 38 between the longitudinal axis 96 of the fastener 90 and the central axis 52 of finned opening 50. The insertion angle 38 may also be described as the direction along which fastener 90 is inserted through finned opening 50 and driven into bone material. In some embodiments the central axis 52 and the longitudinal axis 96 are co-linear so that the insertion angle 38 is zero. But in other embodiments the central axis 52 and the longitudinal axis 96 are not co-linear and the insertion angle 38 has some value. FIG. 7 illustrates one fastener 90 having an insertion angle 38 of approximately 0° and another fastener 90 having an insertion angle 38 of approximately 20-30°; however, other insertion angles 38 are within the scope of the invention. Varying the insertion angle 38 is possible because there are not any threads in the finned opening 50 to interfere with the desired insertion angle 38. The fins 56 are intended to slightly bend or deform in order to secure the fastener 90 in place in finned opening 50. Fins 56 actually engage threads 98 or other surface of fastener 90.


Referring back to FIG. 4, in the embodiment shown, as fins 56 extend toward central axis 52, they taper to form tapered sides 64. The fins 56 end at rounded tips 66, although tips 66 can be pointed, square, rectangular, or any other appropriate configuration. For example, as shown in FIGS. 9 and 10, fins 56 may have straight edges or sides 70 and straight ends 72. This embodiment shows fins 56 that are partially rectangular-shaped. The openings 74 between fins 56 are slit-shaped.


An alternate embodiment is shown in FIGS. 11 and 12, which illustrate fins 56 with a more triangular shape. In this embodiment, fins 56 are shown having sides 80 that taper inwardly and end edges 82 that are flat and small, forming the apex area 84 where adjacent sides 80 converge. Openings 86 in FIG. 11 are wider than openings 74 in FIG. 9. Both sets of openings 86, 74 in these alternative embodiments are shown having rounded backs 88, where they meet inner surface 54 of finned opening 50. It should be understood however, that these are merely examples of fin 56 shapes and that any appropriate shapes are possible and considered within the scope of this invention. Non-limiting examples include trapezoidal, square, round, circular, triangular (with a pointed tip instead of apex area 84), and any other possible option.


As shown in FIG. 6, the lower circumference 68 at the bone contacting surface 42 of plate 40 may appear to be more jagged than the upper circumference 62 at the upper surface 44 due to the fins 56 forming a portion of bone contacting surface 42. The lower circumference 68 can appear almost “flower-like,” meaning that each fin 56 appears to form a petal of the lower circumference 68. Alternatively, for the embodiments of FIGS. 9-12, the lower circumference 68 will appear similar to the shape created by fins 56.


Although the figures show a finned opening 50 with about five to eight fins 56, it should be understood that any number of fins 56 is considered within the scope of this invention. For example, there may be two or three fins 56, or ten or twenty or more fins 56, depending upon the plate 40 for which the finned opening 50 is intended for use.


The primary purpose of fins 56 is to grasp one or more threads 98 of a fastener 90 in order to secure the fastener 90 in place in the bone plate 40 at any desired insertion angle 38. For example, as opposed to threaded openings 30 used with fastener 90 (which engage the threads 98 of the head 94 of the fastener 90 in one way only, limiting the surgeon's ability to angle the fastener 90 as desired), the fins 56 of this embodiment are still intended to secure the threads 98 of the head 94 of fastener 90 in place, but at any insertion angle 38. Moreover, as shown in FIGS. 5-7, fasteners 90 need not be inserted at the same insertion angle 38. One fastener 90 may be inserted at a first insertion angle 38, and another fastener 90 may be inserted at a second, and different, insertion angle 38. As a fastener 90 is inserted, its threads 98 start to engage the fins 56, as shown in FIG. 3. As discussed above, the fins 56 may be very thin so that as the threads 98 start to grab fins 56, the fins 56 may move up or down as appropriate to engage the threads 98 and secure the fastener 90 in the finned opening 50. In short, the threads 98 engage fins 56 so that the fins 56 fit between the threads 98. This movement of fins 56 can be a permanent deformation, so that the fins 56 cannot flex back and allow the fastener 90 to work its way out.


As discussed above, finned openings 50 may be provided on all types of bone plates 40 and may be combined with other types of openings, examples of which are shown in FIGS. 13-17. There may be a finned opening 50, a threaded opening 30, and a provisional pin opening 102. Other options are holes that can be used with either a threaded or non-threaded fastener, as well as combination slots 104. It should be understood that these various types of openings may be used on any types of bone plates, in any combination and in any size. FIG. 14 shows a plurality of finned openings 50 in the head of bone plate 40. This may help achieve better fixation of a fractured bone, because the fastener 90 can be inserted at various angles to capture “renegade” or random bone fragments that have split from the bone during fracture, but still secure the bone fragments to the plate 40. For example, as shown in FIG. 23 if a bone is broken, there will be numerous fragments that may shatter in various directions. The plates 40 described herein can be used to place a fastener 110 at various angles in order to capture the renegade fragments that would otherwise not be secured to a bone plate 40 using only a locking or a non-locking fastener. Although FIG. 23 shows a fastener 110 with a finned head 112, the same concept applies to a fastener 90 and a finned opening 50. It should additionally be understood that other types of openings (in addition to or instead of finned openings 50) may be present in the head of the plate, as well as elsewhere on plate 40. Particularly suitable may also be openings 30 for receiving fasteners 10, which also allow for polyaxial insertion and fixation.


As previously mentioned, fastener 90 may be any typical fastener, made out of any appropriate material. It will typically have a bore 18 for receiving a driver in order to drive fastener 90 through plate 40 and into bone. The bore 18 may be any size and shape, for example, it may have a hexagonal configuration to receive a corresponding hexagonal driver, a Phillips screw head, a flat-head, a star configuration, Torx, or any other appropriate configuration that can cooperate with a driver to drive fastener 90 into plate 40.


Turning now to the methods of implantation, the surgeon accesses the surgical site of interest, which can be an internal site at which a bone fracture is located that requires stabilization to ensure proper healing. The fracture may be reduced with conventional forceps and guides (which are known to those in the art), and a bone plate 40 of appropriate size and shape is placed over the fracture site. In some instances, the bone plate 40 may be temporarily secured to the bone using provisional fixation pins. In the bone plates 40 shown in FIGS. 13 and 14, provisional fixation pins may be used through either the provisional pin openings 102, or any other opening in the plate 40. Provisional fixation provides for temporarily securing the bone plate 40 to the bone before placing fixation screws through the bone plate 40, so that one can be certain the bone plate 40 is properly positioned before placing bone screws for permanent fixation of the bone plate 40 to the bone. Moreover, with provisional fixation, x-rays can be taken of the bone plate/construct without excess instruments in the field of view.


