Bone positioning and cutting system and method

Information

  • Patent Grant
  • 11523845
  • Patent Number
    11,523,845
  • Date Filed
    Thursday, June 9, 2022
    2 years ago
  • Date Issued
    Tuesday, December 13, 2022
    a year ago
Abstract
A method of performing a bunion surgery may involve positioning a first portion of a bone positioning device over a first cuneiform and positioning a second portion of the bone positioning device over a first metatarsal with the bone positioning device extending across a joint separating the two bones. The second portion of the bone positioning device can be adjusted relative to the first portion about a first axis and about a second axis. The method may involve moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis and the second axis, thereby moving the first metatarsal relative to the first cuneiform in a first plane and a second plane. The method may also involve fixing a position of the first metatarsal relative to the first cuneiform with a bone connector.
Description
TECHNICAL FIELD

This disclosure generally relates to devices and methods for positioning and cutting bones.


BACKGROUND

In various surgical procedures, it can be necessary to cut one or more bones. Success of such surgical procedures may often times be a function of the accuracy of the cut(s) being made to the one or more bones. Accomplishing accurate cuts can be especially complicated where surgical procedures involve cutting one or more bones that are relatively small as compared to bones in other locations of a surgical patient's anatomy. Exemplary surgical procedures involving cuts to one or more relatively small bones can include surgical procedures involving a foot or hand. To help facilitate accurate cuts to one or more bones, it may be useful to position the one or more bones to be cut in a manner that is conducive to a particular cut.


SUMMARY

One embodiment includes a bone positioning device. The embodiment of the bone positioning device can include at least one fixation pin for attachment to a first bone and at least one fixation pin for attachment to a second bone. A first block having at least one aperture can be included for slidably receiving a fixation pin(s), and a second block having at least one aperture can be included for slidably receiving a fixation pin(s). A multi-axis joint can connect the first block and the second block, where the multi-axis joint allows the first and second blocks to move with respect to each other about more than one axis.


Another embodiment includes a method for fixing an orientation of a first bone with respect to a second bone. The embodiment of the method can include attaching at least one fixation pin to a first bone and attaching at least one fixation pin to a second bone. At least one fixation pin can be inserted within a respective aperture of a first block, and at least one fixation pin can be inserted within a respective aperture of a second block. The first block can be positioned along and about the fixation pin(s) and a set screw(s) can be actuated to fix a position of the first block along and about the fixation pin(s), and similarly the second block can be positioned along and about the fixation pin(s) and a set screw(s) can be actuated to fix a position of the second block along and about the fixation pin(s). The position of the first block can be adjusted with respect to the second block about at least a first axis and a second axis. A set screw can be actuated to fix a position about the first axis, and a set screw can be actuated to fix a position about the second axis.


A further embodiment includes a bone cutting guide. The embodiment of the bone cutting guide can include a plate defining a plane, a block having a guiding surface integral with or coupled to the plate, with the guiding surface being parallel to the plane and being spaced laterally therefrom. A handle can also be included extending from the plate.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not necessarily to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.



FIG. 1 is a perspective view of a bone positioning device according to an embodiment of the invention;



FIG. 2 is a top plan view of the bone positioning device of FIG. 1;



FIG. 3 is a side plan view of the bone positioning device of FIG. 1;



FIG. 4 is a perspective cross-sectional view of the bone positioning device of FIG. 1;



FIG. 5 is a perspective view of a bone positioning device attached to bones in a skewed position according to an embodiment of the invention;



FIG. 6 is a top view of the bone positioning device of FIG. 5;



FIG. 7 is a side view of the bone positioning device of FIG. 5;



FIG. 8 is a side view of the bone positioning device of FIG. 5;



FIG. 9 is a perspective view of a bone cutting guide according to an embodiment of the invention;



FIG. 10 is a perspective view of a bone cutting guide according to an embodiment of the invention in contact with a saw blade; and



FIG. 11 is a side plan view of the bone cutting guide and saw blade of FIG. 10.





DETAILED DESCRIPTION

The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements, and all other elements employ that which is known to those of ordinary skill in the field of the invention. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.


Embodiments of the invention include a bone positioning device. Embodiments of the bone positioning device can be useful for temporarily fixing bones in a desired position during a surgical procedure, such as a bone alignment, osteotomy, and/or fusion procedure. Such a procedure may be performed, for example, on bones (e.g., adjacent bones separated by a joint or different portions of a single bone) in the foot or hand. In one example, the procedure can be performed to correct an alignment between a metatarsal (e.g. a first metatarsal) and a cuneiform (e.g., a first cuneiform), such as a bunion correction. An example of such a procedure is a Lapidus procedure. In another example, the procedure can be performed by modifying an alignment of a metatarsal (e.g. a first metatarsal). An example of such a procedure is a Basilar metatarsal osteotomy procedure.


As shown in FIGS. 1-4, the bone positioning device 10 can include at least one fixation pin, such as a first fixation pin 20, for attachment to a first bone 24. At least one fixation pin, such as a second fixation pin 30, can be provided for attachment to a second bone 34, such as an adjacent bone separated by a joint or different portions of a single bone. As shown best in FIG. 4, a first block 40 having a first aperture 50 can slidably receive the first fixation pin 20, and a second block 60 having a second aperture 70 can slidably receive the second fixation pin 30. The first and second apertures 50, 70 can allow the first and second blocks 40, 60 to slide along a longitudinal axis of the first and second fixation pins 20, 30, respectively. The first and second apertures 50, 70 can also allow the first and second blocks 40, 60 to rotate about the longitudinal axis of the first and second fixation pins 20, 30, respectively. In some embodiments, each of the first and second fixation pins 20, 30 are generally cylindrical and have a distal portion and a proximal portion, with the distal portion threaded for retention within the respective first or second bone, while the proximal portion is unthreaded for both sliding within the respective first or second aperture and free rotational movement within the respective first or second aperture. In some embodiments, the proximal portion has a uniform diameter, such that it does not contain a flared or “head” portion. In such embodiments, the first and second blocks can be positioned on the first and second fixation pins before or after the pins are engaged with bone.


Again as shown best in FIG. 4, a multi-axis joint 80 can be provided to connect the first block 40 and the second block 60 and located adjacent to a joint 84 between the first and second bones. In some embodiments, the multi-axis joint 80 allows the first block 40 and the second block 60 to move with respect to each other about more than one axis. In certain embodiments, the multi-axis joint 80 allows the first block 40 and the second block 60 to move with respect to each other about the three cardinal planes (i.e., X, Y, and Z axes). In the embodiment shown, the multi-axis joint 80 allows for angulation in all directions and rotation between the first and second blocks. FIGS. 5-8 depict an exemplary embodiment of the bone positioning device 10 attached to first and second bones 24, 34, where the first and second bones are skewed relative to each other. In this particular embodiment, a longitudinal axis of second bone 34 is skewed about 15 degrees relative to a longitudinal axis of first bone 24.


The multi-axis joint can include any suitable structure for allowing desired adjustments about more than one axis, such as desired adjustments about three axes. In some embodiments, with reference to FIG. 4, the multi-axis joint 80 includes a link 90 having a first end 94 rotatably connected to the first block 40 and a second end 98 rotatably connected to the second block 60. Such a multi-axis joint allows for the movement about the various axes discussed above at both the first end and the second end. In the embodiment shown, the first end 94 includes a first ball received within a first socket of the first block 40, and the second end 98 includes a second ball received within a second socket of the second block 60.


Some embodiments of the device allow the relative positions of the first and second bones to be fixed after a desired orientation has been achieved. For example, a first set screw 100 can extend through the first block 40 into the first aperture 50 and be positioned against the first fixation pin 20, for fixation of the first block on a longitudinal axis of the first fixation pin and/or about the longitudinal axis of the first fixation pin. Further, a second set screw 110 can extend through the second block 60 into the second aperture 70 and be positioned against the second fixation pin 30, for fixation of the second block on a longitudinal axis of the second fixation pin and/or about the longitudinal axis of the second fixation pin. In certain embodiments, the first and second set screws are positioned perpendicular to the first and second fixation pins. As shown in FIGS. 1-3, additional set screws 120, 130 extending through the first and second blocks can be positioned opposite of the first and second set screws, respectively. Such oppositely positioned set screws may facilitate use of the bone positioning device on a left foot or a right foot depending on a particular surgical procedure.


Set screws can also be provided to fix positions across the multi-axis joint. In the embodiment shown in FIG. 4, a first end set screw 140 extends through the first block 40 and is positioned against the first end 94 of the link 90. Further, a second end set screw 150 is shown extending through the second block 60 and positioned against the second end 98 of the link 90.


The set screws can include any structure suitable to fix the relative positions of the components described herein. In some embodiments, the set screws have a threaded connection with the blocks. Further, as shown, they can include a recess with a non-circular surface. Such a recess is useful for engagement with a driving tool, such as a hex-driver.


In some embodiments, the device can be used to apply a compression force between two adjacent bones, or different portions of a single bone, while the bones are held in desired alignment and/or to facilitate a desired alignment between the bones. Such a compression force is useful for certain surgical procedures, such as bone fusions. As shown in FIG. 4, in some embodiments the device 10 includes a compression screw 160 operable to exert a compression force between first and second bones 24, 34 connected to first and second fixation pins 20, 30, respectively. In the embodiment shown, the compression screw 160 is generally perpendicular to the fixation pins and is threadingly received within a block and positioned to act against one of the fixation pins.


