The present invention relates generally to bone plates for fixation of long bones. More specifically, the present invention relates to bone plates for fixation of multiple-part and dislocated fractures of the long bones, such as those of the proximal humerus.
In recent years, a common cause of fractures of the proximal humerus has been high-energy trauma. The occurrence of this type of fracture increases with age because the bone structure in the area of the proximal humerus degrades over time, such that only the edge zone of the bone in the region of the proximal humerus remains intact. In the event of a fall on an outstretched arm at advanced age, the bone commonly breaks in the area of the proximal humerus.
One type of bone plate known in the art includes a head section and an elongated shaft portion. The head portion includes two pairs of holes forming a generally T-shaped configuration on the head portion. One disadvantage of this type of bone plate is that the hole configuration of the head portion may inhibit inserting screws into the intact bone structure located at the edge zone of the proximal humerus. Moreover, the known bone plates may lack angularly stable options in the plate holes. When using such a bone plate, it may be pressed by bone screws against the bone, a process called compression osteosynthesis. In compression osteosynthesis, the forces which arise are transferred via friction between the implant or plate and the bone, with the bone bearing most of the load. Under dynamic conditions, the axial pressure applied on the bone screws may cause the bone screws to tear out of the bone, and may result in a loss of the stability of the plate-bone construct. In order to achieve angularly-stable repositioning, some implants from the prior art required blades. The prior art surgical technique of using blades, however, requires greater time expenditure and is complex to use. Therefore, there remains a need in the art for bone plates having angular stability between the bone plate and the screws, simple handling, and optimum anatomic matching to the bone with no impediment to the relevant anatomic structures of the bone.
The present invention is directed to a bone plate for fixation of bone fractures, for examples, fractures of the proximal humerus in which angularly stable osteosynthesis can be achieved. The bone plate may be used for both the left and also for the right humerus and may be optimally matched to the shape of a healthy proximal humerus. A first embodiment of the bone plate may include an elongated shaft portion having a first width and a head portion connected to the shaft portion having a second width greater than the first width. The head portion and the shaft portion may define a common longitudinal axis. At least one first screw hole may be located in the head portion, at least one second screw hole may be located in the shaft portion, and at least one of the first and second holes may be configured to engage a head of a bone screw to form an angularly stable connection with the bone screw.
In one preferred embodiment, at least one of the first and second holes may be at least partially threaded, and the thread may have a pitch of about 0.5 mm to about 1.1 mm. In another preferred embodiment, the thread may have a pitch of about 0.7 mm to about 0.9 mm. In yet another embodiment, the thread may be double threaded.
In an alternative embodiment, at least one of the first and second holes includes at least a partial peripheral groove for engaging a head of a bone screw. The peripheral groove may be substantially wedge shaped.
The bone plate according to the present invention may have a thickness ranging from about 1.7 mm to about 2.3 mm. In another embodiment, the bone plate may have a thickness ranging from about 1.9 mm to about 2.1 mm.
The head portion of the bone plate according to the present invention may be connected to the shaft portion at a transition area having a third width that increases from the first width to the second width. In one preferred embodiment the third width widens exponentially.
The bone plate of the present invention may also have a portion of the shaft portion that is curved along the longitudinal axis. The portion of the shaft portion that is curved may preferably be in the form of an elliptical arc. In a preferred embodiment, the elliptical arc may be defined by a portion of an ellipse having a major axis with a length in the range of between about 150 mm and about 170 mm. Alternatively, the length of the major axis may be in the range from about 157 mm to about 163 mm. The elliptical arc may be further and/or alternatively defined by a portion of an ellipse having a minor axis with a length in the range of between about 60 mm and about 80 mm. Again alternatively, the length of the minor axis may range of between about 67 mm and about 73 mm.
According to the present invention, the bone plate may include a distal end of the shaft portion which lays in a first plane, and the head portion may lay in a second plane that is substantially parallel to the first plane. In yet another preferred embodiment, at least a portion of the bone plate may have a curvature that runs transversely to the longitudinal axis. The curvature may have a radius of curvature in the range from about 18 mm to about 22 mm. Preferably, the curvature may run substantially over the entire length of the bone plate.