Once the plate 40 is secured at a desired location in relation to the fracture (typically using one or more provisional fixation pins, although any other appropriate method may be used), the surgeon then identifies an insertion angle 38 (see FIGS. 2 and 7), or the direction along which fastener 10, 90 is to be inserted through a selected opening 30, 50 and driven into bone material. If bone plate 40 includes more than one opening 30, 50 as shown in FIGS. 13-17, the surgeon also selects the specific opening 30, 50 to be used. After selecting the desired insertion angle 38 and opening 30, 50, the surgeon inserts shaft 14, 92 of fastener 10, 90 through opening 30, 50 until the tip contacts bone material. In some cases, a hole may need to be drilled or tapped into the bone along the insertion angle 38 to facilitate the initial tapping or insertion of fastener 10, 90. The surgeon then uses an appropriate driving tool in the bore 18 of head 16, 94 to manipulate the fastener 10, 90 into place.


Because fastener 10, 90 may be inserted at angles other than aligned with the central axis 36, 52 of opening 30, 50, fastener 10, 90 may be used to grab or secure bone fragments that are out of line with the traditional angle at which a locking screw would normally be inserted. The surgeon may need to toggle or maneuver the fastener 10, 90 in order to secure and draw in displaced bone fragments.


Once the bone fragment is secured, the fastener 10, 90 is ready to be secured to the plate 40. As fastener 10, 90 is driven further into bone it is also drawn further into plate 40. If fastener 10 is used in an opening 30, drawing the fastener 10 into the plate 40, for example by rotating the fastener 10 with a tool via the bore 18, causes deformation of the fastener seating surface 20 because the fastener seating surface 20 is made from a material that is weaker than the threads 32 in the opening 30. This deformation allows “threads” to be tapped into the head 16 of the fastener 10 and fixes the orientation of the fastener 10 relative to the opening 30. If fastener 90 is used in finned opening 50, as threads 98 of fastener head 94 begin to contact fins 56, the fins 56 are allowed to engage within the threads 98 to hold the fastener 90 in place in the desired insertion angle 38, even angles that are other than in line with the opening central axis 52. The action of engagement between fins 56 and threads 98 rigidly affixes fastener 90 to the bone plate 40 at the desired insertion angle 38.


In some embodiments, the surgeon may then use traditional locking and/or non-locking screws in other openings 30, 50 on plate 40. This can help further secure the bone plate 40 to the bone fracture if needed. One advantage of opening 30 is that it is adapted to receive a fastener 10, 90, other locking screws, or a non-locking screw.


In some instances, once all fasteners 10, 90 and/or screws are placed, the surgeon may place covers over the unused openings 30, 50 particularly if there are any unused openings 30, 50 that cross the fracture in order to strengthen the plate 40. Additionally or alternatively, the surgeon may use bone graft material, bone cement, bone void filler, and any other material to help heal the bone.



FIGS. 18-22 illustrate an alternate embodiment of an opening and fastener that allows for polyaxial fixation. Plate 40 is provided with openings 126 for receiving fastener 110, as shown in FIGS. 18-22. These figures show a fastener 110 with a finned head 112. Specifically, the finned head 112 comprises a bore 114 and at least one set of extending fins 118 around a portion 120 of the finned head 112. Fins 118 are shown as being square or trapezoidally-shaped with tapered edges, although they may be any other shape, such as rounded, oval, rectangular, curved, rhomboid, diamond-shaped, triangular or any other appropriate shape. The edges of fins 118 may taper inwardly, outwardly, or be about parallel with one another. Fins 118 may be provided in a single row around finned head 112 or layered in multiple rows as shown. If layered in multiple rows, each individual fin 118 may be directly above another fin 118 (so the top of the fastener 110 looks like that shown in FIG. 20). Alternatively, each individual fin 118 in a lower layer may be offset from a fin 118 in a higher layer. The number of fins 118 in a set may also vary from about two or three up to any desired number that can fit on portion 120 of finned head 112. As with the fins 56 of finned opening 50 described above, the fins 118 are preferably quite thin, the thickness varying depending upon the use of fastener 110 and plate 40. For example, a larger fastener 110 for use with a larger plate 40 (e.g., for use on a femur bone) will likely have larger and thicker fins 118 than a smaller fastener 110 (e.g., for use on a smaller bone). In specific embodiments, the fins 118 are particularly thin so that they can be moved up or down or compressed upon pressure. A non-limiting exemplary range of thicknesses for fins 118 may be from about 0.5 mm to about 5 mm, although larger and smaller sizes are possible. In theory, the fins 118 are intended to fit between the threadform of plate 40. Fastener 110 may also have a shaft 122 that is threaded or unthreaded, as described above with respect to fastener 90.


Fastener 110 may be used with any bone plate that has a threaded opening. In one example (see FIGS. 18, 21, and 22), bone plate 40 includes opening 126 provided with Acme threads 128 that have a more rectangular shape than the pointed, sharp threads that are typically used in bone plates. As shown in FIG. 22, opening 126 has threads 128 that end at their edges 130 in a rectangular shape. Providing a rectangular shape with a flatter edge 130 allows a larger channel for the fins 118 to engage. In an even more specific embodiment, the threads 128 may be angled at about 15-20° off of the central axis 132 of opening 126, and even more specifically, at about 18° off of the central axis 132. While Acme threads are disclosed, one of skill in the art will recognize that any thread geometry may be provided in opening 126.


In use, fastener 110 is inserted into opening 126, the fins 118 engage threads 128 and, much like the fins 56, fins 118 are very thin so that as the threads 128 of plate 40 start to grab the fins 118, the fins 118 may move up or down as appropriate to engage the threads 128 and secure the fastener 110 in place, as shown in FIG. 18. In most cases, this movement of fins 118 is a permanent deformation, so that the fins 118 cannot flex back and allow the fastener 110 to work its way out.


Other opening or plate hole geometries that may be provided in plate 40 in any combination are illustrated in FIGS. 25A-E and 30A-C. As discussed in more detail below, these holes or openings may interchangeably receive locking screws or fasteners as well as compression screws or fasteners. They may also receive the fasteners 10 discussed above. Plate 40 may also include non-threaded holes or openings that receive only compression screws or fasteners.



FIGS. 24A and 24B show an exemplary uniaxial locking screw 140 for use according to one embodiment. Such a locking screw 140 includes a threaded head 142 and a threaded shaft 144. Locking screw 140 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art. In the exemplary embodiment shown in FIGS. 24A and 24B, the lead between the threads of head 142 and the threads of shaft 144 is broken. The threads in shaft 144 of locking screw 140 are single lead and the threads in head 142 are triple lead, providing locking screw 140 with the same pitch throughout. It is preferable, but not required, for certain embodiments of locking screws 140 according to this invention to have a constant pitch. In an exemplary 3.5 mm locking screw 140, the pitch is 1.25 mm and the angle of the thread form is about 45° to about 60°. In an exemplary 4.5 mm locking screw 140, the pitch is 1.75 mm and the angle of the thread form is about 60°. Locking screw 140 also includes an internal hex head 146, as shown in FIG. 24B, that is used when tightening locking screw 140 into a bone plate and/or bone.