One of the blocks can be adapted to allow for relative movement to exert the compression force. In the embodiment shown in FIG. 4, one of the blocks (e.g., the first block 40) has a first portion 170 slidingly connected to second portion 180. An aperture (e.g., the first aperture 50) extends through the first portion and the second portion. In this embodiment, the first aperture has a first cross-sectional area in the first portion and a second cross-sectional area in the second portion, and the first cross-sectional area is smaller than the second cross-sectional area. The set screw 100 can extend through the first portion 170. The compression screw 160 can extend through the second portion 180. Upon actuation, the compression screw 160 will act against the fixation pin 20 and will pull the second portion 180 of the block 40 away from the fixation pin 20. The force will be transmitted through the multi-axis joint 80 through the other block 60 and fixation pin 30, thereby applying a compression force that tends to press together leading surfaces (e.g., interfacing surfaces) of the first and second bones 24, 34.


Some embodiments include a bone cutting guide. Such a guide can be useful for guiding the cutting of bone, such as after a position of the bone has been fixed by the device described above. Bone cutting may be useful, for example, to facilitate contact between leading edges of adjacent bones or different portions of a single bone, such as in a bone alignment and/or fusion procedure.


An embodiment of a bone cutting guide is shown in FIGS. 9-11. In the embodiment shown, the guide 200 includes a plate 210 that defines a plane, a block 230, and a handle 240 extending from the block 230. As shown, the handle extends from the block 230 at an angle of between 30 and 60 degrees (e.g., 45 degrees) with respect to the plane. The plate 210 can include a top edge, a bottom edge opposite of the top edge, and first and second opposite side surfaces. In the embodiment shown in FIG. 9, the block 230 can include a surface 250 parallel to the plate 210 and offset from the plate by a distance (e.g., 1-20 millimeters). As shown in FIGS. 10 and 11, a cutting tool 260, such as a saw blade, may be placed in apposition to the surface 250 to guide cutting in a plane parallel to the plate and offset from it by a distance (e.g., a distance the surface 250 if offset from the plate 210).


In use, the bottom edge of the plate 210 can be placed such that it extends into a joint space or resected portion between the first bone 24 and a second bone 34. The surface 250 can provide a cutting tool guide surface operable to guide a cutting tool to cut a leading edge of a bone in a plane parallel to the plate 210.


Embodiments of the invention also include methods of temporarily fixing the orientation of a first bone with respect to a second bone, such as during a surgical procedure, using a bone positioning device. In some embodiments, the method includes a step of attaching a first fixation pin slidably and rotatingly received within a first aperture of a first block to a first bone and attaching a second fixation pin slidably and rotatingly received within a second aperture of a second block to a second bone. The method can also include the steps of positioning the first block along the first fixation pin and actuating a first set screw to fix a position of the first block along the first fixation pin. Likewise, the method can include the steps of positioning the second block along the second fixation pin and actuating a second set screw to fix a position of the second block along the second fixation pin. In some embodiments, the method can include the steps of adjusting the position of the first block with respect to the second block about at least a first axis and a second axis and actuating a third set screw to fix a position about the first axis and actuating a fourth set screw to fix a position about the second axis. In certain embodiments, the method can also include actuating a compression screw to apply a compression force between the first and second bones. It should be noted these steps need not be performed in the order stated, which is merely exemplary. For example, the second fixation pin may be attached to the second bone before the first fixation pin is attached to the first bone, both fixation pins may be attached before either block is adjusted or fixed, etc.


The method may also include steps following the fixing of the position of the bones. Some embodiments of the method also include imaging (e.g., with an X-ray) the first and second bones connected to the first and second blocks to confirm a desirable alignment. Certain embodiments of the method include fusing the first bone and the second bone, such as by attaching a bone connector (e.g., a plate, pin, screw, wire, or staple) to stably connect and fix the first bone and the second bone. Some embodiments also include the step of removing the first fixation pin from the first bone and the second fixation pin from the second bone, such as at a time after the bones have been stabilized and connected with a bone connector.


Some embodiments of the method also include cutting a leading edge of the first or second bone using a cutting guide, such as by positioning a cutting guide proximate the bone (e.g., within a joint between adjacent bones or a resected portion of a single bone) and using the guide to cut a leading edge of the bone in a plane. Such embodiments can also include the step of actuating a compression screw to apply a compression force between the first and second bones after the cutting step.


Thus, embodiments of the invention are disclosed. Although the present invention has been described with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments of the invention are possible. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention.

Claims
  • 1. A method of performing a bunion surgery, the method comprising: positioning a first portion of a bone positioning device over a first cuneiform and positioning a second portion of the bone positioning device over a first metatarsal with the bone positioning device extending across a joint separating the first metatarsal from the first cuneiform, the second portion of the bone positioning device being adjustable relative to the first portion of the bone positioning device about a first axis and about a second axis;moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis and thereby moving the first metatarsal relative to the first cuneiform in a first plane;moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the second axis and thereby moving the first metatarsal relative to the first cuneiform in a second plane; andafter moving the first metatarsal relative to the first cuneiform in the first plane and the second plane, fixing a position of the first metatarsal relative to the first cuneiform with a bone connector.
  • 2. The method of claim 1, wherein: the bone positioning device comprises a first rotating connection, and moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis and thereby moving the first metatarsal relative to the first cuneiform in the first plane comprises rotating the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first rotating connection and thereby moving the first metatarsal relative to the first cuneiform in the first plane, andthe bone positioning device comprises a second rotating connection, and moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the second axis and thereby moving the first metatarsal relative to the first cuneiform in the second plane comprises rotating the second portion of the bone positioning device relative to the first portion of the bone positioning device about the second rotating connection and thereby moving the first metatarsal relative to the first cuneiform in the second plane.
  • 3. The method of claim 2, wherein: the bone positioning device comprises a link connecting the first portion to the second portion;the first rotating connection connects the second portion of the bone positioning device to the link;the second rotating connection connects the first portion of the bone positioning device to the link;moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis comprises moving the second portion of the bone positioning device relative to the link about the first rotating connection and thereby moving the first metatarsal relative to the first cuneiform in the first plane; andmoving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the second axis comprises moving the second portion of the bone positioning device relative to the link about the second rotating connection and thereby moving the first metatarsal relative to the first cuneiform in the second plane.
  • 4. The method of claim 3, wherein the second portion of the bone positioning device is configured to slide relative to the link, and further comprising, prior to fixing the position of the first metatarsal relative to the first cuneiform with the bone connector, sliding the second portion of the bone positioning device relative to the first portion of the bone positioning device to apply a compression force between the first metatarsal and the first cuneiform.
  • 5. The method of claim 4, wherein the bone positioning device comprises a screw, and sliding the second portion of the bone positioning device relative to the first portion of the bone positioning device to apply the compression force comprises actuating the screw.
  • 6. The method of claim 2, wherein: the first rotating connection comprises a first ball received in a first socket; andthe second rotating connection comprises a second ball received in a second socket.
  • 7. The method of claim 1, wherein: the first plane is a plane defined by X- and Y-axes, andthe second plane is a plane comprising a Z-axis.
  • 8. The method of claim 1, wherein the first portion of the bone positioning device comprises a first aperture and the second portion of the bone positioning device comprises a second aperture, and further comprising: inserting a first fixation pin into the first aperture of the first portion and into the first cuneiform; andinserting a second fixation pin into the second aperture of the second portion and into the first metatarsal.
  • 9. The method of claim 1, wherein moving the first metatarsal relative to the first cuneiform in the first plane and the second plane comprises correcting an alignment between the first metatarsal and the first cuneiform to correct a bunion.
  • 10. The method of claim 9, wherein fixing the position of the first metatarsal relative to the first cuneiform with the bone connector comprises fusing the first metatarsal to the first cuneiform across the joint.
  • 11. The method of claim 1, wherein moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis and thereby moving the first metatarsal relative to the first cuneiform in the first plane comprises actuating a threaded screw to set a position of the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis.
  • 12. The method of claim 11, wherein an end of the threaded screw defines a recess configured to receive a driving tool, and actuating the threaded screw comprises inserting the driving tool into the recess and actuating the threaded screw with the driving tool.
  • 13. The method of claim 1, further comprising, prior to fixing the position of the first metatarsal relative to the first cuneiform with the bone connector, removing a leading edge of the first metatarsal and removing a leading edge of the first cuneiform.
  • 14. The method of claim 13, wherein removing the leading edge of the first metatarsal and removing the leading edge of the first cuneiform comprises cutting the leading edge of the first metatarsal with a cutting tool and cutting the leading edge of the first cuneiform with the cutting tool.
  • 15. The method of claim 14, further comprising aligning a bone cutting guide with the joint, wherein cutting the leading edge of the first metatarsal with the cutting tool comprises guiding the cutting tool with the bone cutting guide to cut the leading edge of the first metatarsal and cutting the leading edge of the first cuneiform with the cutting tool comprises guiding the cutting tool with the bone cutting guide to cut the leading edge of the first cuneiform.
  • 16. The method of claim 14, wherein cutting the leading edge of the first metatarsal with the cutting tool and cutting the leading edge of the first cuneiform with the cutting tool comprises cutting the leading edge of the first metatarsal with the cutting tool and cutting the leading edge of the first cuneiform with the cutting tool after moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first axis and the second axis.
  • 17. The method of claim 1, wherein the bone connector is configured to promote fusion between the first metatarsal and the first cuneiform.
  • 18. The method of claim 1, wherein the bone connector comprises one or more of a plate, a screw, a pin, and a staple.
  • 19. A method of performing a bunion surgery, the method comprising: positioning a first portion of a bone positioning device over a first cuneiform and positioning a second portion of the bone positioning device over a first metatarsal with the bone positioning device extending across a joint separating the first metatarsal from the first cuneiform, wherein the second portion of the bone positioning device is adjustable relative to the first portion of the bone positioning device about a first rotating connection and about a second rotating connection, and the second portion of the bone positioning device is slidable relative to the first portion of the bone positioning device;moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the first rotating connection and thereby moving the first metatarsal relative to the first cuneiform in a first plane;moving the second portion of the bone positioning device relative to the first portion of the bone positioning device about the second rotating connection and thereby moving the first metatarsal relative to the first cuneiform in a second plane;removing a leading edge of the first metatarsal and removing a leading edge of the first cuneiform;sliding the second portion of the bone positioning device relative to the first portion of the bone positioning device to apply a compression force between the first metatarsal and the first cuneiform; andfixing a position of the first metatarsal relative to the first cuneiform with a bone connector.
  • 20. The method of claim 19, wherein: the first plane is a plane defined by X- and Y-axes, andthe second plane is a plane comprising a Z-axis.
  • 21. The method of claim 19, wherein the first portion of the bone positioning device comprises a first aperture and the second portion of the bone positioning device comprises a second aperture, and further comprising: inserting a first fixation pin into the first aperture of the first portion and into the first cuneiform; andinserting a second fixation pin into the second aperture of the second portion and into the first metatarsal.
  • 22. The method of claim 19, wherein the bone positioning device comprises a screw, and sliding the second portion of the bone positioning device relative to the first portion of the bone positioning device to apply the compression force comprises actuating the screw.
  • 23. The method of claim 19, wherein removing the leading edge of the first metatarsal and removing the leading edge of the first cuneiform comprises cutting the leading edge of the first metatarsal with a cutting tool and cutting the leading edge of the first cuneiform with the cutting tool.
  • 24. The method of claim 23, further comprising aligning a bone cutting guide with the joint, wherein cutting the leading edge of the first metatarsal with the cutting tool comprises guiding the cutting tool with the bone cutting guide to cut the leading edge of the first metatarsal and cutting the leading edge of the first cuneiform with the cutting tool comprises guiding the cutting tool with the bone cutting guide to cut the leading edge of the first cuneiform.
  • 25. The method of claim 23, wherein cutting the leading edge of the first metatarsal with the cutting tool and cutting the leading edge of the first cuneiform with the cutting tool comprises cutting the leading edge of the first metatarsal with the cutting tool and cutting the leading edge of the first cuneiform with the cutting tool after moving the first metatarsal relative to the first cuneiform in the first plane and the second plane.
  • 26. The method of claim 19, wherein the bone connector is configured to promote fusion between the first metatarsal and the first cuneiform.
  • 27. The method of claim 19, wherein the bone connector comprises one or more of a plate, a screw, a pin, and a staple.
  • 28. The method of claim 19, wherein moving the first metatarsal relative to the first cuneiform in the first plane and the second plane comprises correcting an alignment between the first metatarsal and the first cuneiform to correct a bunion.
  • 29. The method of claim 19, wherein: the bone positioning device comprises a link connecting the first portion to the second portion;the first rotating connection connects the second portion of the bone positioning device to the link; andthe second rotating connection connects the first portion of the bone positioning device to the link.
  • 30. The method of claim 19, wherein: the first rotating connection comprises a first ball received in a first socket; andthe second rotating connection comprises a second ball received in a second socket.
RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 17/503,730, filed Oct. 18, 2021, which is a continuation of U.S. patent application Ser. No. 17/201,008, filed Mar. 15, 2021, issued as U.S. Pat. No. 11,147,590 on Oct. 19, 2021, which is a continuation application of U.S. patent application Ser. No. 16/730,424, filed Dec. 30, 2019, issued as U.S. Pat. No. 10,945,764, on Mar. 16, 2021, which is a continuation application of U.S. patent application Ser. No. 15/894,702, filed Feb. 12, 2018, issued as U.S. Pat. No. 10,555,757, on Feb. 11, 2020, which is a divisional application of U.S. patent application Ser. No. 14/799,981, filed Jul. 15, 2015, which claims priority to U.S. Provisional Application No. 62/024,546, filed Jul. 15, 2014. The entire contents of each of these applications are hereby incorporated by reference.