The bone plate according to the present invention may further comprise an upper surface and a lower surface, wherein the longitudinal axis generally divides at least one of the upper and lower surfaces in half. In addition, at least a first pair of the first holes may be symmetrically disposed about the longitudinal axis and at least a second pair of first holes may be asymmetrically disposed about the longitudinal axis. The head portion may be connected to the shaft portion at a transition portion, and the at least one first pair of first holes may be located farther from the transition portion than is the at least one second pair of the first holes. In addition, at least one of the at least one second holes may define a central axis that is substantially perpendicular to the bone plate.
According to another embodiment of the bone plate according to the present invention, the bone plate comprises an elongated shaft portion and a widened head portion, the shaft portion and the head portion defining a common longitudinal axis extending substantially centrally along the bone plate. A first pair of screw holes may be located in the head portion, and the first pair of holes may include a first hole having a first central axis and a second hole having a second central axis, wherein the first and second holes are asymmetrically disposed about the longitudinal axis. A second pair of screw holes may be located in the head portion, and the second pair of holes may include a third hole having a third central axis and a fourth hole having a fourth central axis, wherein the third and fourth holes are symmetrically disposed about the longitudinal axis. The first central axis may lay in a first plane and the second central axis may lay in a second plane that is substantially parallel to the first plane. When the first central axis and the second central axis are projected onto a third plane substantially orthogonal to the longitudinal axis, the first central axis and the second central axis may intersect to form an acute angle. Preferably, the acute angle is between about 50° and about 60°. In yet another preferred embodiment, the acute angle may be between about 46° and about 54°.
According to the present invention, the third and fourth central axes may be substantially parallel to one another. Moreover, the bone plate may include an upper surface and a lower surface, wherein preferably, at least one of the third and fourth central axis forms an obtuse angle with respect to the lower surface. The obtuse angle may preferably range from about 92° to about 98°. In an alternative embodiment, the obtuse angle may range from about 94° to about 96°.
Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:
Referring to
A large number of screw holes 9, 10. 16, 17, and 24 may be located in the elongated shaft 1 and in the head 2. In one preferred embodiment, the screw holes 24 provided in the elongated shaft 1 may have an inside thread 28 intended to engage a head of a bone screw. By using screws with a threaded bead, an angularly stable bone construct is formed which can maintain the hold of the bone plate even under dynamic conditions. Preferably, the inside thread may be multithreaded. for example, double-threaded, as shown in
The screw holes 9, 10, 16, 17, located in the head 2 of the bone plate P may also have an inside thread 27 for engaging a head of a bone screw. Thread 27 is preferably multithreaded, for example, double-threaded (similar to the configuration discussed above with reference to
The thread pitch of inside threads 27, 28 or the partially peripheral wedge-shaped groove or key is preferably about 0.8 mm, although other pitches are possible. This relatively small thread pitch may allow secure anchoring of the screw head in a thin section of the plate P. For example, a section having a thickness in the range from about 1 mm to about 2 mm. Accordingly, the thickness of the plate may be made very thin without adversely affecting the stability of the plate-screw construct. The thickness of the bone plate preferably is about 2 mm.
As shown in
At least a portion of bone plate P may have a curvature which runs transversely to the central axis 3. Preferably, the curvature has a radius of curvature in the range of about 18 mm to about 22 mm. As shown in the exemplary embodiment of
As shown in
As shown in
While preferred embodiments and features of the present invention have been disclosed herein, it will be appreciated that numerous modifications and embodiments may be devised by those skilled in the art. It is intended that the appended claims cover all such modifications and embodiments as fall within the scope of such claims and that the claims not be limited to or by such preferred embodiments or features.