FIGS. 25A-25E show different views of a portion of a bone plate 40 according to an embodiment of the present invention. Such bone plates generally include one or more holes or other openings, such as in the exemplary bone plates shown in FIGS. 33-50, which are briefly described below. However, for ease of illustration and for purposes of describing an exemplary embodiment of the present invention, only a portion of bone plate 40 is shown in FIGS. 25A-25E.


The particular bone plate 40 shown in these drawings includes a hole 152 extending through upper surface 44 and bone contacting surface 42 of bone plate 40. FIGS. 25A and 25B show hole 152 without its threads to help illustrate certain aspects of this embodiment of the invention, while FIGS. 25C-25E show hole 152 with its threads. It should be understood that the geometry of hole 152 is the same throughout these Figures, although the geometry of hole 152 is not as clearly visible in FIGS. 25C-E that show the threads of hole 152. As seen most clearly in FIG. 25B, hole 152 includes a top portion 158 extending downward from upper surface 44. Top portion 158 is generally frustoconical in shape and extends from upper surface 44 at an angle of θ1 relative to the plane of upper surface 44, as shown in FIG. 25B. In an exemplary embodiment, angle θ1 is about fifty-two°.


A bottom portion 160 of hole 152 extends from the end of top portion 158 to bone contacting surface 42 of bone plate 40. Bottom portion 160 includes threads 162, as shown in FIGS. 25C-25E. Some of threads 162 may extend into top portion 158 depending on the particular embodiment, but top portion 158 is not completely threaded.


In the exemplary embodiment shown in FIGS. 25A-25E, bottom portion 160 is tapered. The included angle, θ2 shown in FIG. 25B, of the taper of bottom portion 160 may be less than about thirty°, including zero° (i.e., no taper at all). The larger the included angle, the larger hole 152 in bone plate 40 must be, which begins to compromise the strength of the plate if the included angle θ2 is much larger than about thirty°. In an exemplary embodiment, θ2 is about twenty°.



FIG. 26 shows a side view of locking screw 140 threaded into hole 152 of bone plate 40. Head 142 of locking screw 140 is received by threads 162 of bone plate 40. Threads 162 completely surround the threads of head 142, and the top of head 142 is received completely within hole 152 such that head 142 of locking screw 140 sits flush with upper surface 44 of bone plate 40. Shaft 144 of locking screw 140 is threaded into bone (not shown). Head 142 of locking screw 140 should be tapered such that it properly mates with threads 162 of hole 152 of bone plate 40. Furthermore, a threaded portion of a head of a locking screw for use with certain embodiments of this invention should have a taper generally corresponding to the taper, if any, of the threads of the hole of the bone plate. Fasteners 10 with a seating surface such as shown in FIG. 1 and disclosed above can also be used in the holes 152 to lock and secure the fastener 10 to plate 40 at varying angles within hole 152.



FIG. 27 shows a side view of an exemplary compression screw 170 for use according to an embodiment of the present invention. Compression screw 170 includes a head 172 and a threaded shaft 174 for engaging a bone. Head 172 is preferably spherical, as shown in the drawings. FIG. 28 shows compression screw 170 inserted within hole 152 of bone plate 40. As shown in FIG. 28, head 172 of compression screw 170 rides along top portion 158 of hole 152. As shown clearly in FIG. 28, the diameter of shaft 174 is less than the diameter of the opening at bottom portion 160 of hole 152. Thus, as shaft 174 is threaded into a bone (not shown), compression screw 170 may pull or push bone plate 40 in a particular direction as the spherical head 172 of compression screw 170 comes into contact with and rides along the top portion 158 of hole 152 of bone plate 40. The angle θ1, shown in FIG. 25B, at top portion 158 of hole 152 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction. If top portion 158 were to extend straight down from upper surface 44 of bone plate 40, compression would be less successful. Compression screw 170 may move bone plate 40 in more than one direction as compression screw 170 is fully inserted within hole 152. In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible.



FIGS. 29A and 29B show another exemplary locking screw for use according to an embodiment of the present invention. A locking screw 180 includes a head 182 and a threaded shaft 184. Similar to locking screw 140 shown in FIGS. 24A and 24B, locking screw 180 may be a 3.5 mm, 4.5 mm, 6.5 mm, or other size locking screw, which is understood by those skilled in the art, and the lead between the threads of head 182 and the threads of shaft 184 is broken. The threads in shaft 184 of locking screw 180 are single lead and the threads in head 182 are triple lead, providing locking screw 180 with the same pitch throughout. The pitches and angles of thread form for exemplary 3.5 and 4.5 mm locking screws 180 are generally similar to those described above with reference to locking screw 140.


Locking screw 180 also includes an internal hex head 186, as shown in FIG. 29B, that is used when tightening locking screw 180 into a bone plate and/or bone. As may be seen from FIGS. 24 and 29, only a portion of head 182 of locking screw 180 is threaded, whereas the entire head 142 of locking screw 140 is threaded. Additionally, the threaded portion of head 182 of locking screw 180 is not tapered, while head 142 of locking screw 140 is tapered. These differences are because locking screw 140 is designed to mate with hole 152 of bone plate 40, while locking screw 180 is designed to mate with a hole 192 of a bone plate 40, as further described below.



FIGS. 30A-30C show different views of a portion of a bone plate according to an embodiment of the present invention. As noted above, bone plates generally include one or more holes or other openings, such as in the exemplary bone plates shown in FIGS. 33-50, but for ease of illustration, only a portion of bone plate 40 is shown in FIGS. 30A-30C.


Bone plate 40 includes a hole 192 extending through upper surface 44 and bone contacting surface 42 of bone plate 40. Hole 192 includes a top portion 198 extending downward from upper surface 44. As shown in FIG. 30B, one side of top portion 198 includes a ramp that extends from upper surface 44 at an angle of θ3 relative to the plane of upper surface 44. In an exemplary embodiment, angle θ3 is about fifty-two°. The remainder of top portion 198 is a concave recessed portion that is generally spherical in shape, as shown in FIG. 30B. Although of a slightly different structure than top portion 158 of hole 152, top portion 198 of hole 192 also has a generally frustoconical shape, as shown in the figures.


A bottom portion 200 of hole 192 extends from the end of top portion 198 to bone contacting surface 42 of bone plate 40. Bottom portion 200 includes threads 202. Some of threads 202 may extend into top portion 198 depending on the particular embodiment, but top portion 198 generally has only the beginning of thread leads, if any threading. Unlike bottom portion 160 as shown in FIGS. 25A-25E, bottom portion 200 in FIG. 30B is not tapered, but rather is generally cylindrical in shape.



FIG. 31 shows a side view of locking screw 180 threaded into hole 192 of bone plate 40. Threads of head 182 of locking screw 180 are received by threads 202 of bone plate 40. Threads 202 completely surround the threads of head 182, and shaft 184 of locking screw 180 is threaded into bone (not shown). Head 182 of locking screw 180 is shaped such that its unthreaded portion bears against the ramp of top portion 198 of hole 192 of bone plate 40. Additionally, the threaded portion of head 182 is generally cylindrical (i.e., not tapered) so that it properly mates with threads 202 of hole 192 of bone plate 40. A threaded portion of a head of a locking screw for use with certain embodiments of this invention should be shaped to generally correspond to the shape of the threaded portion of the hole of the bone plate.