US Referenced Citations (388)
Number Name Date Kind
3664022 Small May 1972 A
4069824 Weinstock Jan 1978 A
4159716 Borchers Jul 1979 A
4187840 Watanabe Feb 1980 A
4335715 Kirkley Jun 1982 A
4338927 Volkov et al. Jul 1982 A
4349018 Chambers Sep 1982 A
4409973 Neufeld Oct 1983 A
4440168 Warren Apr 1984 A
4501268 Comparetto Feb 1985 A
4502474 Comparetto Mar 1985 A
4509511 Neufeld Apr 1985 A
4565191 Slocum Jan 1986 A
4570624 Wu Feb 1986 A
4627425 Reese Dec 1986 A
4628919 Clybum Dec 1986 A
4632102 Comparetto Dec 1986 A
4664102 Comparetto May 1987 A
4708133 Comparetto Nov 1987 A
4736737 Fargie et al. Apr 1988 A
4750481 Reese Jun 1988 A
4754746 Cox Jul 1988 A
4757810 Reese Jul 1988 A
4895141 Koeneman et al. Jan 1990 A
4952214 Comparetto Aug 1990 A
4959066 Dunn et al. Sep 1990 A
4978347 Ilizarov Dec 1990 A
4988349 Pennig Jan 1991 A
4995875 Coes Feb 1991 A
5021056 Hofmann et al. Jun 1991 A
5035698 Comparetto Jul 1991 A
5042983 Rayhack Aug 1991 A
5049149 Schmidt Sep 1991 A
5053039 Hofmann et al. Oct 1991 A
5078719 Schreiber Jan 1992 A
5112334 Alchermes et al. May 1992 A
5147364 Comparetto Sep 1992 A
5176685 Rayhack Jan 1993 A
5207676 Canadell et al. May 1993 A
5246444 Schreiber Sep 1993 A
5254119 Schreiber Oct 1993 A
5312412 Whipple May 1994 A
5358504 Paley et al. Oct 1994 A
5364402 Mumme et al. Nov 1994 A
5374271 Hwang Dec 1994 A
5413579 Toit May 1995 A
5417694 Marik et al. May 1995 A
5449360 Schreiber Sep 1995 A
5470335 Du Toit Nov 1995 A
5490854 Fisher et al. Feb 1996 A
5529075 Clark Jun 1996 A
5540695 Levy Jul 1996 A
5578038 Slocum Nov 1996 A
5586564 Barrett et al. Dec 1996 A
5601565 Huebner Feb 1997 A
5613969 Jenkins, Jr. Mar 1997 A
5620442 Bailey et al. Apr 1997 A
5620448 Puddu Apr 1997 A
5643270 Combs Jul 1997 A
5667510 Combs Sep 1997 A
H1706 Mason Jan 1998 H
5722978 Jenkins Mar 1998 A
5749875 Puddu May 1998 A
5779709 Harris et al. Jul 1998 A
5788695 Richardson Aug 1998 A
5803924 Oni et al. Sep 1998 A
5810822 Mortier Sep 1998 A
5843085 Graser Dec 1998 A
5893553 Pinkous Apr 1999 A
5911724 Wehrli Jun 1999 A
5935128 Carter et al. Aug 1999 A
5941877 Viegas et al. Aug 1999 A
5951556 Faccioli et al. Sep 1999 A
5980526 Johnson et al. Nov 1999 A
5984931 Greenfield Nov 1999 A
6007535 Rayhack et al. Dec 1999 A
6027504 McGuire Feb 2000 A
6030391 Brainard et al. Feb 2000 A
6162223 Orsak et al. Dec 2000 A
6171309 Huebner Jan 2001 B1
6203545 Stoffella Mar 2001 B1
6248109 Stoffella Jun 2001 B1
6391031 Toomey May 2002 B1
6478799 Williamson Nov 2002 B1
6511481 von Hoffmann et al. Jan 2003 B2
6547793 McGuire Apr 2003 B1
6676662 Bagga et al. Jan 2004 B1
6719773 Boucher et al. Apr 2004 B1
6743233 Baldwin et al. Jun 2004 B1
6755838 Trnka Jun 2004 B2
6796986 Duffner Sep 2004 B2
6859661 Fuke Feb 2005 B2
7018383 McGuire Mar 2006 B2
7033361 Collazo Apr 2006 B2
7097647 Segler et al. Aug 2006 B2
7112204 Justin et al. Sep 2006 B2
7153310 Ralph et al. Dec 2006 B2
7182766 Mogul Feb 2007 B1
7241298 Nemec et al. Jul 2007 B2
7282054 Steffensmeier et al. Oct 2007 B2
7377924 Raistrick et al. May 2008 B2
7465303 Riccione et al. Dec 2008 B2
7540874 Trumble et al. Jun 2009 B2
7572258 Stiernborg Aug 2009 B2
7641660 Lakin et al. Jan 2010 B2
D610257 Horton Feb 2010 S
7686811 Byrd et al. Mar 2010 B2
7691108 Lavallee Apr 2010 B2
7763026 Egger et al. Jul 2010 B2
D629900 Fisher Dec 2010 S
7967823 Ammann et al. Jun 2011 B2
7972338 O'Brien Jul 2011 B2
D646389 Claypool et al. Oct 2011 S
8057478 Kuczynski et al. Nov 2011 B2
8062301 Ammann et al. Nov 2011 B2
D651315 Bertoni et al. Dec 2011 S
D651316 May et al. Dec 2011 S
8080010 Schulz et al. Dec 2011 B2
8080045 Wotton, III Dec 2011 B2
8083746 Novak Dec 2011 B2
8123753 Poncet Feb 2012 B2
8137406 Novak et al. Mar 2012 B2
8147530 Strnad et al. Apr 2012 B2
8167918 Strnad et al. May 2012 B2
8172848 Tomko et al. May 2012 B2
8192441 Collazo Jun 2012 B2
8197487 Poncet et al. Jun 2012 B2
8231623 Jordan Jul 2012 B1
8231663 Kay et al. Jul 2012 B2
8236000 Ammann et al. Aug 2012 B2
8246561 Agee et al. Aug 2012 B1
D666721 Wright et al. Sep 2012 S
8262664 Justin et al. Sep 2012 B2
8277459 Sand et al. Oct 2012 B2
8282644 Edwards Oct 2012 B2
8282645 Lawrence et al. Oct 2012 B2
8292966 Morton Oct 2012 B2
8303596 Plassky et al. Nov 2012 B2
8313492 Wong et al. Nov 2012 B2
8323289 Re Dec 2012 B2
8337503 Lian Dec 2012 B2
8343159 Bennett Jan 2013 B2
8377105 Buescher Feb 2013 B2
D679395 Wright et al. Apr 2013 S
8409209 Ammann et al. Apr 2013 B2
8435246 Fisher et al. May 2013 B2
8475462 Thomas et al. Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8523870 Green, II et al. Sep 2013 B2
8529571 Horan et al. Sep 2013 B2
8540777 Ammann et al. Sep 2013 B2
8545508 Collazo Oct 2013 B2
D694884 Mooradian et al. Dec 2013 S
D695402 Dacosta et al. Dec 2013 S
8652142 Geissler Feb 2014 B2
8657820 Kubiak et al. Feb 2014 B2
D701303 Cook Mar 2014 S
8672945 Lavallee et al. Mar 2014 B2
8696716 Kartalian et al. Apr 2014 B2
8702715 Ammann et al. Apr 2014 B2
D705929 Frey May 2014 S
8715363 Ratron et al. May 2014 B2
8728084 Berelsman et al. May 2014 B2
8758354 Habegger et al. Jun 2014 B2
8764760 Metzger et al. Jul 2014 B2
8764763 Wong et al. Jul 2014 B2
8771279 Philippon et al. Jul 2014 B2
8777948 Bernsteiner Jul 2014 B2
8784427 Fallin et al. Jul 2014 B2
8784457 Graham Jul 2014 B2
8795286 Sand et al. Aug 2014 B2
8801727 Chan et al. Aug 2014 B2
8808303 Stemniski et al. Aug 2014 B2
8828012 May et al. Sep 2014 B2
8858602 Weiner et al. Oct 2014 B2
8882778 Ranft Nov 2014 B2
8882816 Kartalian et al. Nov 2014 B2
8888785 Ammann et al. Nov 2014 B2
D720456 Dacosta et al. Dec 2014 S
8900247 Tseng et al. Dec 2014 B2
8906026 Ammann et al. Dec 2014 B2
8945132 Plassy et al. Feb 2015 B2
8998903 Price et al. Apr 2015 B2
8998904 Zeetser et al. Apr 2015 B2
9023052 Lietz et al. May 2015 B2
9044250 Olsen et al. Jun 2015 B2
9060822 Lewis et al. Jun 2015 B2
9089376 Medoff et al. Jul 2015 B2
9101421 Blacklidge Aug 2015 B2
9107715 Blitz et al. Aug 2015 B2
9113920 Ammann et al. Aug 2015 B2
D740424 Dacosta et al. Oct 2015 S
D765844 DaCosta Sep 2016 S
D766434 DaCosta Sep 2016 S
D766437 DaCosta Sep 2016 S
D766438 DaCosta Sep 2016 S
D766439 DaCosta Sep 2016 S
9452057 Dacosta et al. Sep 2016 B2
9522023 Haddad et al. Nov 2016 B2
9750538 Soffiatti et al. Sep 2017 B2
9785747 Geebelen Oct 2017 B2
9980760 Dacosta et al. May 2018 B2
10028750 Rose Jul 2018 B2
10064631 Dacosta et al. Sep 2018 B2
10159499 Dacosta et al. Dec 2018 B2
10292713 Fallin et al. May 2019 B2
10327829 Dacosta et al. Jun 2019 B2
10376268 Fallin et al. Aug 2019 B2
10470779 Fallin et al. Nov 2019 B2
10779867 Penzimer et al. Sep 2020 B2
11304705 Fallin et al. Apr 2022 B2
20020099381 Maroney Jul 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020165552 Duffner Nov 2002 A1
20020198531 Millard et al. Dec 2002 A1
20040010259 Keller et al. Jan 2004 A1
20040039394 Conti et al. Feb 2004 A1
20040097946 Dietzel et al. May 2004 A1
20040138669 Horn Jul 2004 A1
20050004676 Schon et al. Jan 2005 A1
20050059978 Sherry et al. Mar 2005 A1
20050070909 Egger et al. Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050101961 Huebner et al. May 2005 A1
20050149042 Metzger Jul 2005 A1
20050228389 Stiernborg Oct 2005 A1
20050251147 Novak Nov 2005 A1
20050267482 Hyde, Jr. Dec 2005 A1
20050273112 McNamara Dec 2005 A1
20060129163 McGuire Jun 2006 A1
20060206044 Simon Sep 2006 A1
20060217733 Plassky et al. Sep 2006 A1
20060229621 Cadmus Oct 2006 A1
20060241607 Myerson et al. Oct 2006 A1
20060241608 Myerson et al. Oct 2006 A1