The present application is a continuation of the U.S. National Stage designation of copending International Patent Application No. PCT/CH01/00327, filed May 28, 2001, the entire content of which is expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3552389 | Allgower et al. | Jan 1971 | A |
3596656 | Kaute | Aug 1971 | A |
3630261 | Gley | Dec 1971 | A |
3668972 | Allgower et al. | Jun 1972 | A |
3716050 | Johnston | Feb 1973 | A |
3779240 | Kondo | Dec 1973 | A |
RE28841 | Allgower et al. | Jun 1976 | E |
4219015 | Steinemann | Aug 1980 | A |
4338926 | Kummer et al. | Jul 1982 | A |
4408601 | Wenk | Oct 1983 | A |
RE31628 | Allgower et al. | Jul 1984 | E |
4493317 | Klaue | Jan 1985 | A |
4513744 | Klaue | Apr 1985 | A |
4565193 | Streli | Jan 1986 | A |
4838252 | Klau | Jun 1989 | A |
4867144 | Karas et al. | Sep 1989 | A |
4927421 | Goble et al. | May 1990 | A |
4957497 | Hoogland et al. | Sep 1990 | A |
4988350 | Herzberg | Jan 1991 | A |
5002544 | Klaue et al. | Mar 1991 | A |
5006120 | Carter | Apr 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5085660 | Lin | Feb 1992 | A |
5108399 | Eitenmuller et al. | Apr 1992 | A |
5129901 | Decoste | Jul 1992 | A |
5151103 | Tepic et al. | Sep 1992 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5259398 | Vrespa | Nov 1993 | A |
5269784 | Mast | Dec 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5304180 | Slocum | Apr 1994 | A |
5324290 | Zdeblick et al. | Jun 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5429641 | Gotfried | Jul 1995 | A |
5487741 | Maruyama et al. | Jan 1996 | A |
5514138 | McCarthy | May 1996 | A |
5534027 | Hodorek | Jul 1996 | A |
5591168 | Judet et al. | Jan 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5607428 | Lin | Mar 1997 | A |
5674222 | Berger et al. | Oct 1997 | A |
5683460 | Persoons | Nov 1997 | A |
5702399 | Kilpela et al. | Dec 1997 | A |
5709686 | Talos et al. | Jan 1998 | A |
5741258 | Klaue et al. | Apr 1998 | A |
5749872 | Kyle et al. | May 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5810823 | Klaue et al. | Sep 1998 | A |
5863201 | Lazzara et al. | Jan 1999 | A |
5938664 | Winquist et al. | Aug 1999 | A |
5954722 | Bono | Sep 1999 | A |
5968047 | Reed | Oct 1999 | A |
6022352 | Vandewalle | Feb 2000 | A |
6096040 | Esser | Aug 2000 | A |
6129730 | Bono et al. | Oct 2000 | A |
6183475 | Lester et al. | Feb 2001 | B1 |
6206881 | Frigg et al. | Mar 2001 | B1 |
6228085 | Theken et al. | May 2001 | B1 |
6283969 | Grusin | Sep 2001 | B1 |
6306136 | Baccelli | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
6440135 | Orbay et al. | Aug 2002 | B2 |
6454770 | Klaue | Sep 2002 | B1 |
6508819 | Orbay | Jan 2003 | B1 |
6527776 | Michelson | Mar 2003 | B1 |
6572622 | Schafer et al. | Jun 2003 | B1 |
D479331 | Pike et al. | Sep 2003 | S |
6623486 | Weaver et al. | Sep 2003 | B1 |
6669701 | Steiner et al. | Dec 2003 | B2 |
6712820 | Orbay | Mar 2004 | B2 |
6719759 | Wagner et al. | Apr 2004 | B2 |
20020156474 | Wack et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
611147 | May 1979 | CH |
2102729 | Apr 1992 | CN |
2169386 | Jun 1994 | CN |
43 41 980 | Jun 1995 | DE |
43 43 117 | Jun 1995 | DE |
44 38 264 | Mar 1996 | DE |
93 21 544 | Oct 1999 | DE |
0 207 884 | Jan 1987 | EP |
1 468 655 | Oct 2004 | EP |
2233973 | Jan 1975 | FR |
2405062 | May 1979 | FR |
2405705 | May 1979 | FR |
2405706 | May 1979 | FR |
2496429 | May 1979 | FR |
1279626 | Dec 1986 | SU |
WO 9709000 | Mar 1997 | WO |
WO 0053110 | Sep 2000 | WO |
WO 0053111 | Sep 2000 | WO |
WO 0119267 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040167522 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CH01/00327 | May 2001 | US |
Child | 10721895 | US |