FIG. 32 shows compression screw 170 inserted within hole 192 of bone plate 40. As shown in FIG. 32, head 172 of compression screw 170 sits within the frustoconical top portion 198, contacting the concave recessed area of top portion 198 of bone plate 40. Head 172 of compression screw 170 contacts the ramp area of top portion 198, but head 172 does not completely abut the ramp. As shown clearly in FIG. 32, the diameter of shaft 174 is less than the diameter of the opening at bottom portion 200 of hole 192. Thus, as shaft 174 is threaded into a bone (not shown), compression screw 170 may pull or push bone plate 40 in a particular direction as spherical head 172 of compression screw 170 comes into contact with and rides along the frustoconical top portion 198 of hole 192 of bone plate 40, similar to that described above with reference to FIG. 28. The angle θ3, shown in FIG. 30B, at top portion 198 of hole 192 is significant for compression of a fracture and is necessary to help shift the bone plate in the desired direction. If top portion 198 were to extend straight down from upper surface 44 of bone plate 40, compression would be less successful. Compression screw 170 may move bone plate 40 in more than one direction as compression screw 170 is fully inserted within hole 192. In an exemplary embodiment, fine adjustment of fractures up to about two millimeters in several directions is possible.


In practice, a first screw is initially inserted through a bone plate and into a bone on one side of a fracture and then a second screw is inserted through the bone plate on the opposite side of the fracture. In an exemplary method according to an embodiment of the present invention, after the first screw is in place, a compression screw is inserted through a hole in the bone plate on a side of the fracture opposite the side of the first screw. The compression screw may be inserted through the hole and into the bone such that as the compression screw is fully inserted, the bone plate is drawn over to a desired position. By moving the bone plate, the tissue is being pulled together to reduce the fracture. Once the compression screw has been used to move the bone plate into the desired position, the compression screw may be removed from the bone and bone plate and a locking screw, which may, if desired be polyaxial (such as fastener 10), may be inserted through the hole in the bone plate and in the bone in the space formerly occupied by the compression screw. The locking screw can then be tightened to lock the plate into position. The replacement of the compression screw with the locking screw is not required, but a locking screw may provide more stability and rigid fixation than leaving the compression screw in place. In some modes of operation, a locking screw, which may be polyaxial (such as fastener 10), is placed directly in a locking hole without first inserting a compression screw in the hole. Certain embodiments of the invention contemplate using locking screws, some or all of which may be polyaxial or non-polyaxial, and compression screws in any order and in combination or not in combination with each other. As described above, certain embodiments of this invention provide for fine adjustment of fractures in more than one direction.



FIGS. 33-50 show various exemplary bone plate configurations that may include one or more openings or holes of any of the various geometries disclosed herein in any combination for receiving any of the various fasteners or screws disclosed herein. Bone plates in accordance with embodiments of this invention can include threaded, non-threaded, and/or finned openings 50 in any combination. Traditional locking screws 140, compression screws 170, and polyaxial fasteners 10 may be used with such holes as appropriate. All holes in the exemplary plates of FIGS. 33-50 include threads having any of the geometries disclosed herein or fins (not shown), while the other generally non-circular openings in these plates may or may not include threads depending on the purposes for which the opening is to be used.



FIG. 33 shows a distal radius plate 205 that is applied on the volar aspect of the radius and used to treat fractures of the distal radius. FIG. 34 shows a distal tibia plate 210 used to treat distal tibia fractures and contoured to match the anatomy of the medial distal tibia. FIG. 35 shows a calcaneal plate 220 that is applied to the medial aspect of the calcaneus and used to treat calcaneal fractures. FIG. 36 shows a distal tibia plate 230 used to threat distal tibia fractures and contoured to match the anatomy of the lateral anterior distal tibia. FIG. 37 shows a multipurpose plate 240 used in conjunction with the calcaneal plate to fuse the talus to the calcaneus. FIG. 38 depicts a distal fibula plate 250 used to treat distal fibula fractures from the lateral side of the bone. FIG. 39 illustrates a bone plate 260 used to treat the medial distal humerus. FIG. 40 shows a proximal humerus plate 270 contoured to match the anatomy of the lateral proximal humerus. FIG. 41 illustrates a distal femur plate 280 contoured to treat fractures of the distal femur from the lateral side of the bone.



FIG. 42 shows a ⅓ tubular straight bone plate 290 used to treat small bone fractures. FIG. 43 depicts a proximal tibia plate 300 contoured to treat proximal tibia fractures from the medial side. FIG. 44 shows a reconstruction plate 310. FIG. 45 illustrates a small fragment straight plate 320, and FIG. 46 illustrates a large fragment bone plate 330. FIG. 47 illustrates an olecranon plate 340 used to treat fractures of the proximal ulna. FIG. 48 shows a distal humerus plate 350 contoured to match the anatomy of the lateral posterior distal humerus. FIG. 49 depicts a distal humerus plate 360 contoured to match the anatomy of the lateral distal humerus. FIG. 50 shows a proximal tibia plate 370 contoured to treat proximal tibia fractures from the medial side that is similar to plate 300, except that plate 370 includes only holes, such as holes 152 and 192 (shown in more detail in FIGS. 25 and 30, respectively) that may receive both compression and locking screws and does not include any other openings.


Shown in some of the exemplary bone plates in FIGS. 33-50 are provisional fixation slots 380. FIG. 51 shows provisional fixation slot 380 in a portion of a bone plate 40. As is well known to those skilled in the art, provisional fixation pins are commonly used to provisionally affix a bone plate to the bone prior to installation of the bone plate with permanent attachment, such as bone screws. Existing provisional fixation slots typically allow only fixation of bone fragments and not any adjustability of the position of bone fragments. An embodiment of a provisional fixation slot of this invention allows articulation of bone fragments in up to six degrees of freedom to reduce the bone fracture. A bone fragment may be locked into a position and then incrementally repositioned to another temporary or permanent location. In FIG. 51, slot 380 has a cross or X shape, but the shape of slot 380 may vary according to the desired functionality and may include I, L, T, and other shape slots.


In practice, a bone plate is placed on the bone and the plate may or may not be affixed to the bone utilizing bone screws and/or provisional fixation pins. When provisional fixation is desired, a provisional fixation pin may be inserted through a provisional fixation slot and driven into the target bone fragment. The fragment may be manipulated to reduce the fracture and draw the fragment to the plate. Once the bone fragment is in a desired position, the provisional fixation pin may be tightened until the pin locks into the plate. If further movement of the bone fragment is desired, a second provisional fixation pin may be inserted in the same provisional fixation slot in a space in the slot that is not occupied by the first pin. After insertion of the second pin, the first pin may be removed and the bone fragment may be manipulated with the second pin. Once a desired position of the bone fragment is reached, the second pin is locked into the bone plate. Standard devices well known to those skilled in the art, such as screws, pins, cables, and other devices, may be used to affix the bone to the bone plate. Once the construct is sufficiently stable, any provisional fixation pins in use may be removed from the bone.