20060264961 Murray-Brown Nov 2006 A1
20070010818 Stone Jan 2007 A1
20070123857 Deffenbaugh et al. May 2007 A1
20070233138 Figueroa et al. Oct 2007 A1
20070265634 Weinstein Nov 2007 A1
20070276383 Rayhack Nov 2007 A1
20080009863 Bond et al. Jan 2008 A1
20080015603 Collazo Jan 2008 A1
20080039850 Rowley et al. Feb 2008 A1
20080091197 Coughlin Apr 2008 A1
20080140081 Heavener et al. Jun 2008 A1
20080147073 Ammann et al. Jun 2008 A1
20080172054 Claypool et al. Jul 2008 A1
20080195215 Morton Aug 2008 A1
20080208252 Holmes Aug 2008 A1
20080262500 Collazo Oct 2008 A1
20080269908 Warburton Oct 2008 A1
20080288004 Schendel Nov 2008 A1
20090036893 Kartalian et al. Feb 2009 A1
20090036931 Pech et al. Feb 2009 A1
20090054899 Ammann et al. Feb 2009 A1
20090093849 Grabowski Apr 2009 A1
20090105767 Reiley Apr 2009 A1
20090118733 Orsak et al. May 2009 A1
20090198244 Leibel Aug 2009 A1
20090198279 Zhang et al. Aug 2009 A1
20090222047 Graham Sep 2009 A1
20090254092 Albiol Llorach Oct 2009 A1
20090254126 Orbay et al. Oct 2009 A1
20090287309 Walch et al. Nov 2009 A1
20100069910 Hasselman Mar 2010 A1
20100121334 Couture et al. May 2010 A1
20100130981 Richards May 2010 A1
20100152782 Stone et al. Jun 2010 A1
20100168799 Schumer Jul 2010 A1
20100185245 Paul et al. Jul 2010 A1
20100249779 Hotchkiss et al. Sep 2010 A1
20100256687 Neufeld et al. Oct 2010 A1
20100318088 Warne et al. Dec 2010 A1
20100324556 Fyber et al. Dec 2010 A1
20110009865 Orfaly Jan 2011 A1
20110093084 Morton Apr 2011 A1
20110118739 Tyber et al. May 2011 A1
20110178524 Lawrence et al. Jul 2011 A1
20110245835 Dodds et al. Oct 2011 A1
20110288550 Orbay et al. Nov 2011 A1
20110301648 Lofthouse et al. Dec 2011 A1
20120016426 Robinson Jan 2012 A1
20120065689 Prasad et al. Mar 2012 A1
20120078258 Lo et al. Mar 2012 A1
20120123420 Honiball May 2012 A1
20120123484 Lietz et al. May 2012 A1
20120130376 Loring et al. May 2012 A1
20120130382 Iannotti et al. May 2012 A1
20120130383 Budoff May 2012 A1
20120184961 Johannaber Jul 2012 A1
20120185056 Warburton Jul 2012 A1
20120191199 Raemisch Jul 2012 A1
20120239045 Li Sep 2012 A1
20120253350 Anthony et al. Oct 2012 A1
20120265301 Demers et al. Oct 2012 A1
20120277745 Lizee Nov 2012 A1
20120303033 Weiner et al. Nov 2012 A1
20120330135 Millahn et al. Dec 2012 A1
20130012949 Fallin et al. Jan 2013 A1
20130035694 Grimm et al. Feb 2013 A1
20130085499 Lian Apr 2013 A1
20130085502 Harrold Apr 2013 A1
20130096563 Meade et al. Apr 2013 A1
20130131821 Cachia May 2013 A1
20130150900 Haddad et al. Jun 2013 A1
20130150903 Vincent Jun 2013 A1
20130158556 Jones et al. Jun 2013 A1
20130165936 Myers Jun 2013 A1
20130165938 Chow et al. Jun 2013 A1
20130172942 Lewis et al. Jul 2013 A1
20130184714 Kaneyama et al. Jul 2013 A1
20130190765 Harris et al. Jul 2013 A1
20130190766 Harris et al. Jul 2013 A1
20130204259 Zajac Aug 2013 A1
20130226248 Hatch et al. Aug 2013 A1
20130226252 Mayer Aug 2013 A1
20130231668 Olsen et al. Sep 2013 A1
20130237987 Graham Sep 2013 A1
20130237989 Bonutti Sep 2013 A1
20130267956 Terrill et al. Oct 2013 A1
20130310836 Raub et al. Nov 2013 A1
20130325019 Thomas et al. Dec 2013 A1
20130325076 Palmer et al. Dec 2013 A1
20130331845 Horan et al. Dec 2013 A1
20130338785 Wong Dec 2013 A1
20140005672 Edwards et al. Jan 2014 A1
20140025127 Richter Jan 2014 A1
20140039501 Schickendantz et al. Feb 2014 A1
20140039561 Weiner et al. Feb 2014 A1
20140046387 Waizenegger Feb 2014 A1
20140074099 Vigneron et al. Mar 2014 A1
20140074101 Collazo Mar 2014 A1
20140094861 Fallin Apr 2014 A1
20140094924 Hacking et al. Apr 2014 A1
20140135775 Maxson et al. May 2014 A1
20140163563 Reynolds et al. Jun 2014 A1
20140171953 Gonzalvez et al. Jun 2014 A1
20140180342 Lowery et al. Jun 2014 A1
20140188139 Fallin et al. Jul 2014 A1
20140194884 Martin et al. Jul 2014 A1
20140194999 Orbay et al. Jul 2014 A1
20140207144 Lee et al. Jul 2014 A1
20140249537 Wong et al. Sep 2014 A1
20140257308 Johannaber Sep 2014 A1
20140257509 Dacosta et al. Sep 2014 A1
20140276815 Riccione Sep 2014 A1
20140276853 Long Sep 2014 A1
20140277176 Buchanan et al. Sep 2014 A1
20140277214 Helenbolt et al. Sep 2014 A1
20140288562 Von Zabern et al. Sep 2014 A1
20140296995 Reiley et al. Oct 2014 A1
20140303621 Gerold et al. Oct 2014 A1
20140336658 Luna et al. Nov 2014 A1
20140343555 Russi et al. Nov 2014 A1
20140350561 Dacosta et al. Nov 2014 A1
20150032168 Orsak et al. Jan 2015 A1
20150045801 Axelson, Jr. et al. Feb 2015 A1
20150045839 Dacosta et al. Feb 2015 A1
20150051650 Verstreken et al. Feb 2015 A1
20150057667 Ammann et al. Feb 2015 A1
20150066094 Prandi et al. Mar 2015 A1
20150112446 Melamed et al. Apr 2015 A1
20150119944 Geldwert Apr 2015 A1
20150142064 Perez et al. May 2015 A1
20150150608 Sammarco Jun 2015 A1
20150182273 Stemniski et al. Jul 2015 A1
20150223851 Hill et al. Aug 2015 A1
20150245858 Weiner et al. Sep 2015 A1
20160022315 Soffiatti et al. Jan 2016 A1
20160135858 Dacosta et al. May 2016 A1
20160151165 Fallin et al. Jun 2016 A1
20160175089 Fallin et al. Jun 2016 A1
20160192950 Dayton et al. Jul 2016 A1
20160199076 Fallin et al. Jul 2016 A1
20160213384 Fallin et al. Jul 2016 A1
20160235414 Hatch et al. Aug 2016 A1
20160242791 Fallin et al. Aug 2016 A1
20160256204 Patel et al. Sep 2016 A1
20160324532 Montoya et al. Nov 2016 A1
20160354127 Lundquist et al. Dec 2016 A1
20170042598 Santrock et al. Feb 2017 A1
20170042599 Bays et al. Feb 2017 A1
20170079669 Bays et al. Mar 2017 A1
20170143511 Cachia May 2017 A1
20170164989 Weiner et al. Jun 2017 A1
20180132868 Dacosta et al. May 2018 A1
20180344334 Kim et al. Dec 2018 A1
Foreign Referenced Citations (100)
Number Date Country
2009227957 Jul 2014 AU
2491824 Sep 2005 CA
2854997 May 2013 CA
695846 Sep 2006 CH
2930668 Aug 2007 CN
201558162 Aug 2010 CN
201572172 Sep 2010 CN
201586060 Sep 2010 CN
201912210 Aug 2011 CN
101237835 Nov 2012 CN
202801773 Mar 2013 CN
103462675 Dec 2013 CN
103505276 Jan 2014 CN
203458450 Mar 2014 CN
103735306 Apr 2014 CN
102860860 May 2014 CN
203576647 May 2014 CN
104490460 Apr 2015 CN
104510523 Apr 2015 CN
104523327 Apr 2015 CN
104546102 Apr 2015 CN
204379413 Jun 2015 CN
204410951 Jun 2015 CN
204428143 Jul 2015 CN
204428144 Jul 2015 CN
204428145 Jul 2015 CN
204446081 Jul 2015 CN
202006010241 Mar 2007 DE
102007053058 Apr 2009 DE
685206 Sep 2000 EP
1508316 May 2007 EP
1897509 Jul 2009 EP
2124772 Dec 2009 EP
2124832 Aug 2012 EP
2632349 Sep 2013 EP
2665428 Nov 2013 EP
2742878 Jun 2014 EP
2750617 Jul 2014 EP
2849684 Mar 2015 EP
2624764 Dec 2015 EP
3023068 May 2016 EP
2362616 Mar 1978 FR
2764183 Nov 1999 FR
2953120 Jan 2012 FR
3030221 Jun 2016 FR
2154143 Sep 1985 GB
2154144 Sep 1985 GB
2334214 Jan 2003 GB
200903719 Jun 2009 IN
200904479 May 2010 IN
140DELNP2012 Feb 2013 IN
2004KOLNP2013 Nov 2013 IN
S635739 Jan 1988 JP
H0531116 Feb 1993 JP
2004174265 Jun 2004 JP
2006158972 Jun 2006 JP
4134243 Aug 2008 JP
2008537498 Sep 2008 JP
4162380 Oct 2008 JP
2011092405 May 2011 JP
2011523889 Aug 2011 JP
4796943 Oct 2011 JP
5466647 Apr 2014 JP
2014511207 May 2014 JP
2014521384 Aug 2014 JP
5628875 Nov 2014 JP
100904142 Jun 2009 KR
756 Nov 2014 MD
2098036 Dec 1997 RU
2195892 Jan 2003 RU
2320287 Mar 2008 RU
2321366 Apr 2008 RU
2321369 Apr 2008 RU
2346663 Feb 2009 RU
2412662 Feb 2011 RU
1333328 Aug 1987 SU
0166022 Sep 2001 WO
03075775 Sep 2003 WO
2004089227 Oct 2004 WO
2008051064 May 2008 WO
2009029798 Mar 2009 WO
2009032101 Mar 2009 WO
2011037885 Mar 2011 WO
2012029008 Mar 2012 WO
2013090392 Jun 2013 WO
2013134387 Sep 2013 WO
2013169475 Nov 2013 WO
2014020561 Feb 2014 WO
2014022055 Feb 2014 WO
2014035991 Mar 2014 WO
2014085882 Jun 2014 WO
2014147099 Sep 2014 WO
2014152219 Sep 2014 WO
2014152535 Sep 2014 WO
2014177783 Nov 2014 WO
2014200017 Dec 2014 WO
2015094409 Jun 2015 WO
2015105880 Jul 2015 WO
2015127515 Sep 2015 WO
2016134160 Aug 2016 WO
Non-Patent Literature Citations (177)
Entry
Nagy et al., “The AO Ulnar Shortening Osteotomy System Indications and Surgical Technique,” Journal of Wrist Surgery, vol. 3, No. 2, 2014, pp. 91-97.
NexFix from Nexa Orthopedics, MetaFix I from Merete Medical, Inc. and The BioPro Lower Extremities from BioPro, found in Foot & Ankle International Journal, vol. 28, No. 1, Jan. 2007, 4 pages.
Odenbring et al., “A guide instrument for high tibial osteotomy,” Acta Orthopaedica Scandinavica, vol. 60, No. 4, 1989, pp. 449-451.
Okuda et al., “Postoperative Incomplete Reduction of the Sesamoids as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 91-A, No. 1, Jul. 2009, pp. 1637-1645.
Osher et al., “Accurate Determination of Relative Metatarsal Protrusion with a Small Intermetatarsal Angle: A Novel Simplified Method,” The Journal of Foot & Ankle Surgery, vol. 53, No. 5, Sep./Oct. 2014, published online: Jun. 3, 2014, pp. 548-556.
Otsuki et al., “Developing a novel custom cutting guide for curved per-acetabular osteotomy,” International Orthopaedics (SICOT), vol. 37, 2013, pp. 1033-1038.
Patel et al., “Modified Lapidus Arthrodesis: Rate of Nonunion in 227 Cases,” The Journal of Foot & Ankle Surgery, vol. 43, No. 1, Jan./Feb. 2004, pp. 37-42.
“Patient to Patient Precision, Accu-Cut, Osteotomy Guide System,” BioPro, Foot & Ankle International Journal, vol. 23, No. 8, Aug. 2002, 2 pages.
Peters et al., “Flexor Hallucis Longus Tendon Laceration as a Complication of Total Ankle Arthroplasty,” Foot & Ankle International, vol. 34, No. 1, 2013, pp. 148-149.
“Prophecy Inbone Preoperative Navigation Guides,” Wright Medical Technology, Inc., Nov. 2013, 6 pages.
“RAYHACK Ulnar Shortening Generation II Low-Profile Locking System Surgical Technique,” Wright Medical Technology, Inc., Dec. 2013, 20 pages.
Rx-Fix Mini Rail External Fixator, Wright Medical Technology, Brochure, Aug. 15, 2014, 2 pages.
Saltzman et al., “Prospective Controlled Trial of STAR Total Ankle Replacement Versus Ankle Fusion: Initial Results,” Foot & Ankle International, vol. 30, No. 7, Jul. 2009, pp. 579-596.
Scanlan et al. “Technique Tip: Subtalar Joint Fusion Using a Parallel Guide and Double Screw Fixation,” The Journal of Foot and Ankle Surgery, vol. 49, Issue 3, May-Jun. 2010, pp. 305-309, (Abstract Only).
Scranton Jr. et al., “Anatomic Variations in the First Ray: Part 1. Anatomic Aspects Related to Bunion Surgery,” Clinical Orthopaedics and Related Research, vol. 151, Sep. 1980, pp. 244-255.
Siddiqui et al. “Fixation Of Metatarsal Fracture With Bone Plate In A Dromedary Heifer,” Open Veterinary Journal, vol. 3, No. 1, 2013, pp. 17-20.
Sidekick Stealth Rearfoot Fixator, Wright Medical Technology, Surgical Technique, Dec. 2, 2013, 20 pages.
Simpson et al., “Computer-Assisted Distraction Ostegogenesis By Ilizarov's Method,” International Journal of Medical Robots and Computer Assisted Surgery, vol. 4, No. 4, Dec. 2008, pp. 310-320, (Abstract Only).
Small Bone External Fixation System, Acumed, Surgical Technique, Effective date Sep. 2014, 8 pages.
“Smith & Nephew scores a HAT-TRICK with its entry into the high-growth hammertoe repair market,” Smith & Nephew, Jul. 31, 2014, 2 pages.
Stableloc External Fixation System, Acumed, Product Overview, Effective date Sep. 2015, 4 pages.
Stahl et al., “Derotation Of Post-Traumatic Femoral Deformities By Closed Intramedullary Sawing,” Injury, vol. 37, No. 2, Feb. 2006, pp. 145-151, (Abstract Only).
Talbot et al.,“ Assessing Sesamoid Subluxation: How Good is the AP Radiograph?,” Foot and Ankle International, vol. 19, No. 8, Aug. 1998, pp. 547-554.
TempFix Spanning the Ankle Joint Half Pin and Transfixing Pin Techniques, Biomet Orthopedics, Surgical Technique, 2012, 16 pages.
Toth et al., “The Effect of First Ray Shortening in the Development of Metatarsalgia in the Second Through Fourth Rays After Metatarsal Osteotomy,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 61-63.
Tricot et al., “3D-corrective osteotomy using surgical guides for posttraumatic distal humeral deformity,” Acta Orthopaedica Belgica, vol. 78, No. 4, 2012, pp. 538-542.
Vitek et al., “Die Behandlung des Hallux rigidus mit Cheilektomie und Akin-Moberg-Osteotomie unter Verwendung siner neuen Schnittlehre und eines neuen Schraubensystems,” Orthopadische Praxis, vol. 44, Nov. 2008, pp. 563-566, including English Abstract on p. 564.
Vitek, “Neue Techniken in der Fuβchirurgie Das V-tek-System,” ABW Wissenschaftsverlag GmbH, 2009, 11 pages, including English Abstract.
Weber et al., “A Simple System For Navigation Of Bone Alignment Osteotomies Of The Tibia,” International Congress Series, vol. 1268, Jan. 2004, pp. 608-613, (Abstract Only).
Weil et al., “Anatomic Plantar Plate Repair Using the Weil Metatarsal Osteotomy Approach,” Foot & Ankle Specialist, vol. 4, No. 3, 2011, pp. 145-150.
Wendl et al., “Navigation in der Knieendoprothetik,” OP-Joumal, vol. 17, 2002, pp. 22-27, including English Abstract.
Whipple et al., “Zimmer Herbert Whipple Bone Screw System: Surgical Techniques for Fixation of Scaphoid and Other Small Bone Fractures,” Zimmer, 2003, 59 pages.
Yakacki et al. “Compression Forces of Internal and External Ankle Fixation Devices with Simulated Bone Resorption,” Foot and Ankle International, vol. 31, No. 1, Jan. 2010, pp. 76-85, (Abstract Only).
“Accu-Cut Osteotomy Guide System,” BioPro, Brochure, Oct. 2018, 2 pages.
“Acumed Osteotomiesystem Operationstechnik,” Acumed, 2014, 19 pages (including 3 pages English translation).
Albano et al., “Biomechanical Study of Transcortical or Transtrabecular Bone Fixation of Patellar Tendon Graft wih Bioabsorbable Pins in ACL Reconstruction in Sheep,” Revista Brasileira de Ortopedia (Rev Bras Ortop.) vol. 47, No. 1, 2012, pp. 43-49.
Alvine et al., “Peg and Dowel Fusion of the Proximal Interphalangeal Joint,” Foot & Ankle, vol. 1, No. 2, 1980, pp. 90-94.
Anderson et al., “Uncemented STAR Total Ankle Prostheses,” The Journal of Bone and Joint Surgery, vol. 86(1, Suppl 2), Sep. 2004, pp. 103-111, (Abstract Only).
Bednarz et al., “Modified Lapidus Procedure for the Treatment of Hypermobile Hallux Valgus,” Foot & Ankle International, vol. 21, No. 10, Oct. 2000, pp. 816-821.
Blomer, “Knieendoprothetik—Herstellerische Probleme und technologische Entwicklungen,” Orthopade, vol. 29, 2000, pp. 688-696, including English Abstract on p. 689.
Bouaicha et al., “Fixation of Maximal Shift Scarf Osteotomy with Inside-Out Plating: Technique Tip,” Foot & Ankle International, vol. 32, No. 5, May 2011, pp. 567-569.
Carr et al., “Correctional Osteotomy for Metatarsus Primus Varus and Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 50-A, No. 7, Oct. 1968, pp. 1353-1367.
Coetzee et al., “The Lapidus Procedure: A Prospective Cohort Outcome Study,” Foot & Ankle International, vol. 25, No. 8, Aug. 2004, pp. 526-531.
Dayton et al., “Is Our Current Paradigm for Evaluation and Management of the Bunion Deformity Flawed? A Discussion of Procedure Philosophy Relative to Anatomy,” The Journal of Foot and Ankle Surgery, vol. 54, 2015, pp. 102-111.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 584-587.