The foregoing description of exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations to the structures and methods recited above and shown in the drawings are possible without departing from the scope or spirit of the above disclosure and the following claims. The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to enable others skilled in the art to make and utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope.

Claims
  • 1. A bone plate system for fixation of bone, the system comprising: a) a bone plate comprising a bone contacting surface, an upper surface, and a first opening extending between the bone contacting surface and the upper surface, the first opening comprising a lower portion, a non-threaded upper portion, and a threaded portion converging towards the lower portion, the threaded portion comprising threads of a first material, the lower portion comprising a smallest diameter of the first opening; andb) a first fastener comprising a head at least partially comprising a polymeric material that is softer than the first material,wherein, when the first fastener is inserted into the first opening, the threads of the first opening form threads in the polymeric material on the head of the first fastener to secure the first fastener in place at one of a plurality of possible angles within the first opening.
  • 2. The system of claim 1, wherein the polymeric material comprises polyethylene.
  • 3. The system of claim 1, further comprising a second fastener comprising a shaft for engaging bone and a head having fins, wherein, when the second fastener is inserted in the first opening, the fins on the head of the second fastener engage the threads of the first opening to secure the second fastener in place at one of a plurality of possible angles within the first opening.
  • 4. The system of claim 1, wherein the first opening comprises an axis and wherein the first opening is asymmetrical about the axis.
  • 5. The system of claim 1, wherein the upper portion is adjacent the upper surface of the plate comprises a substantially frustoconical-shaped and the lower portion is adjacent the bone contacting surface of the plate and comprises at least some of the threads.
  • 6. The system of claim 5, wherein the supper portion of the first opening comprises a ramp and a generally spherical-shaped recessed portion.
  • 7. The system of claim 5, wherein the lower portion of the first opening is tapered.
  • 8. The system of claim 1, wherein the bone plate comprises a plurality of first openings.
  • 9. The system of claim 1, wherein the bone plate further comprises a second opening extending between the bone contacting surface and the upper surface, wherein the second opening comprises a plurality of protruding fins.
  • 10. A method of reducing a fracture of a bone, the method comprising: a) reducing the fracture to bring bone fragments in close apposition;b) providing a bone plate comprising a bone contacting surface, an upper surface, and openings extending between the bone contacting and upper surfaces, wherein at least some of the openings comprise threads, the at least some of the openings comprising a lower portion, a non-threaded upper portion, and a threaded portion converging towards the lower portion, the lower portion comprising a smallest diameter of the at least some of the openings;c) compressing the bone plate against the bone with a first fastener to hold the fracture reduction; andd) inserting a second fastener into one of the openings in the bone plate comprising threads,wherein the second fastener comprises a head at least partially comprising a polymeric material, and wherein, when the second fastener is inserted into the at least some of the openings comprising threads, the threads of the opening form threads in the polymeric material of the head of the second fastener to secure the second fastener in place at one of a plurality of possible angles relative to the bone plate.
  • 11. The method of claim 10, wherein the first fastener is inserted before the second fastener.
  • 12. The method of claim 10, wherein the first fastener is inserted after the second fastener.
  • 13. A method of reducing a fracture of a bone, the method comprising: a) providing a bone plate comprising a bone-contacting surface, an upper surface, and a first and second opening extending between the bone-contacting and upper surfaces, wherein the first opening comprises a lower portion, a non-threaded upper portion, and a threaded portion converging towards the lower portion, the lower portion comprising a smallest diameter of the first opening;b) providing a first fastener comprising a head, wherein the head comprises a polymeric material;c) inserting the first fastener through the first opening and on a first side of the fracture, wherein the threads of the first opening form threads in the polymeric material on the head of the first fastener to secure the first fastener in place at one of a plurality of possible angles within the first opening; andd) inserting a second fastener through the second opening and into engagement with the bone on a second side of the fracture opposite the first side to adjust positioning of the bone and surrounding tissue.
  • 14. A bone plate system for fixation of a bone, the system comprising: a) a bone plate comprising an upper surface, a bone contacting surface, and a first opening extending between the bone contacting surface and the upper surface, wherein the first opening comprises a substantially frustoconical-shaped top portion adjacent the upper surface of the plate, a bottom portion adjacent the bone contacting surface of the plate, and a threaded portion converging towards the bottom portion and comprising threads made of a first material, wherein the top portion comprises a non-threaded portion and wherein the bottom portion comprises a smallest diameter of the first opening; andb) a first fastener comprising a head and shaft for engaging bone, wherein a portion of the head comprises a polymeric material that is softer than the first material,wherein, when the first fastener is inserted into the first opening, the threads of the first opening form threads in the polymeric material of the head of the fastener.
  • 15. The system of claim 14, wherein the polymeric material comprises polyethylene.
  • 16. The system of claim 14, wherein the first material comprises titanium, stainless steel, cobalt chrome, plastic, polyetheretherketone, polyethylene, ultra high molecular weight polyethylene, resorbable polylactic acid, polyglycolic acid, or combinations thereof.
  • 17. The system of claim 14, further comprising a second fastener comprising a shaft for engaging bone and a head comprising threads, wherein, when the second fastener is inserted into the first opening, the threads on the head of the second fastener engage with the threads of the first opening.
  • 18. The system of claim 14, further comprising a second fastener comprising a shaft for engaging bone and a head comprising a spherical portion, wherein, when the second fastener is inserted into the first opening, the spherical portion of the head abuts the top portion of the first opening.
  • 19. The system of claim 14, wherein the first opening comprises an axis and wherein the first opening is asymmetrical about the axis.
  • 20. The system of claim 14, wherein the first opening comprises an axis and wherein the top portion comprises a ramp extending from the upper surface at an angle to the axis.
  • 21. The system of claim 14, wherein the top portion of the first opening further comprises a generally spherical-shaped recessed portion.
  • 22. The system of claim 14, wherein the top portion of the first opening further comprises a threaded portion.
  • 23. The system of claim 14, wherein the bottom portion of the first opening is tapered.
  • 24. The system of claim 14, wherein the bone plate comprises a plurality of first openings.
  • 25. The system of claim 14, wherein the bone plate further comprises a second opening comprising a non-threaded opening.
  • 26. The system of claim 25, wherein the bone plate comprises a plurality of second openings.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Application Ser. No. 11/996,795 filed Jan. 25, 2008 and entitled “Polyaxial Plate,” which is a national phase application of PCT Application Serial No. PCT/US2006/028778 filed Jul. 25, 2006 and entitled “Systems and Methods for Using Polyaxial Plates,” which claims the benefit of U.S. Provisional Application Ser. No. 60/702,231, filed Jul. 25, 2005 and entitled “Locking Screw,” and this application is also a continuation-in-part of U.S. application Ser. No. 11/644,306, filed Dec. 22, 2006 and entitled “Bone Plates and Bone Plate Assemblies,” now U.S. Pat. No. 7,905,910, which is a continuation of U.S. application Ser. No. 10/673,833, filed Sep. 29, 2003 and entitled “Bone Plates and Bone Plate Assemblies,” now U.S. Pat. No. 7,179,260, the entire contents of prior applications are hereby incorporated by reference.