Dayton et al., “Relationship Of Frontal Plane Rotation Of First Metatarsal To Proximal Articular Set Angle And Hallux Alignment In Patients Undergoing Tarsometatarsal Arthrodesis For Hallux Abducto Valgus: A Case Series And Critical Review Of The Literature,” The Journal of Foot and Ankle Surgery, vol. 52, No. 3, May/Jun. 2013, pp. 348-354.
Dayton et al., “Quantitative Analysis of the Degree of Frontal Rotation Required to Anatomically Align the First Metatarsal Phalangeal Joint During Modified Tarsal-Metatarsal Arthrodesis Without Capsular Balancing,” The Journal of Foot and Ankle Surgery, 2015, pp. 1-6.
De Geer et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans,” Foot and Ankle International, Mar. 26, 2015, 9 pages.
Didomenico et al., “Correction of Frontal Plane Rotation of Sesamoid Apparatus during the Lapidus Procedure: A Novel Approach,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 248-251.
Dobbe et al. “Patient-Tailored Plate For Bone Fixation And Accurate 3D Positioning In Corrective Osteotomy,” Medical and Biological Engineering and Computing, vol. 51, No. 1-2, Feb. 2013, pp. 19-27, (Abstract Only).
Doty et al., “Hallux valgus and hypermobility of the first ray: facts and fiction,” International Orthopaedics, vol. 37, 2013, pp. 1655-1660.
EBI Extra Small Rail Fixator, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://botandanklefixation.com/product/biomet-trauma-ebi-extra-small-rail-fixator>, 7 pages.
International Patent Application No. PCT/US2016/018484, International Search Report and Written Opinion dated Jun. 30, 2016, 12 pages.
“Futura Forefoot Implant Arthroplasty Products,” Tornier, Inc., 2008, 14 pages.
Galli et al., “Enhanced Lapidus Arthrodesis: Crossed Screw Technique With Middle Cuneiform Fixation Further Reduces Sagittal Mobility,” The Journal of Foot & Ankle Surgery, vol. 54, vol. 3, May/Jun. 2015, published online: Nov. 21, 2014, pp. 437-440.
Garthwait, “Accu-Cut System Facilitates Enhanced Precision,” Podiatry Today, vol. 18, No. 6, Jun. 2005, 6 pages.
Gonzalez Del Pino et al., “Variable Angle Locking Intercarpal Fusion System for Four-Corner Arthrodesis: Indications and Surgical Technique,” Journal of Wrist Surgery, vol. 1, No. 1, Aug. 2012, pp. 73-78.
Gotte, “Entwicklung eines Assistenzrobotersystems für die Knieendoprothetik,” Forschungsberichte, Technische Universitat Munchen, 165, 2002, 11 pages, including partial English Translation.
Gregg et al., “Plantar plate repair and Weil osteotomy for metatarsophalangeal joint instability,” Foot and Ankle Surgery, vol. 13, 2007, pp. 116-121.
Grondal et al., “A Guide Plate for Accurate Positioning of First Metatarsophalangeal Joint during Fusion,” Operative Orthopädie Und Traumatologie, vol. 16, No. 2, 2004, pp. 167-178 (Abstract Only).
“HAT-TRICK Lesser Toe Repair System,” Smith & Nephew, Brochure, Aug. 2014, 12 pages.
“HAT-TRICK Lesser Toe Repair System, Foot and Ankle Technique Guide, Metatarsal Shortening Osteotomy Surgical Technique,” Smith & Nephew, 2014, 16 pages.
Hetherington et al., “Evaluation of surgical experience and the use of an osteotomy guide on the apical angle of an Austin osteotomy,” The Foot, vol. 18, 2008, pp. 159-164.
Hirao et al., “Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: A case report,” Computer Aided Surgery, vol. 19, Nos. 1-3, 2014, pp. 13-19.
“Hoffmann II Compact External Fixation System,” Stryker, Brochure, Literature No. 5075-1-500, 2006, 12 pages.
“Hoffmann II Micro Lengthener,” Stryker, Operative Technique, Literature No. 5075-2-002, 2008, 12 pages.
“Hoffmann Small System External Fixator Orthopedic Instruments,” Stryker, retrieved Dec. 19, 2014, from the Internet: <http://www.alibaba.com/product-detail/Stryker-Hoffmann-Small-System-External-Fixator_1438850129.html>, 3 pages.
Mortier et al., “Axial Rotation of the First Metatarsal Head in a Normal Population and Hallux Valgus Patients,” Orthopaedics and Traumatology: Surgery and Research, vol. 98, 2012, pp. 677-683.
Kim et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the Firsl Metatarsal in CT Scans,” Foot and Ankle International, vol. 36, No. 8, 2015, pp. 944-952.
“Lag Screw Target Bow,” Stryker Leibinger GmbH & Co. KG, Germany 2004, 8 pages.
Lapidus, “The Author's Bunion Operation From 1931 to 1959,” Clinical Orthopaedics, vol. 16, 1960, pp. 119-135.
Lieske et al., “Implantation einer Sprunggelenktotalendo-prothese vom Typ Salto 2,” Operative Orthopädie und Traumatologie, vol. 26, No. 4, 2014, pp. 401-413, including English Abstract on p. 403.
MAC (Multi Axial Correction) Fixation System, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://footandanklefixation.com/product/biomet-trauma-mac-multi-axial-correction-fixation-system>, 7 pages.
Magin, “Computemavigierter Gelenkersatz am Knie mit dem Orthopilot,” Operative Orthopädie und Traumatologie, vol. 22, No. 1, 2010, pp. 63-80, including English Abstract on p. 64.
Magin, “Die belastungsstabile Lapidus-Arthrodese bei Hallux-valgus-Deformität mittels IVP-Plattenfixateur (V-TEK-System),” Operative Orthopädie und Traumatologie, vol. 26, No. 2, 2014, pp. 184-195, including English Abstract on p. 186.
Michelangelo Bunion System, Surgical Technique, Instratek Incorporated, publication date unknown, 4 pages.
Mini Joint Distractor, Arthrex, retrieved Dec. 19, 2014, from the Internet: <http://www.arthrex.com/foot-ankle/mini-joint-distractor/products>, 2 pages.
MiniRail System, Small Bone Innovations, Surgical Technique, 2010, 24 pages.
Miyake et al., “Three-Dimensional Corrective Osteotomy for Malunited Diaphyseal Forearm Fractures Using Custom-Made Surgical Guides Based on Computer Simulation,” JBJS Essential Surgical Techniques, vol. 2, No. 4, 2012, 11 pages.
Modular Rail System: External Fixator, Smith & Nephew, Surgical Technique, 2013, 44 pages.
Monnich et al., “A Hand Guided Robotic Planning System for Laser Osteotomy in Surgery,” World Congress on Medical Physics and Biomedical Engineering vol. 25/6: Surgery, Nimimal Invasive Interventions, Endoscopy and Image Guided Therapy, Sep. 7-12, 2009, pp. 59-62, (Abstract Only).
Moore et al., “Effect Of Ankle Flexion Angle On Axial Alignment Of Total Ankle Replacement,” Foot and Ankle International, vol. 31, No. 12, Dec. 2010, pp. 1093-1098, (Abstract Only).
Yasuda et al., “Proximal Supination Osteotomy of the First Metatarsal for Hallux Valgus,” Foot and Ankle International, vol. 36, No. 6, Jun. 2015, pp. 696-704.
Defendant Fusion Orthoepdics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 41 pages.
Prior Art Publications, Exhibit A of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 3 pages.
Claim Chart for Fischco, “Making the Lapidus Easy,” The Podiatry Institute (Apr. 2014), Exhibit B1 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 97 pages.
Claim Chart for Fischo, “A Straightforward Guide to the Lapidus Bunionectomy,” HMP Global (Sep. 6, 2013), Exhibit B2 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 67 pages.
Claim Chart for Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” Update 2015: Proceedings of the Annual Meeting of the Podiatry Institute, Chpt. 6, pp. 23-29 (Apr. 2015), Exhibit B3 of Dependant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 151 pages.
Claim Chart for Mote, “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” The Journal Foot & Ankle Surgery (Sep. 1, 2009), Exhibit B5 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 21 pages.