US Referenced Citations (329)
Number Name Date Kind
300146 Sinnett Jun 1884 A
351751 Douglas Nov 1886 A
382670 Trovillion May 1888 A
544606 Balsley Aug 1895 A
545331 Balsley Aug 1895 A
565808 Staples Aug 1896 A
575631 Brooks Jan 1897 A
583158 Upham May 1897 A
637990 Hoepner Nov 1899 A
651949 Lillie Jun 1900 A
689722 Hoover Dec 1901 A
766270 Lapham Aug 1904 A
775427 Lusted, Sr. Nov 1904 A
902040 Wyckoff Oct 1908 A
1025008 Miner Apr 1912 A
1105105 Sherman Jul 1914 A
1275810 White Aug 1918 A
1575149 Craig et al. Mar 1928 A
1755588 Bronk Apr 1930 A
1925385 Humes et al. Sep 1933 A
2010913 Bruce et al. Aug 1935 A
2133859 Hawley et al. Oct 1938 A
2152977 Schindel Apr 1939 A
2388921 Sutter et al. Nov 1945 A
2501978 Wichman Mar 1950 A
2524167 Grande Oct 1950 A
2560912 Aitto Jul 1951 A
2667194 Fischer et al. Jan 1954 A
2756791 Ferrara Jul 1956 A
3056441 Helms Oct 1962 A
3279510 Dreyer et al. Oct 1966 A
3347293 Clark Oct 1967 A
3409058 LaPointe Nov 1968 A
3547114 Haboush Dec 1970 A
3552389 Allgower et al. Jan 1971 A
3630261 Gley Dec 1971 A
3662797 Healis May 1972 A
3668972 Allgower et al. Jun 1972 A
3716050 Johnston Feb 1973 A
3739825 Knox Jun 1973 A
3741205 Markolf et al. Jun 1973 A
3744488 Cox Jul 1973 A
3779240 Kondo Dec 1973 A
3782432 Allen Jan 1974 A
3866607 Forsythe et al. Feb 1975 A
3906550 Rostoker et al. Sep 1975 A
3935762 Tudisco Feb 1976 A
RE28841 Allgower et al. Jun 1976 E
4059102 Devas Nov 1977 A
4060114 Matsushima Nov 1977 A
4096896 Engel Jun 1978 A
4219015 Steinemann Aug 1980 A
4246811 Bondhus et al. Jan 1981 A
4263904 Juder Apr 1981 A
4338926 Kummer et al. Jul 1982 A
4364382 Menen Dec 1982 A
4388921 Sutter et al. Jun 1983 A
4408601 Wenk Oct 1983 A
RE31628 Allgower et al. Jul 1984 E
4484570 Sutter et al. Nov 1984 A
4493317 Klaue Jan 1985 A
4513744 Klaue Apr 1985 A
4535658 Molinari Aug 1985 A
4564007 Coombs et al. Jan 1986 A
4565193 Streli Jan 1986 A
4573458 Lower Mar 1986 A
4683878 Carter Aug 1987 A
4704929 Osada Nov 1987 A
4794918 Wolter Jan 1989 A
4838252 Klaue Jun 1989 A
4927421 Goble et al. May 1990 A
4978349 Frigg Dec 1990 A
4988350 Herzberg Jan 1991 A
5002544 Klaue et al. Mar 1991 A
5006120 Carter Apr 1991 A
5041114 Chapman et al. Aug 1991 A
5053036 Perrin et al. Oct 1991 A
5085660 Lin Feb 1992 A
5129901 Decoste Jul 1992 A
5151103 Tepic et al. Sep 1992 A
5190544 Chapman et al. Mar 1993 A
5192281 de la Caffiniere Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5198308 Shetty et al. Mar 1993 A
5237893 Ryder et al. Aug 1993 A
5259398 Vrespa Nov 1993 A
5269784 Mast Dec 1993 A
5275601 Gogolewski et al. Jan 1994 A
5304180 Slocum Apr 1994 A
5312410 Miller et al. May 1994 A
5324290 Zdeblick et al. Jun 1994 A
5324291 Ries et al. Jun 1994 A
5356410 Pennig Oct 1994 A
5360452 Engelhardt et al. Nov 1994 A
5364398 Chapman et al. Nov 1994 A
5364399 Lowery et al. Nov 1994 A
5395374 Miller et al. Mar 1995 A
5415658 Kilpela et al. May 1995 A
5423820 Miller et al. Jun 1995 A
5423826 Coates et al. Jun 1995 A
5429641 Gotfried Jul 1995 A
5431659 Ross, Jr. et al. Jul 1995 A
5470333 Ray Nov 1995 A
5474553 Baumgart Dec 1995 A
5487743 Laurain et al. Jan 1996 A
5514138 McCarthy May 1996 A
5520690 Errico et al. May 1996 A
5522902 Yuan et al. Jun 1996 A
5527310 Cole et al. Jun 1996 A
5531143 Habermehl et al. Jul 1996 A
5531746 Errico et al. Jul 1996 A
5531748 de la Caffiniere Jul 1996 A
5534032 Hodorek Jul 1996 A
5536127 Pennig Jul 1996 A
5569253 Farris et al. Oct 1996 A
5578034 Estes Nov 1996 A
5591168 Judet et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5607426 Ralph Mar 1997 A
5607428 Lin Mar 1997 A
5643265 Errico Jul 1997 A
5647873 Errico et al. Jul 1997 A
5665088 Gil et al. Sep 1997 A
5665089 Dall et al. Sep 1997 A
5676667 Hausman Oct 1997 A
5702399 Kilpela et al. Dec 1997 A
5709686 Talos et al. Jan 1998 A
5713900 Benzel et al. Feb 1998 A
5725588 Errico et al. Mar 1998 A
5733287 Tepic et al. Mar 1998 A
5735853 Olerud Apr 1998 A
5741258 Klaue et al. Apr 1998 A
5749872 Kyle et al. May 1998 A
5769850 Chin Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5776196 Matsuzaki et al. Jul 1998 A
5788697 Kilpela et al. Aug 1998 A
5797912 Runciman et al. Aug 1998 A
5810823 Klaue et al. Sep 1998 A
5824247 Tunc Oct 1998 A
5876402 Errico Mar 1999 A
5888204 Ralph Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5902305 Beger et al. May 1999 A
5904683 Pohndorf May 1999 A
5904684 Rooks May 1999 A
5925047 Errico et al. Jul 1999 A
5935130 Kipela et al. Aug 1999 A
5935133 Wagner et al. Aug 1999 A
5938664 Winquist et al. Aug 1999 A
5954722 Bono Sep 1999 A
5960681 Anderson et al. Oct 1999 A
5961524 Crombie Oct 1999 A
5964769 Wagner et al. Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5976141 Haag et al. Nov 1999 A
6016727 Morgan Jan 2000 A
6019762 Cole Feb 2000 A
6022352 Vandewalle Feb 2000 A
6053921 Wagner et al. Apr 2000 A
6096040 Esser Aug 2000 A
6129730 Bono et al. Oct 2000 A
6176861 Bernstein et al. Jan 2001 B1
6183475 Lester et al. Feb 2001 B1
6193721 Michelson Feb 2001 B1
6206881 Frigg et al. Mar 2001 B1
6214049 Gayer et al. Apr 2001 B1
6228085 Theken et al. May 2001 B1
6235033 Brace May 2001 B1
RE37249 Leibinger et al. Jun 2001 E
6258092 Dall Jul 2001 B1
6273889 Richelsoph Aug 2001 B1
6302001 Karle Oct 2001 B1
6302883 Bono Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6306140 Siddiqui Oct 2001 B1
6309393 Tepic et al. Oct 2001 B1
6322562 Wolter Nov 2001 B1
6342055 Eisermann et al. Jan 2002 B1
6355041 Martin et al. Mar 2002 B1
6355043 Adam Mar 2002 B1
6358250 Orbay Mar 2002 B1
6361537 Anderson Mar 2002 B1
6364885 Kilpela et al. Apr 2002 B1
6379359 Dahners Apr 2002 B1
6391030 Wagner et al. May 2002 B1
6413259 Lyons et al. Jul 2002 B1
6428542 Michelson Aug 2002 B1
6436100 Berger Aug 2002 B1
6440135 Orbay et al. Aug 2002 B2
6454769 Wagner Sep 2002 B2
6454770 Klaue Sep 2002 B1
6468278 Muckter Oct 2002 B1
6475218 Gournay et al. Nov 2002 B2
6506191 Joos Jan 2003 B1
6520965 Chervitz et al. Feb 2003 B2
6524238 Velikaris et al. Feb 2003 B2
6527776 Michelson Mar 2003 B1
6558387 Errico May 2003 B2
6575975 Brace et al. Jun 2003 B2
6595993 Donno et al. Jul 2003 B2
6595994 Kilpela et al. Jul 2003 B2
6605090 Trieu et al. Aug 2003 B1
6623486 Weaver et al. Sep 2003 B1
6669700 Farris et al. Dec 2003 B1
6669701 Steiner et al. Dec 2003 B2
6682533 Dinsdale et al. Jan 2004 B1
6684741 Blackston Feb 2004 B2
6689133 Morrison et al. Feb 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730091 Pfefferle et al. May 2004 B1
6755829 Bono Jun 2004 B1
6767351 Orbay et al. Jul 2004 B2
6780186 Errico Aug 2004 B2
6821278 Frigg et al. Nov 2004 B2
6866665 Orbay Mar 2005 B2
6893443 Frigg et al. May 2005 B2
6893444 Orbay May 2005 B2
6916320 Michelson Jul 2005 B2
6945975 Dalton Sep 2005 B2
6955677 Dahners Oct 2005 B2
6960213 Chervitz et al. Nov 2005 B2
6969390 Michelson Nov 2005 B2
6973860 Nish Dec 2005 B2
6974461 Wolter Dec 2005 B1
6979334 Dalton Dec 2005 B2
7073415 Casutt et al. Jul 2006 B2
7074221 Michelson Jul 2006 B2
7128744 Weaver et al. Oct 2006 B2
7172593 Trieu et al. Feb 2007 B2
7179260 Gerlach et al. Feb 2007 B2
7230039 Trieu et al. Jun 2007 B2
7250053 Orbay Jul 2007 B2
7250054 Allen et al. Jul 2007 B2
7255701 Allen et al. Aug 2007 B2
7282053 Orbay Oct 2007 B2
7294130 Orbay Nov 2007 B2
7341589 Weaver et al. Mar 2008 B2
7419714 Magerl et al. Sep 2008 B1
7695472 Young Apr 2010 B2
7766948 Leung Aug 2010 B1
20010037112 Brace et al. Nov 2001 A1
20010047174 Donno et al. Nov 2001 A1
20020013587 Winquist et al. Jan 2002 A1
20020045901 Wagner et al. Apr 2002 A1
20020058940 Frigg et al. May 2002 A1
20020058943 Kilpela et al. May 2002 A1
20020115742 Trieu et al. Aug 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020161370 Frigg et al. Oct 2002 A1
20030040749 Grabowski et al. Feb 2003 A1
20030057590 Loher et al. Mar 2003 A1
20030060827 Coughln Mar 2003 A1
20030105462 Haider Jun 2003 A1
20030183335 Winniczek et al. Oct 2003 A1
20040010257 Cachia et al. Jan 2004 A1
20040030342 Trieu et al. Feb 2004 A1
20040044345 DeMoss et al. Mar 2004 A1
20040059334 Weaver et al. Mar 2004 A1
20040059335 Weaver et al. Mar 2004 A1
20040073218 Dahners Apr 2004 A1
20040087954 Allen et al. May 2004 A1
20040097942 Allen et al. May 2004 A1
20040138666 Molz, IV et al. Jul 2004 A1
20040181228 Wagner et al. Sep 2004 A1
20040199169 Koons et al. Oct 2004 A1
20040215195 Shipp et al. Oct 2004 A1
20040220570 Frigg Nov 2004 A1
20040236332 Frigg Nov 2004 A1
20040260306 Fallin et al. Dec 2004 A1
20050010220 Casutt et al. Jan 2005 A1
20050010226 Grady, Jr. et al. Jan 2005 A1
20050043736 Mathieu et al. Feb 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050070904 Gerlach et al. Mar 2005 A1
20050080421 Weaver et al. Apr 2005 A1
20050107796 Gerlach et al. May 2005 A1
20050149026 Butler et al. Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050192580 Dalton Sep 2005 A1
20050234457 James et al. Oct 2005 A1
20050261688 Grady, Jr. et al. Nov 2005 A1
20050277937 Leung et al. Dec 2005 A1
20050283154 Orbay et al. Dec 2005 A1
20060004361 Hayeck et al. Jan 2006 A1
20060009771 Orbay et al. Jan 2006 A1
20060095040 Schlienger et al. May 2006 A1
20060116678 Impellizzeri Jun 2006 A1
20060122602 Konieczynski et al. Jun 2006 A1
20060129148 Simmons et al. Jun 2006 A1
20060129151 Allen et al. Jun 2006 A1
20060149265 James et al. Jul 2006 A1
20060165400 Spencer Jul 2006 A1
20060167464 Allen et al. Jul 2006 A1
20060200147 Ensign et al. Sep 2006 A1