Claim Chart for U.S. Pat. No. 10,376,268 to Fallin et al., entitled “Indexed Tri-Planar Osteotomy Guide and Method,” Issued Aug. 13, 2019, Exhibit B6 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 155 pages.
Claim Chart for U.S. Pat. No. 8,282,645 to Lawrence et al., entittled “Metatarsal Bone Implant Cutting Guide,” issued Jan. 18, 2010, Exhibit B7 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, AUg. 27, 2022, 76 pages.
Claim Chart for U.S. Pat. No. 9,452,057 to Dacosta et al., entitled “Bone Implants and Cutting Apparatuses andn Methods,” issued Apr. 8, 2011, Exhibit B8 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 110 pages.
Obviousness Chart, Exhibit C of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-2200490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 153 pages.
“Foot and ANkle Instrument Set,” Smith & Nephew, 2013, 2 pages.
“Lapidus Pearls: Gaining Joint Exposure to Decrease Non-Union,” Youtube, Retrieved online from <https://www.youtube.com/watch?v=jqJyE7pj-Y>, dated Nov. 2, 2009, 3 pages.
“Reconstructive Surgery of the Foot & Ankle,” The Podiatry Institute, Update 2015, Conference Program, May 2015, 28 pages.
“Speed Continuous Active Compression Implant,” BioMedical Enterprises, Inc., A120-029 Rev. 3, 2013, 4 pages.
“Visionaires: Patient Matched Cutting Blocks Surgical Procedure,” Smith & Nephew, Inc., 2009, 2 pages.
Arthrex, “Comprehensive Foot System,” Retrieved online from <https://www.arthrex.com/resources/animation/8U3iaPvY6kO8bwFAwZF50Q/comprehensive-foot-system?referringTeam=foot_and_ankle>, dated Aug. 27, 2013, 3 pages.
Baravarian, “Why the Lapidus Procedure is Ideal for Bunions,” Podiatry Today, Retrieved online from <https://www.hmpgloballearhmpgloballe.com/site/podipodi/article/5542>, dated May 2006, 8 pages.
Bauer et al., “Offset-V Osteotomy of the First Metatarsal Shaft in Hallux Abducto Valgus,” McGlammy's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 29, 2013, 26 pages.
Cottom, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate,” The Journal of Foot & Ankle Surgery, vol. 51, 2012, pp. 517-522.
Coughlin, “Fixation of the Lapidus Arhrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate,” Orthopaedics and Traumatology, vol. 7, 1999, pp. 133-143.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plante Rotation of the First Metatrsal in a Cadaveric Foot Model,” The Journal of Foot & Ankle Surgery, vol. 53, 2014, pp. 274-278.
Dayton et al., “Relationship of Frontal Plante Rotation of First Metatarsal to Proximal Articular Set Angle and Hallux Alignment in Patients Undergoing Tarsometarsal Arthrodesis for Hallux Abducto Valgus: A Case Series and Critical Review of the Literature,” The Journal of Foot & Ankgle Surgery, 2013, Article in Press, Mar. 1, 2013, 7 pages.
Didomenico et al., “Lapidus Bunionectomy: First Metatarsal-Cuneiform Arthrodesis,” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 31, 2013, 24 pages.
Fallin et al., US Provisional Application Entitled Indexed Tri-Planar Osteotomy Guide and Method, U.S. Appl. No. 62/118,378, filed Feb. 19, 2015, 62 pages.
Fishco, “A Straightforward Guide To The Lapidus Bunionectomy,”Podiatry Today, Retrieved online from <https://www.hmpgloballearningnetwork.com/site/podiatry/blogged/straightforward-guide-lapidus-bunionectomy>, dated Sep. 6, 2013, 5 pages.
Fishco, “Making the Lapidus Easy,” The Podiatry Institute, Update 2014, Chapter 14, 2014, pp. 91-93.
Fleming et al., “Results of Modified Lapidus Arthrodesis Procedure Using Medical Eminence as an Interpositional Autograft,” The Journal of Foot & Ankle Surgery, vol. 50, 2011, pp. 272-275.
Fuhrmann, “Arthrodesis of the First Tarsometatarsal Joint for Correction of the Advanced Splayfoot Accompanied by a Hallux Valgus,” Operative Orthopadie und Traumatologie, No. 2, 2005, pp. 195-210.
Gerard et al., “The Modified Lapidus Procedure,” Orthopedics, vol. 31, No. 3, Mar. 2008, 7 pages.
Giannoudis et al., “Hallux Valgus Correction,” Practical Procedures in Elective Orthpaedic Surgery, Pelvis and Lower Extremity, Chapter 38, 2012, 22 pages.
Greiner, “The Jargon of Pedal Movements,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 109-125.
Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” The Podiatry Institute, Update 2015, Chapter 6, 2015, pp. 23-29.
Hardy et al., “Obervations on Hallux Valgus,” The Journal of Bone Joint Surgery, vol. 33B, No. 3, Aug. 1951, pp. 376-391.
Holmes, Jr., “Correction of the Intermetatarsal Angle Component of Hallux Valgus Using Fiberwire-Attached Endo-buttons,” Revista Internacional de Ciencias Podologicas, vol. 6, No. 2, 2012, pp. 73-79.
Integra, “Integra Large Qwix Positioning and Fixation Screw, Surgical Technique,” 2012, 16 pages.
Kilmartin et al., “Combined rotation scarf and Akin Ostetomies for Hallux Valgus: a patient focused 9 year follow up of 50 patients,” Journal of Foot and Ankle Research, vol. 3, No. 2, 2010, 12 pages.
Lee et al., “Technique Tip: Lateral Soft-Tissue Release for Correction of Hallux Valgus Through a Medial Incision Using A Dorsal Flap Over the First Metatarsal,” Foot & Ankle International, vol. 28, No. 8, Aug. 2007, pp. 949-951.
Mote et al., “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” UFAS Techniques Guide, vol. 48, No. 5, Sep./Oct. 2009, pp. 593-601.
Myerson, “Cuneiform-Metatarsal Arthrodesis,” The Foot and Ankle, Chapter 9, 1997, pp. 107-117.
Sammarco, “Surgical Strategies: Mau Osteotomy for Correction of Moderate and Sever Hallux Valgus Deformity,” Foot & Ankle International, vol. 28, No. 7, Jul. 2007, pp. 857-864.
Schon et al., “Cuneiform-Metatarsal Arthrodesis for Hallux Valgus, ” The Foot and Ankle, Second Edition, Chapter 8, 2002, pp. 99-117.
Sokoloff, “Lapidus Procedure,” Textbook of Bunion Surgery, Chapter 15, 1981, pp. 277-287.
Stamatis et al., “Mini Locking Plate as “Medial Buttress” for Oblique Osteotomy for Hallux Valgus,” Foot & Ankle International, vol. 31, No. 10, Oct. 2010, pp. 920-922.
Stewart, “Use for BME Speed Nitinol Staple Fixation for the Lapidus Procedure,” date unknown, 1 page.
Wukich et al., “Hypermobility of the First Tarsometatarsal Joint,” Foot and Ankle Clinics, vol. 10, No. 1, Mar. 2005, pp. 157-166.
Dayton et al., “Biwinged Excision for Round Pedal Lesions,” The Journal of Foot and Ankle Surgery, vol. 35, No. 3, 1996, pp. 244-249.
Dayton et al., “Medical Incision Approach to the First Metarsophalangeal Joint,” The Journal of Foot and Ankle Surgery, vol. 40, No. 6, Nov./Dec. 2001, pp. 414-417.
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Moderate and Severe Metatarsus Primus Adductus,” The Journal of Foot and Ankle Surgery, vol. 41, No. 5, Sep./Oct. 2002, pp. 316-319.
Dayton et al., “Use of the Z Osteotomy for Tailor Bunionectomy,” The Journal of Foot and Ankle Surgery, vol. 42, No. 3, May/Jun. 2003, pp. 167-169.
Dayton et al., “Early Weightbearing After First Metatarsophalangeal Joint Arthrodesis: A Retrospective Observational Case Analysis,” The Journal of Foot and Ankle Surgery, vol. 43, No. 3, May/Jun. 2004, pp. 156-159.
Dayton et al., “Dorsal Suspension Stitch: An Alternative Stabilization After Flexor Tenotomy for Flexible Hammer Digit Syndrome,” The Journal of Foot and Ankle Surgery, vol. 48, No. 5, Sep./Oct. 2009, pp. 602-605.
Dayton et al., “The Extended Knee Hemilithotomy Position for Gastrocenemius Recession,” The Journal of Foot and Ankle Surgery, vol. 49, 2010, pp. 214-216.