20060235400 Schneider Oct 2006 A1
20060235410 Ralph et al. Oct 2006 A1
20060259039 Pitkanen et al. Nov 2006 A1
20070010817 de Coninck Jan 2007 A1
20070043366 Pfefferle et al. Feb 2007 A1
20070093836 Derouet Apr 2007 A1
20070161995 Trautwein et al. Jul 2007 A1
20070162016 Matityahu Jul 2007 A1
20070162020 Gerlach et al. Jul 2007 A1
20070185488 Pohjonen et al. Aug 2007 A1
20070213828 Trieu et al. Sep 2007 A1
20070233106 Horan et al. Oct 2007 A1
20070260244 Wolter Nov 2007 A1
20070270691 Bailey et al. Nov 2007 A1
20070270832 Moore Nov 2007 A1
20070270833 Bonutti et al. Nov 2007 A1
20070276383 Rayhack Nov 2007 A1
20080021474 Bonutti et al. Jan 2008 A1
20080039845 Bonutti et al. Feb 2008 A1
20080086129 Lindemann et al. Apr 2008 A1
20080140130 Chan et al. Jun 2008 A1
20080154367 Justis et al. Jun 2008 A1
20080154368 Justis et al. Jun 2008 A1
20080154373 Protopsaltis et al. Jun 2008 A1
20080167717 Trieu et al. Jul 2008 A9
20080208259 Gilbert et al. Aug 2008 A1
20080300637 Austin et al. Dec 2008 A1
20090024161 Bonutti et al. Jan 2009 A1
20090076553 Wolter Mar 2009 A1
20090088807 Castaneda et al. Apr 2009 A1
20090143824 Austin et al. Jun 2009 A1
20090149888 Abdelgany Jun 2009 A1
20090192549 Sanders et al. Jul 2009 A1
Foreign Referenced Citations (132)
Number Date Country
754857 Nov 2002 AU
2 047 521 Jan 1992 CA
2 408 327 Mar 2001 CA
2 536 960 Mar 2005 CA
2536960 Mar 2005 CA
611 147 May 1979 CH
1331572 Jan 2002 CN
1373646 Oct 2002 CN
1380043 Nov 2002 CN
1188086 Feb 2005 CN
101022767 Aug 2007 CN
2 602 900 Aug 1978 DE
3 513 600 Oct 1986 DE
3 804 749 Mar 1989 DE
3 832 343 Mar 1990 DE
9 000 161 Apr 1990 DE
323214 Jan 1992 DE
4 341 980 Jun 1995 DE
4 343 117 Jun 1995 DE
4 438 261 Sep 1995 DE
4 438 264 Mar 1996 DE
19629011 Jan 1998 DE
198 58 889 Jun 2000 DE
199 62 317 Mar 2001 DE
102004035 546 Feb 2006 DE
0 201 024 Nov 1986 EP
0 207 884 Jan 1987 EP
0 274 713 Jul 1988 EP
0 355 035 Feb 1990 EP
0 486 762 May 1992 EP
0 530 585 Mar 1993 EP
0 705 572 Apr 1996 EP
0 468 192 Sep 1996 EP
0799124 Oct 1997 EP
0 828 459 Mar 1998 EP
0 760 632 Sep 2000 EP
1093385 Apr 2001 EP
1 143 867 Oct 2001 EP
1 169 971 Jan 2002 EP
1 211 992 Jun 2002 EP
1330209 Jul 2003 EP
1 364 623 Nov 2003 EP
1368073 Dec 2003 EP
1 404 492 Apr 2004 EP
1 211 994 Apr 2005 EP
1 211 993 Oct 2005 EP
1 776 055 Jan 2006 EP
1 649 819 Apr 2006 EP
1 658 015 May 2006 EP
1711114 Oct 2006 EP
1718229 Nov 2006 EP
1764054 Mar 2007 EP
1813292 Aug 2007 EP
1857073 Nov 2007 EP
1931268 Jun 2008 EP
1988837 Nov 2008 EP
2019639 Feb 2009 EP
2 233 973 Jan 1975 FR
2 254 298 Jul 1975 FR
2 405 062 May 1979 FR
2 405 705 May 1979 FR
2 405 706 May 1979 FR
2 496 429 Jun 1982 FR
2 501 033 Oct 1985 FR
2 501 032 Feb 1987 FR
2 667 913 Apr 1992 FR
2 698 261 Nov 1992 FR
2 706 763 Dec 1994 FR
2 739 151 Mar 1997 FR
2 757 370 Feb 1999 FR
2 802 082 Jun 2001 FR
2 831 792 May 2003 FR
2890848 Mar 2007 FR
580571 Sep 2006 GB
2003509107 Mar 2003 JP
2 234 878 Jul 2001 RU
1279626 Dec 1986 SU
477687 Mar 2002 TW
WO 8904150 May 1989 WO
WO 9007304 Jul 1990 WO
WO 9609014 Mar 1996 WO
WO 9619336 Jun 1996 WO
WO 9709000 Jun 1996 WO
WO 9625892 Aug 1996 WO
WO 9629948 Oct 1996 WO
WO 9834553 Aug 1998 WO
WO 9834556 Aug 1998 WO
WO 9905968 Feb 1999 WO
WO 9925266 May 1999 WO
WO 9961081 Dec 1999 WO
WO 0018309 Apr 2000 WO
WO 0019264 Apr 2000 WO
WO 0036984 Jun 2000 WO
WO 0053110 Sep 2000 WO
WO 0053111 Sep 2000 WO
WO 0119264 Mar 2001 WO
WO 0119267 Mar 2001 WO
WO 0119268 Mar 2001 WO
WO 0178615 Oct 2001 WO
WO 0191660 Dec 2001 WO
WO 0200127 Jan 2002 WO
WO 0234159 May 2002 WO
WO 02058574 Aug 2002 WO
WO 02068009 Sep 2002 WO
WO 02096309 Dec 2002 WO
WO 03006210 Jan 2003 WO
WO 03106110 Dec 2003 WO
WO 2004032726 Apr 2004 WO
WO 2004032751 Apr 2004 WO
WO 2004086990 Oct 2004 WO
WO 2005018471 Mar 2005 WO
WO 2005018472 Mar 2005 WO
WO 2005032386 Apr 2005 WO
WO 2005062902 Jul 2005 WO
WO 2005079685 Sep 2005 WO
WO 2006007965 Jan 2006 WO
WO 2006039636 Apr 2006 WO
WO 2006068775 Jun 2006 WO
WO 2007014192 Feb 2007 WO
WO 2007014279 Feb 2007 WO
WO 2007025520 Mar 2007 WO
WO 2007041686 Apr 2007 WO
WO 2007092869 Aug 2007 WO
WO 2007130840 Nov 2007 WO
WO 2008022136 Feb 2008 WO
WO 2008033742 Mar 2008 WO
WO 2008064211 May 2008 WO
WO 2008077137 Jun 2008 WO
WO 2008079846 Jul 2008 WO
WO 2008079864 Jul 2008 WO
WO 2008116203 Sep 2008 WO
WO 2009029908 Mar 2009 WO
Related Publications (1)
Number Date Country
20090312803 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
60702231 Jul 2005 US
Continuations (2)
Number Date Country
Parent 10673833 Sep 2003 US
Child 11644306 US
Parent 12484527 US
Child 11644306 US
Continuation in Parts (2)
Number Date Country
Parent 11644306 Dec 2006 US
Child 12484527 US
Parent 11996795 US
Child 12484527 US