Wienke et al., “Bone Stimulation For Nounions: What the Evidence Reveals,” Podiatry Today, vol. 24, No. 9, Sep. 2011, pp. 52-57.
Dayton et al., “Hallux Varus as Complication of Foot Compartment Syndrome,” The Journal of Foot and Ankle Surgery, vol. 50, 2011, pp. 504-506.
Dayton et al., “Measurement of Mid-Calcaneal Length on Plain Radiographs: Reliability of a New Method,” Foot and Ankle Specialist, vol. 4, No. 5, Oct. 2011, pp. 280-283.
Dayton et al., “A User-Friendly Method of Pin Site Management for External Fixators,” Foot and Ankle Specialist, Sep. 16, 2011, 4 pages.
Dayton et al., “Effectiveness of a Locking Plate in Preserving Midcalaneal Length and Positional Outcome After Evans Calcaneal Osteotomy: A Restrospective Pilot Study,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 710-713.
Dayton et al., “Does Postoperative Showering or Bathing of a Surgical Site Increase the Incidence of Infection? A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 612-614.
Dayton et al., “Technique for Minimally Invasive Reduction of Calcaneal Fractures Using Small Bilateral External Fixation,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 7 pages.
Dayton et al., “Classification of the Anatomic Definition of the Bunion Deformity,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 160-163.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 5 pages.
Dayton et al., “Observed Changes in First Metarsal and Medial Cuneiform Positions after First Metatarsophalangeal Joint Arthrodesis,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 32-35.
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsal Phalangeal Joint Arthrodesis: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages.
Feilmeier et al., “Reduction of Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Hallux Valgus,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 29-31.
Dayton et al., “Principles of Management of Growth Plate Fractures in the Foot and Ankle,” Clinics in Podiatric Medicine and Surgery, Pediatric Foot Deformilites, Oct. 2013, 17 pages.
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?, ” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages.
Rodriguez et al., “Ilizarov method of fixation for the management of pilon and distal tibial fractures in the compromised diabetic patient: A technique guide,” The Foot and Ankle Journal Online, vol. 7, No. 2, 2014, 9 pages.
Feilmeier et al., “Incidence of Surgical Site Infection in the Foot and Ankle with Early Exposure and Showering of Surgical Sites: A Prospective Observation,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 173-175.
Catanese et al., “Measuring Sesamoid Position in Hallux Valgus: When Is the Sesamoid Axial View Necessary,” Foot and Ankle Specialist, 2014, 3 pages.
Dayton et al., “Comparison of Complications for Internal and External Fixation for Charcot Reconstruction: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 4 pages.
Dayton et al., “A new triplanar paradigm for bunion management,” Lower Extremity Review, Apr. 2015, 9 pages.
Dayton et al., “American College of Foot and Ankle Surgeons' Clinical Consensus Statement: Perioperative Prophylactic Antibiotic Use in Clean Elective Foot Surgery,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 7 pages.
Dayton et al., “Complications of Metatarsal Suture Techniques for Bunion Correction: A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 3 pages.
DeCarbo et al., “The Weil Ostetomy: A Refresher,” Techniques in Foot and Ankle Surgery, vol. 13, No. 4, Dec. 2014, pp. 191-198.
DeCarbo et al., “Resurfacing Interpositional Arthroplasty for Degenerative Joint Diseas of the First Metatarsalphalangeal Joint,” Podiatry Management, Jan. 2013, pp. 137-142.
DeCarbo et al., “Locking Plates: Do They Prevent Complications?, ” Podiatry Today, Apr. 2014, 7 pages.
Easley et al., “Current Concepts Review: Hallux Valgus Part II: Operative Treatment,” Foot and Ankle International, vol. 28, No. 6, Jun. 2007, pp. 748-758.
Kim et lal., “A Multicenter Retrospective Review of Outcomes for Arthrodesis, Hemi-Metallic Joint Implant, and Resectional Arthroplasty in the Surgical Treatment of End-Stage Hallux Rigidus,” The Journal of Foot and Ankle Surgery, vol. 51, 2012, pp. 50-56.
Easley et al., “Current Concepts Review: Hallux Valgus Part I: Pathomechanics, Clinical Assessment, and Nonoperative Management,” Foot and Ankle International, vol. 28, No. 5, May 2007, pp. 654-659.
Sandhu et al., “Digital Arthrodesis With a One-Piece Memory Nitinol Intramedullary Fixation Device: A Retrospective Review,” Foot and Ankle Specialist, vol. 6, No. 5, Oct. 2013, pp. 364-366.
Weber et al., “Use of the First Ray Splay Test to Assess Transverse Planet Instability Before First Metatarsocuneiform Fusion,” The Journal of Foot and Ankle Surgery, vol. 45, No. 4, Jul./Aug. 2006, pp. 278-282.
Smith et al., “Opening Wedge Osteotomies for Correction of Hallux Valgus: A Review of Wedge Plate Fixation,” Foot and Ankle Specialist, vol. 2, No. 6, Dec. 2009, pp. 277-282.
Easley et al., “What is the Best Treatment for Hallux Valgus?, ” Evidence-Based Orthropaedics—The Best Answer to Clinical Questions, Chapter 73, 2009, pp. 479-491.
Shurnas et al., “Proximal Metatarsal Opening Wedge Ostetomy,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 13, 2011, pp. 73-78.
Coetzee et al., “Revision Hallux Valgus Correction,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 15, 2011, pp. 84-96.
Le et al., “Tarsometatarsal Arthrodesis,” Operative Techniques in Foot and Ankle Surgery, Section II, Chapter 40, 2011, pp. 281-285.
Collan et al., “The biomechanics of the first metatarsal bone in hallux valgus: A preliminary study utilizing a weight bearing extremity CT,” Foot and Ankle Surgery, vol. 19, 2013, pp. 155-161.
Eustace et al., “Hallux valgus, first metatarsal pronation and collapse of the medial longitudinal arch—a radiological correction,” Skeletal Radiology, vol. 23, 1994, pp. 191-194.
Mizuno et al., “Detorison Ostetomy of the First Metatarsal Bone in Hallux Valgus,” Japanese Orthopaedic Association, Tokyo, 1956; 30:813-819.
Okuda et al., “The Shape of the Lateral Edge of the First Metatarsal Head as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 89, 2007, pp. 2163-2172.
Okuda et al., “Proximal Metatarsal Osteotomy for Hallux Valgus: Comparison of Outcome for Moderate and Severe Deformities,” Joint Foot and Ankle International, vol. 29, No. 7, Jul. 2008, pp. 664-670.
D'Amico et al., “Motion of the First Ray: Clarification Through Investigation,” Journal of the American Podiatry Association, vol. 69, No. 1, Jan. 1979, pp. 17-23.
Groves, “Operative Report,” St. Tammany Parish Hospital, Date of Procedure, Mar. 26, 2014, 2 pages.
Claim Chart for Groves Public Use (Mar. 26, 2014), Exhibit B4 of Defendant Fusion Orthoepdics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for District of Arizona, Aug. 27, 2022, 161 pages.
Related Publications (1)
Number Date Country
20220304727 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
62024546 Jul 2014 US
Divisions (1)
Number Date Country
Parent 14799981 Jul 2015 US
Child 15894702 US
Continuations (4)
Number Date Country
Parent 17503730 Oct 2021 US
Child 17836809 US
Parent 17201008 Mar 2021 US
Child 17503730 US
Parent 16730424 Dec 2019 US
Child 17201008 US
Parent 15894702 Feb 2018 US
Child 16730424 US